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Corrections of order e' to the differential cross section for Compton scattering of unpolarized radiation
by electrons are computed. The results for corrections ascribable to virtual photons are 6nite, relativistically
invariant, and valid at all energies, but contain a term which depends logarithmically on an assumed small
photon mass ) . A cross section of the same order has also been obtained for double Compton scattering in
which one of the emitted photons has an energy small compared to the rest mass of the electron (with the
electron initially at rest). This contains a term depending on ink which exactly compensates the similar
term arising from virtual quanta in all observable cases. Approximations for low and high energies, as
well as numerical results, are given. These disagree with results obtained previously by Schafroth.

~

'HE object of this paper is to obtain the correction
to the differential cross section for Compton

scattering (Klein-Nishina formula) arising from the
possibility that the electron may emit and reabsorb a
virtual photon in connection with the scattering process.
We shall apply the methods developed by one of us' to
obtain an explicit cross section to order e' for unpolar-
ized radiation, valid (in so far as the theory is valid) at
all energies.

Previous workers have shown that the high frequency
divergences which enter in the straightforward appli-
cation of perturbation theory to this problem can be
removed by charge and mass renormalization. Schaf-
roth' ' has obtained a finite e'-order matrix element in
relativistic and gauge invariant form. He also showed,
following the treatment of the analogous problem for
scalar particles by Corinaldesi and Jost, ' that the
infrared divergence which occurs can be removed by
addition of the double Compton cross section in which
the incoming photon produces two photons on inter-
acting with the electron, and he made explicit evalua-
tion of the cross section (but not of the double scat-
tering) in the nonrelativistic and extreme relativistic
approximations. His results, however, disagree with
ours in both limits.

Since the interpretation of any experiment to measure
the radiative corrections requires a knowledge of the
double Compton cross section, we have computed this
also, for the case that one of the emitted photons has
an energy in the laboratory system which is small
compared to the electron rest energy.

After a brief introduction, we shall in Sec. II write
down and discuss the matrix element for the corrections.
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Section III will detail the evaluation of the differential
cross section. Section IU will be concerned with the
infrared catastrophe and the double Compton effect.
Sections V and VI will discuss limiting cases and some
numerical results. Mathematical details will be reserved
for the appendices.

The method of calculating this effect is given by
Feynman, ' and for brevity we will not repeat the
discussion here but will simply carry out the explicit
evaluation of the matrix elements involved. Our nota-
tion is that of reference 1.

Some improvement has been made in the method of
computing matrix elements given in reference 1(b).
This is described here in detail in Appendix Y.

with

R= es(p,+q, m) 'ei—, S=ei(pi —qs Bs) es. (1b)

The final momentum of the electron is, of course,
ps= pi+qi —qs. The terms correspond to the diagrams
of Fig. 1.

We shall call

ps pl+ qi p2+ q2 p4 pi qs p2 qi

and define the important invariants ~, v by

m K=tii ps = —2pi'qi= —2ps'qs,

Bs r=m' —p4' ——2pi qs ——2p& qi.

(2)

In the laboratory system, with co& and co2 the energies
of the incoming and outgoing photons, x is —2rot/tis
and r is 2ois/tis. In terms of the quantities defined in

This problem is discussed in reference 1, Appendix D, p. 788,

I. THE KLEIN-NISHINA FORMULA FOR
UNPOLARIZED RADIATION

The direct Compton effect, in which a photon of
momentum q1, polarization e1, impinges on an electron
of initial momentum pi, to be scattered as a new photon
of momentum q2, polarization e2, is represented by a
matrix element



232 L. M. BROWN AND R. P. FEYNMAN

out by the interchange of ei and e2, of qj and —q2, and
of ps and p4. In the final result this means simply an
interchange of ~ and v. Hence we need study only E,
the 5 terms being obtained from the E. terms immedi-
ately.

Terms E' and A"' give zero since there are no
vacuum polarization effects for free photons.

Terms M' and M" together give a factor' r/2i times
E, where

P4 Fro. 1. Momentum diagrams
I for direct Compton e8ect.

P,

S

r = ln(A/m)+9/4 21—n(m/X) (14)

as shown in reference 1(b), Sec. 6. The quantity A is a
temporary high frequency cutoff, introduced so that
each diagram can be separately evaluated. The final
result will become independent of A. as A.—&~. The
"infrared catastrophe" discussed in Sec. IV is treated,
at this point, by assuming the photons to have a small
rest mass ).

The term L is

I.= ~ e2(ps m) —'y„(ps ft —m) —'

)&7„(ps—m)
—'e,p—2d4&C(f22). (15)

From this must be subtracted the mass correction for
an electron travelling between the absorption and
emission of the virtual quantum. Since (to order Am)

(P m ZL—m)
'—=(P m) '—+(P m) 'h—m(P m) '—

,

this gives just the expression for L except that hen

replaces

)~y„(P2—ft—m) 'y„k—2d4kC(lt2),

where imam is the mass correction for cutoff A. Preference
1(b), Eq. (21)]:

(16)

Since this diagram occurs for problems other than the
one we consider here, we give the result in a general
way. Each (P—m) ' propagation factor has, as a
consequence of diagrams like L, a correction to the
first order in t,"given by

(2) and (3) we have

m2»R = e2—(ps+ m) ei, msrS = e—(p 4+m) e2 (.4)

The diGerential cross section for the final photon to
go into solid angle dQ, if the initial electron is at rest
(laboratory system, Pi=my, ) is

do = e dQ(o222/oi 2)t (3)

where F is the square of the matrix element of W(1a),

(6)

If we are uninterested in the spin states of the elec-
tron, F may be replaced by (2m') 'U where

U= -,' sp((P2+m) w(P, +m) W$. (7)

If, in addition, unpolarized radiation is used and the
sum over polarization directions is required, ei can be
replaced by p and e2 by pp in the spur and half the
sum over n, P taken (reference 1(b), Sec. 8). Then the
term in (7) which is second order in R is

—',(2m.)- Sg(P,+m) &,(P,+m) &.(P,+m) &.
X(P2+m)yp]=4/»' r/» 2/»— (8—).

The reduction can be accomplished by Eqs. (4a) and
(36a) of reference 1(b). The term of second order in S
is (8) with», r interchanged, since 5 is obtained from
E by replacing ps by p4 after the average is taken on
photon polarization. The cross term is

(2m'») —'(2m'r) —' SpL(P2+m) yS(Ps+ m) y.
X (Pi+m) pp(P4+m) y.]= 8/»r 2/r 2—/» (—9).

The sum gives for U=m'g„;„P„i~s(W)t~'.
V=4(» '+r ')' 4(» '+r ') (»/r—+r/—») (—10)—

and for the Klein-Xishina formula in terms of K 7 we
have:

22re4 f'
rsvp (dr d»q

I

—
ll

—+—IU
m2 (»2) i, r2»2) (11) (P m) ') —y„(P It m) 'y, ft 'd'—kC(—k')(P m)—

—b,m(P —m) '
In the laboratory system, in view of »= —2cdi/m,
r= 2ro2/m and the Compton relation

rorro2(1 —COSy) =m((or —co2), (12)

(11) can be written in the usual way

d~= (&'/2m')dQ(re2 /hei ) (Cot/ro2+ (02/hei, siil y). (13)

II. THE e4-ORDER MATRIX ELEMENT

The diagrams of the first radiative corrections to term
R of the Compton effect are given in Fig. 2. (See
reference 1(b), Fig. 9.) The terms containing the
analogous modifications of S can be obtained through-

= (4i)
—' (P—m)

—' 1n(A.2/m2)

5 ri ri(2 —ri)
+— + — 1nq

2 21
—1 (rl —1)'

—m(P —m)-2

where ms' =m2 —P2.

ri(321 —2)
inta, (17)

21
—1 (ri —1)'

6 The factor obtained in reference 1(b) is —(e2/2m)r, but we have
reserved a factor e'/xi for later inclusion.



TO COMPTON SCATTERING

Terms E' and E"again possess a feature common to
several problems, and we will therefore first discuss it
in a general way. In all problems in which an electron
interacts with a potential or a free or virtual photon
there will be a piece of the diagram like Fig. 3. That is,
there will be a partial factor in one of the matrix
elements:

FIG. 3. Diagram for the
expression T.

T=Jt y (p+q k m—) —'e(p k—m—) '

Xy„k 'd'kC(k'). (18)

It would be most convenient to have this evaluated in
the general case of arbitrary p and q. However, we
have evaluated it only in the special case that q'=0,
p'=m', with the matrix operating on a state I such
that pm, =ml. Calling m'»= —2p q it is (Appendix Z):

SiT=4» '[m'e+2» '(e p)q7 ~ ln(1 —v)dv/v

(14), we observe that K gives (4m'/Si)R, I. gives

( 2m—'/Si)&, and M gives (—2m'/Si)R Therefore the
terms dependent on A. vanish. Since we shall 6nd that
the J integral is hnite without cutoR', we note that the
complete result is insensitive to A.

The term J is given by

y (p2 —k—m) 'e2(pa —k—m) '
J

g eg(pg —k m)—-'y„k 'd4k (2.1)

+2L(2m'+pq qp)e-
+2» '(e p)(q+m»)(3» —2)(»—1) '7(»—1) 'ln»

+[2 in( '/A') —17 'e
—4('P)[(q+m)( —1)-'+q» '7 (»)

If the 6nal, rather than the initial, state is a free
electron the 1Tlatrlx required ls 7 so thc rcsul t ls
obtained directly from (19). For term K', this T for
the case p= p~, q=q~, e=e~ is to be multiplied on the
left by eg(pg+qg —m) '=e2(p3 —m)

—'. Therefore, K'
and the corresponding term E" together give

K=K'+K"= (Si)—'[e2(p3 —m)
—'T(p~, q~, e~)

+T(p, q, e )(p m)-'e 7 (2o)—

For large k the factors in the integrand vary as k "
with m~5 and the integration over k-space therefore
converges. If we had included the convergence factor
C(k'), the result would be independent of A. as A—+~.

When the reciprocals are rationalized (e.g. ,

(p —k—m) '=(p2 —k+m) [(p2—k)' —m'7 ') powers
of k„up to the third appear in the numerator of the
integrand. Therefore we shall have to evaluate integrals
of the form:

J(0;o", err;orv)

(1;k„.k.k„k,k,k,)[(p2—k)' —m'7 '

&& [(pm —k)' —m'7 '[(pg —k)' —m'7 —'k —'d4k. (22)

If we now examine the cocfhcients of the term
ln(m'/A. ') in K, L, and M, that is in (20), (17), and

M M '
N

Fza. 2. Corrections to term R of Compton scattering.

That is, for Jo the factor (1; k, ; etc.) is replaced

by unity, for J by k„ for J, by k,k„and for J„„by
k,k,k„. The manner in which J can be expressed in
terms of these integrals is illustrated, for the case of
matrix T in Appendix Z.

The J integrals can be worked out by the parametric
methods described in reference 1(b) (Appendix). They
involve integrals having four factors in the denominator
and will lead, therefore, to integrals over three param-
eters. (Jo is integrated in this manner in Appendix Y.)
Generally these Rlc vcIy dlfhcult to cvaluatc, although
J(1 is particularly simple. This fact makes it possible
to circumvent some of the difhculties of J„J„and
JO'v'v~

It is possible to express these other J integrals as
linear combinations of the integral Jo and of other
integrals, all of which involve only three quadratic
factors in the denominator. These latter, in parametric
form, require only two parameters (and are much more

easily evaluated than a direct attack on J, say, would
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indicate). This technique is useful in other problems
also and is described in detail in Appendix V.

III. CROSS SECTION FOR UNPOLARIZED LIGHT

It we call the sum X+X+I+'M=X&", then
(e'/mi)R"& will be the correction to the matrix R of the
direct e8ect (1). If the corresponding correction to the
term S is called (e'/~i)Sn&, the corrected matrix for the
Compton eGect is

W'= W+ (e'/~i) W"i =2+S+ (e'/7') (2++S&"). (23)

The absolute square of the matrix element of 8", taken
between the initial and final electron states, gives the
probability of transition correct to one order in e' higher
than (6). We shall calculate in this paper only the cross
section averaged over spin directions of the electron
and polarization directions of the photons.

We need the spur:

—,
' Sp[(P2+m)W'(Pi+m)W'] (24)

as in (7). Considering terms up to the erst order in e'

(which are all that are valid), (24) is

U—ri }(e'/~i) Sp[(P2+m) W(P,+m) Wo&]
—(e'/ i) Sp[(P +m) W"&(P +m)W]}. (25)

The final result obtained in this way is:

P(», r)=(1—2y ctnh2y) ink U

—2y ctnh2y[2k(y) —h(2y)] U

+[—4y sinh2y(»r) '(2 —cosh2y)

+2y ctnhy]h(y)+in») 4y ctnh2y —cosh'y

~—6 4 1 v

+ sech2y+ — ——— 1
27 K K 2K

3v' 37 3 7 8 8 2z —r2 —z27

+ +—++1 —+ +
2» 2» I'»'7 K» 2» r(» —1)

1 2»'+r 2 7 3r'
~y csch'y ——-a———2

2r(» —1)' » 4 4»

(1—4y«nhy} ——}+4}-+-
}

&2

12 3»» 1 (» 1p
2—,+ }-+-}

2r r' »—1Er 2)

In evaluating (25) for unpolarized light we have re-
placed e& by p and e2 by 7p and taken one-half of the
resulting sum as discussed in connection with (8).
Some algebraic details are discussed in Appendix Z.'

The last two spurs in (25) are complex conjugates,
so that the correction to U is —e'/~ times the real part where

of
U&'&= —(4i) ' Sp[(P2+m)W~" (Pi+m)W]. (26)

4 sinh'y = —(»+ r) (30a)

K 7 K 1 2 3
+Go(») + + +»+ r+ —1——

7 K 7 2 K 7

+terms antisymmetric in», r, (30)

That is, U is to be replaced in (11) by

U'= U —(e'/~) R.P.U&".

If we let
(27)

P(», r) = —(4i)
—' Sp[(P2+m)R&'&(P, +m)W] (28)

then
U&'&=P(», r)+P(r, ») (29)

since the S&') diagrams are obtained from the E&')

diagrams (for unpolarized light) by the interchange of

P3 and P4 and of qi and —
q&, hence the final result,

simply by interchange of x and v.

7 It has been applied by G. R. I omanitz to completely evaluate
the e' corrections to the Moiler scattering cross section of electrons
in his thesis Secorld Order sects ie the Electro'-E/ectron Inter-
action, Cornell, j.950. Again, in the problem of scattering of light
by light, the integral with unit numerator is easily done, and the
other integrals can be reduced to it and simpler integrals alge-
braically. But here the algebraic complexity makes the problem
extremely tedious.

8 In actual evaluation it was found easier to take the spur erst
and perform the integrals later. Thus, in place of the expression
T (Eq. 18), the expression T (Eq. A41) was substituted and the
values of the integrals from Appendix X substituted after taking
the spur. This has the advantage that some of the integrals do
not appear, or appear only in simpler combinations,

h(y) =y ' udu ctnhu
dp

1

Go(») = —2»
—') I ln(1 u) du/u—

1-a

(30b)

(30c)

This is to be added to the same expression with ~ and 7

interchanged (29) and the real part taken to get the
correction' to the Klein-Nishina formula (11). We
discuss this result in the following sections.

We might note here, however, that the real part of
P(», r) is obtained by writing in~»~ for ln» and by
writing for Go(») expression (30c) with ln(1 —u) replaced
by ln(u —1). Since r is always positive, on the other
hand, P(r, ») is always real. This is discussed further
in Appendix W.

The imaginary part ot P(», i) is not without interest,
as we shall show. This is given by m times the coefhcient
of ln» in (30) plus s ln(1 —») times the coeScient of
Go(»).

The loss of total intensity of a beam of photons is of
course proportional to the total cross section for a
photon to be scattered out of the beam, But this



But, including all factors, the complete e'-order matrix
element of R~" is (according to reference 1(b)):

27M

lapin Epos &(~ +5' )2 (33)
vari (err/2) 4

and from the unitary property referred to above, it
follows that the total cross section for Compton scat-
tering to order e' is just twice the real part of X.
Therefore,

o&,&,~(t oorder e') =2R.P.X= (2ro2/r)I P.P(~, r) (.34)

since 5&" has no imaginary part. That (30) satisfies
this identity can be readily verified. 9

IV. THE INFRARFD CASTASTROPHE AND THE
DOUBLE COMPTON EFFECT

In Sec. II we have derived the differential cross
section for Compton scattering for unpolarized light,
including radiative corrections, - to order e . The cross
section took the form

with
do = do K.N.[1+(e'/m. )8]

8= —U&'&/V. (35a)

There are two reasons why this result cannot be
compared directly with experiment. In the first place
U&" depends on the quantity ) to which no experimental
significance has been attached. In the second place, it
is impossible in principle to design an experiment which
will guarantee that one and only one photon is emitted

by the electron in the scattering process. The best one
can do in an experiment is to require that if a second
photon is emitted, its energy is less than some value

~ W. Heitler, The Qualtum Theory of Radiatioe (Oxford Uni-
versity Press, London, 1944), p. 157, Eq. (53). Our Eq. (33) agrees
with this result with r replacing Heitler's 2y.

decrease in forward intensity is the result of an inter-
ference between the incident photon and a photon
scattered exactly in. the forward direction. Therefore,
as is well known, the imaginary part of the forward
scattering amplitude is proportional to the total cross
section (formally this is referred to as the unitary
property of the 8-matrix). We can use this relation to
check the imaginary part of P(r. , r) for the case of
zero scattering angle (for which, of course, pi= p~,
pi=$2~ K= —r).

We write P(~, r) again as a sum

P(g, )=(4m'i)-'P„;„P„,. ,(E'), ,(g),, (31)

and can show easily that 2(W)i ——i/m if there is no spin
change and no polarization change, and zero otherwise.
This can be seen, aside from the phase factor i, from
the fact that for small scattering angles the Klein-
Nishina formula (13) is do=ro'dQ in the laboratory
system. Since i(R&")2 also vanishes when 2(W)i does,

k,„.This can be done, for example, by measuring the
energies of the final electron and photon to some
specihed accuracy, the sum of the errors in the meas-
urement being less. than k . In such an experiment
one would be measuring the cross section (35) plus the
cross section for the double Compton eGect, dg~,
integrated over all possible directions of the second
quantum and over its energy up to k, .

These two difhculties, both related to quanta of low
energy (if k, is small), in one case virtual, in the
other real, are actually related. That this should be so,
can be seen physically from the fact that it is difficult
to distinguish between virtual and real quanta of
extremely low energy since, by the uncertainty princi-
ple, a measuremqnt made during a finite time interval
will introduce an uncertainty in the energy of the

uantum which may enRble R vlrtuRl quantum to be
detected as a real one. It turns out. in fact that dgD,
integrated to k, , also contains an infrared divergence
which just cancels the similar divergence in the radiative
corrections. Ke are computing, of course, only to order
g6, but the multiple Compton scattering of a given
higher order will also cancel all the radiative infrared
catastrophes of the same order.

The problem is analogous to the perturbation theory
treatment of the scattering of an electron by a potential,
which has been considered by many workers, except
that in our case the primary process is the Compton
scattering considered in Sec. I. The cross section for
emission of an additional photon q of energy m goes for
small co as (d'q/cv)(P2/P2 q

—Pi/P, q)' times the Klein-
Nishina formula. Since this diverges as co approaches
zero, the probability of a single Compton process
unaccompanied by such emission is zero. ~hat is
experimentally measured, however, is the probability
that. a Compton process occurs and that no other free
photon is emitted except for a class of photons inacces-
sible to the experiment. This is equal, to our order of
calculation, to the probability of the single process plus
the probability of a double process in which one of the
photons emitted is in the inaccessible class. This class
is, of course, determined by the design of the experiment
and a single calculation cannot suKce for all experi-
ments. However, one feature common to all experiments
will be a finite energy resolution, so that a part of the
excluded class must consist of photons whose energy is
less than some energy k, .

g e will first therefore find that part of the differential
cross section for double Compton scattering which gives
rise to an infrared divergence. This will be integrated
over all the directions of one of the photons, and over
its energy from zero to a value k, which we shall
assume is small compared to the electron mass, and
added to the previously obtained corrected cross section
for single Compton scattering. It has already been
pointed out that Schafroth' has demonstrated that a
cancellation of the infrared divergence occurs in order
t,' when the double Compton cross section is added to
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equivalent to 2ps es. Thus, with qs small, we get

(r)= ~» /p q (»)= ~p-

(U)=Rps. es/ps qs, (VI)=Sps es/ps qs.
(36)

Adding tlMsc wc 6nd thc IQRtllx fol the double
Compton process:

(ps'&s pI'esp
(zys)

~

&Ps'qs PI'qs~
(37)

pI0. 4. Diagrams fol thc double Compton CEcct. Herc pg= py+gy,
p4= py —gg j thc momentum condltlon rs Pl+pl P2+g2+g3

the single scattering cross section, but we must obtain
at least the zero order term in k,„(for k, «m) to
obtain a useful result. The completely diGcrcntial cross
section for the double scattering has been computed by
Eliezer, " but since we wish to make approximations
Rnd carry out Rn lntcgrRtlonp lt ls slIQplcl for us to
obtain the desired cross section from the beginning.

Figure 4 gives the diagrams necessary for computing
the cross section for double Compton scattering. The
pllotoII momentum qs= (Gos, Qs) Is assumed to be sllla, ll

in the foHowing (a&s((sss). This, of course, implies a
definite coordinate system. To obtRln R finite I'csult we

assume the photon has a small rest mass X, so that
g'=)P. Keeping terms only to order cv3 ', we neglect q3

occurring in the numerator of the (rationalized) matrix
element terms, and terms of order ~3 compared to
Pss —I' and P»s —sIss in the denominators.

We hand that terms III and IV are not of the desired

order. In view of the fact that we are to make matrix
elements between the free electron states uj, and N2, a
factor (pI+Iss)es (with es the polarization vector of q, )
operating on the left of NI, is equivalent to 2P, e, and

a factor es(ps+IN) operating on the right of us is

"C. J. Kliezer, Proc. Roy. Soc. (London) AI87, 210 (1946}.
When the class of photons inaccessible to the experiment does
not consist simply of those below a given very small energy k,
.(but consists, for example, of those in a given solid angle, or with
a limited momentum component, or having energies too large to
permit the approximations we have made} the contribution which
these events make to the measured cross section can be obtained
from Kliezer's formula. Explicitly, one must add to our result

(39) thc cross section for the double process given by Kliezer,
integrated over all the photons in the class inaccessible to the
experiment but which also exceed some arbitrary very small

energy k, . The sum, of course, will not depend on k „.

TalrIng the absolute square of (37) and. averaging over
polarizations and spins in the usual manner, it is clear
that we obtain the-Klein-Nishina cross section do-K.~.
(Eq. (11)) multiplied by the following factors: (a)
dsqs/(2sr)s, the density of states for qs (neglecting its
CGect on the momentum balance, and therefore as-
suming it is emitted independently of qs), (b) es, from
the additional interaction vertex, (c) 2sr/es, the
normalization factor for the photon. qs, (d)

(Ps cs PI'~s) ' ( Ps PI ) '
pol

&Ps'qs PI'qs~ &Ps'qs PI'qs~

%c collect these factors and integrate the photon
momentum over all angles and from q3=0 to the
sphere

l
Ils I k~g, x) wllcl'c k~gx((ass Thusy

$2

do K.N.
(2x)s

p[s8[ =%max ( ps pI ) s dssl

I

—— I. . . (38)
"tel =o &Ps.qs PI qs~ (%s'+~')'

Observe that if we replace do.K.N. by the cross section
dao for an arbitrary process of one electron, the result
(37) is valid for that process with one additional photon
of small energy in the Anal state. For if the "small"
photon g3 ls crnlttcd fI'oIQ Rn clcctI'on lllM of momentum

P where Ps&ms, its effect will be negligible. The only
diagrams contributing to the process with q emitted
will be those of the original process, modi6ed by the
emission of q either before or after the original process.
Thus the factor of (8+5) in (37) will always be the
factor modifying the original matrix element (for small

q) and the result (38) is the general result for an arbi-
tlRly px'occss of onc clcctlon, doo I'cplaclrlg doK.N. .

It is most convenient to impose our restriction
&&m in the laboratory system. '~ In this case, the

I'cslll't of III'tcgl'atlIlg (38) (expressed III tcl'Ins of Illval'I-

ants) is

«D = —(&s/sr)da'x. N. I 2(1—2y ctnh2y) [ln(2k „ /X)
—-'j+4y ctnh2y[h(2y) —1]I, (39)

wltll y alld k(y) defined III (30).

"This expression {with ) =0) has been obtained previously.
See, for example, R. Jost, Phys. Rev. 72, 815 (1947), and F. Bloch
and A. Nordsieck, Phys. Rev. i2, S4 (19S7}.

' J. Schwinger, Phys. Rcv 76) 790 (1949) has integrated {38}
for the case of thc scattering of an electron in a potential.
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When (39) is added to (35) the effect is to replace
the quantity

I2(1—2y ctnh2y) 1n)c—4y ctnh2y[2k(y) —h(2y)]} U

in U(') by

I 2(1—2y ctnh2y)[ln(2k .„)—-',]
+Sy ctnh2y[k(2y) —k(y) ——,']}U. (40)

Ke have now arrived at a physically understandable
result as the quantity k which replaces ) in U"' is
the sum of the experimental uncertainties in the
measurement of the final energies of the Compton
scattered photon and electron. Our result can be com-
pared with an experiment providing the energy resolu-
tion 1s known and kIIIg,x 1s su%.clently small

Under the limits of validity of our formula, the term
in (40) containing k, is positive, and thus makes a
negative contribution to the cross section. As the
energy resolution of an experiment improves, it is thus
found that the measured Compton cross section gets
smaller. This is reasonable since we are eliminating
from our observations more double Compton events.

The express&on (35a) for c& with U~ given by (29)
and U given by (10) is valid also for the correction to
the two-quantum pair annihilation and the two-
quantum pair production processes, provided that for
the formex problem we replace f(: by —f(: and for the

'latter v by —v. This occurs because in writing down
the matrix element we represent the emission of a
photon by —q and its absorption by +q, and because
a matrix P representing an electron also represents a
positron of four-momentum —p. However, the infrared
divergences in these problems are not compensated by
the corresponding three-quantum processes" (which
are not divergent) but by the effect of Coulomb inter-
action. This will not be discussed further in this paper.

V. EXTREME RELATIVISTIG LIMIT

The Compton formula (12) can be written in the
laboratory system, with scattering angle y, as

(cc+r)/r = -,'cc(1—cos e). (41)

We assume
I
ccI&)1 and consider the three cases listed

in Table I. This table also lists the approximations
made in obtaining the formulas for U and U&" for the
three cases and the corresponding conditions on the
laboratory and .center-of-mass scattering angles. The
energies (in units of mc') of the incoming and outgoing
quanta are represented in the laboratory system by
e~ and co~, respectively, and in the c.m. system by u.

The results are as follows:

Case I.
U=2

Uo& =4(1—2y ctnh2y) ln)c —Sy ctnh2y [2k(y) —k(2y) ]
+4yk(y) ctnhy+ln

I
&c

I (4y tanhy —1)
—2y' —4y tanhy+3 —(ln

I
K

I
)'—tr'/6. (42)

'3Note that the tvro quantum pair processes are symmetric
with respect to interchange of p~ and p2 so that (37) vanishes.

Case II.

U= —[(s/r)+(r/s)]
Uo& = UI(1—2y)(-', +2 In)&)+2ys —7r'/6}

(+ I 1+—+-
I »I 1+-

I

—h
I

1+-
}.) t. .)

+». +I I+-+—
I Il. 1+-

I

2r)

—lnI 1+—
I

—ln —+n' . (43)

Case III.

The corrected cross sections, in the relativistic limit
are given in the laboratory system by

der = (rs'/2) dQ(rs/cc') [U—(e'/m )U"&] (45)

and in the c.m. system by

do = (rs'/8&')dQ[U —(e'/~) Ut'&] (46)

with rs ——e'/me'.
As we have explained in the previous section, for

actual comparison with experiment one must add to
(45) the cross section for double Compton scattering
(35) which is valid, of course, only in the laboratory
system with k, (&es. If we write (39) as

dern ——(—e'/m)(ros/2)dQ(rs/cc') U» (47)

then we must replace Uo& in (45) and (46) by Uo'+ Ur&.

For our three cases, we get".

TABLE I. Approximation made in obtaining the extreme
relativistic limit of (30), expressed in invariants, laboratory
system quantities, and c.m. system quantities.

Lab system
Case De6ned by I eads to conditions c.m. conditions

I ((s+r)/r(«1 (s( =r»1
j.—cos y« I/u1

(q near 0)
II ( ( +r)/ cc)1 rr»1 cue near ccc/2, 2 cos'{8/2)»1,

I cc+rl»1 1—coscc I/cue v sins(8/2)»1
(q near
(2/CO1) 2)

1(cc+r)/rl»1 lcc+rl»1 ~c near 1, tan'(e/2)&&1
1—«» s»&1/coc

(V»&(2/~1)')

tan'(e /2) «1

U= cc/r—
3r+1 1

Uo&=U 2(1—2y) inX+Inr 2y —— +
2 r 2r(r 1)—

t'1 r) 3 2——Go(r)I -+- I+-+- (44)
3
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7

6

A few results for high energies computed from (49)
a,nd (51) are given in Table II. At 180', the quantity
—(e'/m)b/U is +0.98 percent.

VI. NONRELATIVISTIC LIMIT

In the nonrelativistic or Thompson limit our results
will be equally valid in the laboratory and c.m. systems,
since we will keep only the erst nonvanishing terms.
In the c.m. system, we let the scattering angle be p and

3

82

0 20 40 60 80 100 120 140 160 180
l abaratary Angle $ (deg)

K= 2pi'pi= —2L(1+QP)'co+QPj
v. =2pi q2 ——2L(1+co')'co+co' cosy],

so that for ~((1:

(52)

FIG. 5. Plot of 8'= —U(')/U —2(1—2y ctnh2y) ink for 2.62 Mev
and 17.6 Mev as calculated from the exact expressions (29) and
(30) (solid curve). The dotted curves are calculated from the
extreme relativistic formulas (42), (43), and (44), and are num-
bered accordingly.

Case I.
Same as (39).

Cases II and III.

b (0') = —Inr (1+Inr)+ 1.355.

At 180 degrees,
b(180') = —4.225U.

(49)

(50)

Another simple case results from the condition
K= —2r, in the extreme relativistic limit. This corre-
sponds to 90' scattering in the c.m. system. Here we

get U=5/2 and

b(90', c.m. ) = (2y' —3y —2.29) U.

TABLE II. Percent correction to the Compton cross section for
unpolarized light arising from Eq. (30), excluding the term
proportional to ink, at zero degrees and at ninety degrees in the
c.m. system; computed as a function of the laboratory energy of
the incjdent photon from the special equations (49) and (51).

U& = UI 2(1—2y) [ln(2k, /X) ——,
' j

+4yLy+(~'/24y) —1jI (48)

In Fig. 5 we have plotted a comparison of the exact
expression for —U&"/U (leaving out the term propor-
tional to Ink) with the limiting cases expressed by (42),
(43), and (44). That is, if we write U"&= a lnX+b, we

have plotted b/U E—special. ly simple formulas result
for b in the extreme relativistic limit for the cases y=0
and y=180'. At zero angle (where incidentally, the
double Compton effect and the Ink term in U&'& vanish):

K= 2co(1+co+cd /2+ ' )
r= 2co(1+a& cosy+a&'/2+ ).

(53)

Since x depends only on co and dr=aPdQ/n, Eq. (11)
becomes

U= 1+cos'@+0(a&) (55)

U~" = —(4/3)co'(1 —cosy) U Ink

+(1+cosq+ cos'y ——', cos'q )4oP In(v+0((a'). (56)

The angular dependence of the 4'' incr term is plotted
as f(y) in Fig. 6. Expression (56) disagrees with the
result of Schafroth. '

Since (1/x)+(1/r) = —',(1—cosy) —(a&/2) sin'p in the
c.m. system and the same invariant is —,'(1—cosg) in
the laboratory system, with 0 the laboratory scattering
angle, it is clear that cos8=cosp+0(a&) for given K 7.
Also, since x+ r= —2&via&~(1 —cosg) = —2co'(1 —cosy)
and ~i= &o2+0(rai'), we get that cubi= a&+0(oP) =co2 and
therefore (56) is valid with rp interpreted as the labora-
tory scattering angle and ~ the incident photon energy.
Equation (55) is valid, with this interpretation, to
order co'.

The double Compton effect (39) gives in this limit
(with UD defined as in (47))

Un = —(4/3)co'(1 —cosy) U In(2k~~/X)+0(co') (57)

It will be observed that all the corrections vanish in
the zero energy limit.

do = (e4/2m')dn(1 —2co+2co'+ )LU—(e'/~) Uo&]. (54)

In Table III we give the nonrelativistic limits of
functions occurring in U"' (Eq. 30). A straightforward
calculation then yields:

Laboratory energy
Mev

50
150
300

1000

-(./ )~(0 )/U
percent

3.80
5.26
6.41
8.80

—(e~/~) b(90', c.m.)/U
percent

—0.32—0.87—2.13—4.35

APPENDIX W. ON THE TRANSCENDENTAL
FUNCTIONS Gp(x) AND A(g)

The complete expression for the radiative correction
(29) is expressed in terms of the relatively unfamiliar
transcendental integrals Go(x) and k(y). These can
both be expressed, however, in terms of one of the
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so-called Spence functions, '4 namely

L(x)= ln(1 —u)du/u (A1)

which we shall consider briefly.
It is well known that L( 1)=m—'/12, L(1)= —sr'/6.

If @&1,

L(x) = — (u+-', u'+ ~ )du/u

xs
(A2)

30 )' i I I l I l i

0 20 40 60 80 IOO l20 l40 l60 l80
Laboratory Angle $ (deg)

Fxo. 6. Angular dependence of nonrelativistic limit of U( &

(without lnX term).

L(x)=L(1)+ ln(1 —u) du/u
Our other transcendental function

=I.(1)+, Dn
~
1—u

~
aisrjdu/u

J~

=L(x)+isr lnx

L(x)=
~

For computational convenience, we can also write for
$&1:

k(y)=y ')" uductnhu

can also be expressed in terms of L(x). Integration by
parts gives

h(y) = ln(sinhy) —y
—' ln(sinhu) du.

Letting t=e '" yields ln(sinhu) =ln(1 —t) —ln2t and the
integral is obtained directly:

t'1 —e) ds
L(x)=L,(1)+ ~

V ) V

= —-', sr' —L(1/x)+-', (lnx)',

and in a similar manner

(A4)

k(y) = ln(2 sinhy) —y/2+ (2y)-'Lsr'/6+L(e —'&)j (A1())

If y is suKciently large that we can neglect e '~ com-
pared to unity, we get

k(y) ={y/2)+( '/»y) (A»)

L( x) = (sr'/6) —L—(—1/x)+-', (lnx)'. (AS)

Since» = (m' —Pse) is always negative, G0(»)
=2» 'LL(1—») —L(1)j has an imaginary part whose

sign is not determined by (A3). To fix the sign we must
recall that according to the scheme of reference 1(b),
all photons and electrons are considered to have a
small additional negative imaginary mass. Thus ff: has
a small positive imaginary part, i.e., »= —~»~+i5 with
5 vanishingly small. Therefore

Ge(») =2» 'LL(1—»)—L{1)]+isr2» ' ln(1 —»). (A6)

(Similarly, the term ln» in (30) is equal to In~»~+isr. )
We might also note that since v is always positive,
Ge(r) has no imaginary p«t.

Thus if —»))1, r))1 (from A4, AS):

Go(»)=2» 'L-'{ln~»~)' —(~'/6)+i~»~»~ j {A7')

G0{r) 2r 'L-,'(lnr)'+(0r'/3)]

'4For references see Fletcher, Miller, and Rosenhead, AN
Index ef Mathematieat TaNes (Scienti6c Computing Service, Ltd. ,
London, 1946), p. 343,

In this appendix we wiH simply list the integrals
which enter this problem, reserving for Appendix V a
discussion of the methods used. To simplify the presen-
tation of the integrals (which occur also in other
problems) we introduce the following definitions:

For factors of the denominator we write k' —2pi. k
= (1), k' —2ps k= (2), k' —2ps k —»= (»), k'= (0). We
write for frequently occurring vectors

Ps=Pi+pi,
2pe pl+ ps&

20=Pi—Ps= 8—B.

P& Pi
r

2go ——pi+ ps,

y'= —-'(tt'+ )—(1/48)( + )'+0{ ')
h(y) ~ j+g/9+ e e o

Go(») =2(1+»/2+»'/9+ ~ )—2 1n (» ( (t+»/2+»'/3+ ~ ~ .)
ln»i =1n2au+co+0(cs')

ln~ =ln2co+a) cosy+-,'w'(1 —cosmic)+(}(os)

TABLE IU. Nonrelativistic limits of functions occurring in
Eq. (30). These expressions are valid in either the c.m. or labo-
ratory system with y the scattering angle and co the incident
photon energy.
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A =Si) d4k/(1)(2), B"&= 8~' d4k/(1) (»)

The integrals are de6ned by G."'= LGo —(2c/»)] p~.+(2/») LGp
—(2—»/«) c—2]q&.

H, = 2dpo,

pJ,= L2pFp —(2&p,
—») Z »—Go]poa

C&'& =Si dok/(1) (0), D =Si d4k/(0) (»)
with

+L(2p —»)Fp+2(t —u)Z —(2—»)Gp]qp

F=Sij dok/(t)(2)(»), Go&=gi ~d4k/(t)(»)(0) Z =Hp+»Jp= 2dL —ln«+h(y)]

F.,=F.po.+L(Fo 2b/—I )Pp.+(Fp+ 1'p 2b/—I )qp ]qo

H=Si I d4k/(1)(2)(0), J= 8i d4k/(1) (2) (») (0).
. f

with
—1.Q.Q,+[.y +!+-'.]b-

Integrals 8(" C", G(" are dehned as 8" C"' G'"
but with (2) replacing (1). Their values are obtained
from those of B&'&, C"', G"' by replacing p, by p„q, by
qo, and Q by —Q. We use the notation, as in reference
t(b), tha. t

F(p, ...,&
——Si)"(1;k, ; k,k,)d'k/(1) (2) (»), etc.

Yo= (Fo—2b 1)/—2p

GIFT ploplT Go
3K—2 C

+
K—1 K K—1

3 2»' —9»+6 c 6—5» 1
+ (plsqlr+q&apl') Gp+ +»»(» —1)»»—1»

Let:

p, =Q'= —sinh'y= -,'(»+ r), (y is real as Q'-(0)

a= —lnA'

6
+qleqlr Gp+

K

»'+4«' —18»+ 12 c

»'(« —1)

6=1—
y cothy

c= (»/» —1) ln»

d= 2y csch2y= (1—b)/(1 —u)

du
L(x) = —ln(1 —u)

~p I
pW

h(y) = (1/y) u cothudu
JP

p= »' j4p(1—»).

Ieteg rais

A p 2a 4b+2-— —
Bo"'=2a+2= Bo

Cp(') = 2u —2= Cp

Do= 2a—2+2c
Fp

=y csch y '

Gp~ & = (2/»)LL(1 —») —L(1)]=Go

Hp= 2d[—ink+ h(2y) —h(y)]

Jo——(2d/») [2h(y) —h(2y) —ln(»/X)]

A.= (2a—4b+3)po.

B."'=(a+!)(P"+P.)
C "'= (a+o)p&.

D.= $(»/» 1)(c 1)+a+-',]—po, —
F,=FoP«+ LFo

—(2blu) ]q«

2»'+9» —12 1 K 2
—+—8„2Go—3+2a+2 c

«(»—1)» 4 K

H"=dPo.Po.+ (blu) Q.Q.+o b-(a —2b+ o)

J~r= &~Qr+Prpo. +y~por+o&rr

where:

p= Fo c»,Q, p.pp—, y,P—o. —

4~~ —G (&) G (2)

vP =»F (2—»)(H, +»—J,)+(1—«)(G o&+G, ''&)

r&y. = (2y «)F,+2(1 —u) (H.+«J—,)
—-', (2—»)(G "'+G "')

~-= b- —(Q.Q./u)+4(t —») (Pp.pp. /~)

-2(2- )L(p..p.,+p..p.,)/]
+4(t u) (p„po,/p)—

J.„= .,Q,+P„po,+V.,p,+ .s.,+ .~.,
where

oo= F. a.,Q, p.,po—, y.,p—or—
4pe„=G„")—G.,("

pP„=»F., (2 »)(H.,+»J—.,)+(1 ») (G„u—&+G.,"')—
ey„= (2u —«)F,—2(1—&a)(H,+»J„)

—o(2—») (G-"'+G-'").
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APPENDIX Y. ON THE INTEGRALS IN THE
CORRECTED CROSS SECTION

In this section we will describe the methods by which
the integrations occurring in the e -order matrix element
have been performed and will give some examples of
the calculations.

Those integrals which are scalars (those with no k
in the numerator) have been done by the parametric
method discussed. in the appendix to reference 1(b).
Those which are tensors (having one or more k's in the
llllInclR'toI') CR11 bc dollc clthcl' by tllc pR1'RIIlct11c

method, or can be derived by an algebraic procedure
described below from those of lower tensor order.

We now do several examples of the integrals to
indicate the methods employed.

Writing

(1;sp..) = (1—(1—s); [{1—s)'—2(1—«)+ 1]p"),
(A15) becomes

2dy (1;p„.) In +(1;—,'p„.) . (A17)
P'+~2

The second term gives (2; 3(PI,+P2 )). In the first term

1

x.= "2dy{1'pg.)»[(pg'+An)/A'] (A18)

notice that with 2Q= (Pi—P2),

pn'= p2'+QY+2p2 (pi p2)y-
It t=g)22 —PI2, 62= m2 —P22

p'+A. =~'+4Q'{y' —y) =~'+Q'[{2y—1)'—1]
Now let 222=1, Q'=sin'8, and 2y —1=tann/tan8,
so that dy(sec2n/2tan8)dn. We get

X=8i, {1 k)(k' —2pi k —AI)-I

(a) The Two-Denominator Integrals

These all have the form x(cV} (where we need only
so that

the case of A. much greater than any of the momenta
involved in the problem), with

X(k —2p, k-A,)-(—A)(k —A)-d k. {A12)

To reduce this integral and those considered below we
use the methods of reference 1(b).

In the 6rst place we combine the denominators by
making use of the relation

~1
1/ah= dy[ay+b(1-y)] ' (A13)

0

and similar expressions for 1/)Ibt, 1/abg, etc. , obtainable
from (A13) by differentiation. Thus y becomes

~1 ~l
X=gi '

I

I (1;k.)dy2sds( —A2)d'k
~o~o ~

(se ctn /tan 8) dn(1,'P„.(I2))

Xln(cos'8 sec2n/A2). (A19)

This integral can be done easily. For example,

tI' tang

j sectnd)x ln(sectn) = dy ln(1+y')

=4 tan8[ln(sec8) —1]+48,

the last integral being performed by parts. In this
manner we obtain integrals A, 8, C, B.

X[k'—2sp„k —shn —(1—s)A2]-2 (A14)

with P&= Piy+P2(1 —y); A&= AIy+62(1 —y). Using
(12a) of reference 1(b), we get

(b) The Intregal Gg'"

As an example of the three denominator integrals we
integrate Go{".The parameterization method gives

1 ~l
2sdsdy(- A2}(1;zp„.)J, J, Gg(1) 8i dgk(k2 2PI. k)-1(k2 2P2. k )I)-I(k2)-I

X [«2p„2+«A„+ (1—s)h2] '. (A15)

To facilitate the work we observe that in the limit of
very large h2 (with 8«1)

I

I (1—s)"ds(—A2)

J 2 P(s)+42(1—s)

(1—s)"ds(—A.2)

{1—s)"-'ds+ I

& 2 J I 2 P(1)+A.2(1—s)
——1/22, 22&0

=ln[p(1)/A2] I=0

=Bi ' d'k2dyxd2:{k2 —2P, k—6,) ' (A20)
~, J, J

with

pg= (1 y)pi+ypg= PI+HI) pa=*pg) Aa=*y"

Using (12a) of reference 1(b) again,

(A21)
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1

t dx(ux+b) '=42 ' ln(b+a)/b,
0

and since P„'=1—Ky

Gp"'= —t 2dy(1 —Ky) 'lnKy
0

In (I) we let X~0, getting

1 pl pl
(I)=

I
dy dx 2ds(1 —x) (sP,'+xK)—'

l' p' (1—x)dxdy=2 II . (A2/)
"p J, Kx(P,'+Kx)

2 'dw In region (II), since x is small, we neglect x compared—ln(1 —s). (A22)

~1 1 ~e

In the last step we have let v=1—Ky. We obtain (11)= ' dy ds 2sd*[spw+2xs42

Anally.
j 0 0 0

Gp'" =Gp'2l ——Gp ——(2/K) [L(1—K) —L(1)]. (A23)

(c) The Integrals H

These are the same as those done in the radiationless
scattering problem. They are given in reference 1(b),
appendix. Equations (23a), (24a), and (25a) should
have the signs of their left-hand sides changed.

(d) The Integral J,

Jp=82) d'k(k' —2pl k) '(k' —2pp k —K)
—'

= 2) dy dsps'[s'p„'+X'(1 —s)]-'
0 0

X [s'Pw'+2 ps'a+SKW+ X'(1—s)]- (A28)

wltll 42= p (pp —p ).
In (II) we now break the s integration into two

regions; 0(s&s, and s,&s&1 such that X2«S,2Pw2

&(s.Ke. Thus for s&z, we neglect s relative to unity
and s'P„' relative to SKp. For s&s, we neglect X. There
results:

2pdsdy 2 Kp

&&(k'—2pp. k) '(k' —X2) '. (A24) ln
Jpe Pw S[S(Pw +2c42)+Kpl KPw S&Pw

We have given the photon k a small mass X as an
infrared cutoff. When this integral is parameterized it
becomes (s'P '+ X2) (sKp+ X2)

Jp ——82 ', ' ', I 6dxdyds(l x)s'd4k-j, j,
X[k' —2sP, .k —xsK —X2(1—s)$ '. (A25)

By (13a) of reference 1(b),

2pds Ij' X2—Kps X2

() 2P 2+Kpc2) (S2P 2+$2 Kps+112)

1 sg pw
ln (neglecting terms of order X).p'

82)1 d4k(k2 2p k 6)—4= —-'—(p2+6) '
K 6

(II)= " ln
p KP„' X2PW'

(A29)

pl pl ~1
Jp= II I 2dxdyds(1 —x)s'

J0 ~0

X [S2P,2+xsK+ X2(1—s)]—' (A26)

with P.= (1—x)P„+xP„P„=yP1+(1—y)P, .
We break the x in'tegration into two regions (p«1):

~1 pl pl 1 1 ~1 Ill ~e ~1
dx I dy

I

ds= dy dx ds+
Jp alp alp p 0, dp &p Jp

We can now use th, e same substitution for y as that
leading to (A8). Notice that in this case Aw=0. We get
dy/Kp„'=da/sin20, p wcp%os2s os2oathat (II) be-
comes:

2 2da Kp

(II)= ln— +ln(cosn)
q sin29 ) cos0

4g Ke P~ 4do',
ln— + II ln(cosn). (A30)

sin20 ) cosg ~ 0 sin20



RADIATIVE CORRECTIONS TO COMPTON SCATTERING

We have still to finish evaluating (I), Eq. (A27).
First investigate the denominator p, +ex. Since
ppp=1 —~ and 2pp p„=2—K,

p p= (1—/)pp p+gp(] —g)yg(1 —g)(2 —g)

p p+. ,~= (1 ~)p(p p —1)+1.

Letting 1—@=sing/sin8, 2y —1=tann/tang with Q'
=sin'0, we get

p„'= sin'8L(tan'n/tan'g) —1J

p,'+ px = sin'p ctn'p(sec'n —sec'p)+ 1= cos'p sec'$,
—dx=cosPdP/sing, dy=sec'ndn/2 tang.

The integrand of (I) becomes

1( sin8 q (sing) (cos'n) (cosQd$) (sec'ndo. &

II . -II, I . II
g Esin8 —sing) Esin8) (cos'Q) ( sin8 ) 0 tang )

(e) The Integrals J., J„,J„„
From the preceding work on Jo it may be supposed

that to attempt these more complicated integrals by
the parametric method would involve great labor.
Fortunately there is a way to reduce these integrals to
a combination of integrals of a lower tensor order, and
those of a smaller number of denominators. We will do
J, as an example but it should be clear from this how
J„and J„„are done. This method can of course, be
applied also to G, 6„,etc. We shall be able to express
J in terms of Jo and the integrals F, G having only
three denominators.

Using the notation indicated in Appendix X for the
denominators, (1)= k' —2pi k, etc., we write

k,d'k
J,= Si = npi. +ppp, +ypp„(A35)

& (1)(2)(.)(0)

and

p8—c tan8 dQ

p sin8(sin8 —sing)

dQdn

rc sin0 sin0 —sing

n, p, y being scalar functions of pi, pp, and pp. The
vectors pi, pp, pp will in general define a three-space.
It is clear that the vector J, cannot have a component
in the direction I' which is perpendicular to this three-
space, since for k, in the I' direction, the integrand is
an odd function and therefore J, must vanish.

If we now take the scalar products of J,with Pi, Pi, Pp,
since 2pi k= (0)—(1), etc. , we get

8—e tan8 24d4
(A31) t 2pi kd'k

K sin8(sin8 —sing) ~ (1)(2)()(0)

(I)=— 40 e sin8 I.~ 4dn
ln — ln (cosn)

f(: sin20 cos'0 ~ 0 sin20

'4dn
+ ln(tan n)

~0 sin20

and can now be added to (A19).
This gives the result,

Integrate (A31) by parts, using No. 436, Dwight's
Tables of Integrals, to get

48 (p tan8q
(I)=-

a sin28 (2 cos8&

t' 4dg (sin-', (8—P) q

Jp sin28 leos-,'(8+P) I

which can be put in the form

d4k

" (1)(2)(~)
—8~ = Fo-Go" (~)(2)(0)

2pp kd4k

2pp J=Si I'" (1)(2)(~)(0)

d4k p d4k
=S; I' —gi l

—P Q
(1)(2) (~) " (~) (2)(0) (A36)

2pp kd'k
2pp J=Si

J (»(2)(.)(0)

d4k (» d4k
=gi ~

—gi
~ (1)(2)(a) " (1)(2)(0)

~d4k

~ (1)(2)(.)(O)

= ~o—I~c—~Jo.
—40 a

ln +8 ' dp ln(tanp) . (A33) Taking also the scalar products with the right-hand
I~ sin28 X tan8 side nf (A35), we get the set of linear equations:

Another integration by parts and the substitution
8=iy gives the result in the table:

Jp= (2d/~) L2k(y) —k(2y) —ln(~/X) ]. (A34)

Fp —Gp ——2n+ J3(1——',r. —-', r)+ y(2 —~)

Fp Gp= n(1 —pK pr)+2P+y(—2 —K) (A37)

Fp —Hp —~Jp ——(n+ P) (2 —~)+2y(1.—~).
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82T=2p(p+ q+m) eG2 2(p—v.e v.e—(p+ q)+2me. )G.
—2v, ev,G„. (A42)

This expression can now be further simpli6ed. For
example, the term in G, is (using Appendix X)

=I«p1 +p.p2 +v pa +&~ ~ (A38)

n„P„V, being vector functions of PI, P2, P2, and c a
scalar function of the same variables. The tensor e8„
now occurs on the right-hand side as it is possible forJ, to have nonzero components depending on F. (If
k.=k,=kI, J., need not vanish. ) U we take inner
products with PI, P2, and P2 now we get

F.—G.o& =2c«,+2p.(1—-,'« —-', 2)+v.(2—«)+2epI.

for 2PI,J„and similar equations for P2 and P2. This
gives us three equations for the four quantities a., p„
y, e. However, there is the additional independent
result obtained by summing J„over 0'.

k,k,84k
J„=si '

" (1)(2)( )(o)

=Fo= c«,pI,+p p2,+V,p«, +4&. (A39)

Solving these four equations we obtain J, algebrai-
cally in terms of simpler integrals. In a similar manner
J „can be expressed in the form given in Appendix X.

APPENDIX Z. EXAMPLES OP THE CALCULATIONS

—
) v„ke2ke1kv„d'k/(1)(2)(«)(0) (A43)

using the notation of Appendix X. If we replace ej, by
y„and«e2 by yp, this gives a contribution to the spur
F(«, r), Eq. (28), of a numerical factor times

-2[G.-(2/)][p"-p (p+q)+2 ('p)]
—(4/«) [Go—(2—«/«) c—2][pqe —qe(p+ q)]

with «= —2P q. Since P2=m2, q'=0, c q=0„and quite
generally ah+ ha= 2a b, this term becomes 6nally

—2[Go—(2c/«) ](2m'e —Peq)
+ (4/. )[G0—(2—./. )c—27 [2(e p) q+.e].

Combining this with the terms in G2 and G„ in (A42)
(expanded 111 tllc sRlllc 111R1111cl ) wc obtain tile cxpl'css1011
for T given in the text (19).

To illustrate the simplihcation that occurs upon
taking the spur, for unpolarized light, consider the
term J (21). This may be decomposed, as was T above,
into a sum of terms involving various numbers of k's
in the numerator. For example, the term involving
three k's is

Ke shall here illustrate by two examples the method
of evaluation of the transition amplitude.

The matrix T (18) can be written, if we rationalize
the denominator, as (p'=m', q'=0)

„g(k)d'k/(1) (2)(«)(o) (A44)

T=
~

(k' —2p k—2q k—«) '(k' —2p k) '

with
&&d4kk 2C(k2) T (A40)

T=v„(p+q k+m) e(p k—+m)v„—(A41).
T can now be split into terms involving no A', one A,

and two k's, and the results of the integrations over
4-space inserted from Appendix Y. Thus,

T=v„(p+q+m) e(p+m) v„v„ke(p+m) —v„
—vq(p+q+m) ekvq+vpkekvq

=2p(p+q+m) e—2pke+2ke(p+ q)
—4m(c k) —2kek,

where we have used Eq. (4a) of reference 1(b) and the
fact that the matrix T operates from the left on a state
2c such that PN=mu Inserting . the integrals and

g(k) =SpL(P2+m) v.kvskv-kv. (PI+m)IT']
'I4(pI k)(p2. k)(p«. k)

+k'[2m'«(p, +p2) k—(p, p2+2m')(p2 k)]}
+r 'I4(p1 k)(p2 k)(p4 k)

m2k2(pI+p2+p2) k}. (A45)

It will now be seen that the factor k' will cancel the
factor (0) in the denominator of (A44) leading to the
integral F, (Appendix X). Also, we can write

2p1 k= —(k' —2p1 k)+k'= —(1)+(0)
leading to integrals G„~2& and F„. Thus it is not
necessary, for unpolarized light, to use integral J „.
(A44) can now be written

2(«p2ap3r+ & p2~p4r) (For 'Rr ')
+[Im2(pI +p2 )—« '(p1 p2+2m')p2

—m2r-I(p, .+p2.4-p,.)]F.. (A46)


