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Corrections of order ¢® to the differential cross section for Compton scattering of unpolarized radiation
by electrons are computed. The results for corrections ascribable to virtual photons are finite, relativistically
invariant, and valid at all energies, but contain a term which depends logarithmically on an assumed small
photon mass . A cross section of the same order has also been obtained for double Compton scattering in
which one of the emitted photons has an energy small compared to the rest mass of the electron (with the
electron initially at rest). This contains a term depending on In\ which exactly compensates the similar
term arising from virtual quanta in all observable cases. Approximations for low and high energies, as
well as numerical results, are given. These disagree with results obtained previously by Schafroth.

HE object of this paper is to obtain the correction
to the differential cross section for Compton
scattering (Klein-Nishina formula) arising from the
possibility that the electron may emit and reabsorb a
virtual photon in connection with the scattering process.
We shall apply the methods developed by one of us! to
obtain an explicit cross section to order e® for unpolar-
ized radiation, valid (in so far as the theory is valid) at
all energies.

Previous workers have shown that the high frequency
divergences which enter in the straightforward appli-
cation of perturbation theory to this problem can be
removed by charge and mass renormalization. Schaf-
roth*3 has obtained a finite ¢*-order matrix element in
relativistic and gauge invariant form. He also showed,
following the treatment of the analogous problem for
scalar particles by Corinaldesi and Jost,! that the
infrared divergence which occurs can be removed by
addition of the double Compton cross section in which
the incoming photon produces two photons on inter-
acting with the electron, and he made explicit evalua-
tion of the cross section (but not of the double scat-
tering) in the nonrelativistic and extreme relativistic
approximations. His results, however, disagree with
ours in both limits.

Since the interpretation of any experiment to measure
the radiative corrections requires a knowledge of the
double Compton cross section, we have computed this
also, for the case that one of the emitted photons has
an energy in the laboratory system which is small
compared to the electron rest energy.

After a brief introduction, we shall in Sec. II write
down and discuss the matrix element for the corrections.
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Section ITI will detail the evaluation of the differential
cross section. Section IV will be concerned with the
infrared catastrophe and the double Compton effect.
Sections V and VI will discuss limiting cases and some
numerical results. Mathematical details will be reserved
for the appendices.

The method of calculating this effect is given by
Feynman,® and for brevity we will not repeat the
discussion here but will simply carry out the explicit
evaluation of the matrix elements involved. Our nota-
tion is that of reference 1.

Some improvement has been made in the method of
computing matrix elements given in reference 1(b).
This is described here in detail in Appendix Y.

I. THE KLEIN-NISHINA FORMULA FOR
UNPOLARIZED RADIATION

The direct Compton effect, in which a photon of
momentum ¢y, polarization e;, impinges on an electron
of initial momentum p1, to be scattered as a new photon
of momentum g¢,, polarization e,, is represented by a
matrix element

W=R+S (1a)
with

R= ez(p1+q1—-m)_1e1, S= e]_(pl—Q2—m)_lez. (lb)

The final momentum of the electron is, of course,
pa=p1+q1—qe. The terms correspond to the diagrams
of Fig. 1.

We shall call

ps=prt@i=prtqs, Pi=pi—@=pr—q, (2)
and define the important invariants «, 7 by
Mek=m—ps’=—2p1- 1= —2p2- 5, )
mAr=mr— pP=2p1 - qa=2ps" q1.

In the laboratory system, with w; and w, the energies
of the incoming and outgoing photons, « is —2wi/m
and 7 is 2ws/m. In terms of the quantities defined in

§ This problem is discussed in reference 1, Appendix D, p. 788.
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out by the interchange of e; and e,, of ¢; and —¢q», and
of ps and ps. In the final result this means simply an
interchange of k and 7. Hence we need study only R,
the S terms being obtained from the R terms immedi-

Terms N’ and N’ give zero since there are no
vacuum polarization effects for free photons.
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(2) and (3) we have
m2kR=— ez(p?,"}—m) e, mirS=— el(p4+m)e2. (4:)

The differential cross section for the final photon to
go into solid angle dQ, if the initial electron is at rest
(laboratory system, py=my,) is

do=e'dQ(w?/w®)F )
where F is the square of the matrix element of W(la),
F= l 2<W>1|2. (6)

If we are uninterested in the spin states of the elec-
tron, F may be replaced by (2m?)~'U where
=1 SpL(brt-m)W (prt-m)W 1. ™)
If, in addition, unpolarized radiation is used and the
sum over polarization directions is required, e; can be
replaced by v, and e, by s in the spur and half the
sum over «, (3 taken (reference 1(b), Sec. 8). Then the
term in (7) which is second order in R is
3(2m?k)=2 Sp[(batm)ve(pstm)va(brtm)va
X (pstm)ye]=4/—1/k—2/k. (8)
The reduction can be accomplished by Egs. (4a) and
(36a) of reference 1(b). The term of second order in .S
is (8) with «, r interchanged, since S is obtained from
R by replacing ps by p. after the average is taken on
photon polarization. The cross term is
2m2) =1 (2m7) =1 SpL(pat-m)vs(bst-m)va
X (prt-m)vs(pstm)yal=8/xr—2/7—2/k. (9)
The sum gives for U=m?Y spin 2 pot| o W)1]2:
U=4(H 12— 4(c ) —(/m+7/k) (10)

and for the Klein—Nishina‘formula"_in terms of «, 7 we
have:
dr dk
(-+—

In the laboratory system, in view of x=—2w;i/m,
7=2w,/m and the Compton relation
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(1)

K2

wi1wa(1—cosp) =m(w;—w2), (12)
(11) can be written in the usual way
do=(¢*/2m2)dWUw:?/w®) (w1/wet ws/wi—sine). (13)

II. THE e¢*-ORDER MATRIX ELEMENT

The diagrams of the first radiative corrections to term
R of the Compton effect are given in Fig. 2. (See
reference 1(b), Fig. 9.) The terms containing the
analogous modifications of .S can be obtained through-

Terms M’ and M" together give a factor® r/2: times
R, where
r=In(A/m)+9/4—2 In(m/\) (14)

as shown in reference 1(b), Sec. 6. The quantity A is a
temporary high frequency cutoff, introduced so that
each diagram can be separately evaluated. The final
result will become independent of A as A—o. The
“infrared catastrophe” discussed in Sec. IV is treated,
at this point, by assuming the photons to have a small
rest mass A.
The term L is

- f ex(ps—m)~yu(ps— k—m) !

Xvu(ps—m) ek 2d*kC (k). (15)
From this must be subtracted the mass correction for
an electron travelling between the absorption and
emission of the virtual quantum. Since (to order Am)

(p—m—Am)~'= (p—m)~'+ (p—m)~ Am(p—m)~,

this gives just the expression for L except that Am
replaces

f Yul(Bo— k) oy JdRC (D),

where Am is the mass correction for cutoff A [reference

1(b), Eq. 21)]:
Am=1m[E+32 In(A/m)]. (16)

Since this diagram occurs for problems other than the
one we consider here, we give the result in a general
way. Each (p—m)~! propagation factor has, as a
consequence of diagrams like L, a correction to the
first order in ¢? given by

0—m)™ | vu(p—k—m) "y, kA RC (R (p—m) ™!

— Am(p—m)

- (41‘)—1{ <p~m)-l[1n(A2/m2>
7(2—mn)

5 9 ) ]
=12

n _Mlnﬂ]), an

2 9—1
e [n—l (1—1)?

where m*n=m?— p%

6 The factor obtained in reference 1(b) is — (¢2/27)r, but we have
reserved a factor e2/=¢ for later inclusion.
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Terms K’ and K" again possess a feature common to
several problems, and we will therefore first discuss it
in a general way. In all problems in which an electron
interacts with a potential or a free or virtual photon
there will be a piece of the diagram like Fig. 3. That is,
there will be a partial factor in one of the matrix
elements:

T=f'y,‘(p+q—- k—m)le(p—k—m)™!

Xy, k2dC (K. (18)

It would be most convenient to have this evaluated in
the general case of arbitrary p and ¢q. However, we
have evaluated it only in the special case that ¢?=0,
p*=m?, with the matrix operating on a state # such
that pu=mu. Calling m?k= —2p-q it is (Appendix Z):

1
8 T=4x"[mPe+42k(e- p) q]f In(1—2)dv/v
1—k

+2[(2m*+pg—qp)e
+ 2«7 (e p)(g+mi) (Bx—2) (k— 1) (k— 1) Ink
+[2 In(m?/A2)— 1 m?e :

—4(e-pL(g+m)(k—1)""+qc ],

If the final, rather than the initial, state is a free
electron, the matrix required is 7', so the result is
obtained directly from (19). For term K’, this T for
the case p=pi, g=¢q1, e=e; is to be multiplied on the
left by ey(p1+qi—m)1=ey(ps;—m)~. Therefore, K’
and the corresponding term K’ together give

K=K'+K"=(8)"[es(ps—m)'T (1, g1, €1)
+T (2, g2, €2)(ps—m) ey ].

If we now examine the coefficients of the term
In(m?/A%) in K, L, and M, that is in (20), (17), and

(19)

(20)

F1G. 2. Corrections to term R of Compton scattering.
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4 F16. 3. Diagram for the
expression 7.

[

(14), we observe that K gives (4m?/8i)R, L gives
(—2m?/8)R, and M gives (—2m?/8i)R. Therefore the
terms dependent on A vanish. Since we shall find that
the J integral is finite without cutoff, we note that the
complete result is insensitive to A.

The term J is given by

J= f a(Pr— ke ) -Ses(po— k)

Xeiwpr—k—m) v,k 2dqk.  (21)

For large % the factors in the integrand vary as &~
with #=5 and the integration over k-space therefore
converges. If we had included the convergence factor
C(R?), the result would be independent of A as A— oo,

When the reciprocals are rationalized (e.g.,
(p2— k=)= (po— k+m)-[ (po— KY'—m?*1), powers
of k. up to the third appear in the numerator of the
integrand. Therefore we shall have to evaluate integrals
of the form:

](0; g;0T;0TY)

- f (U ko' Bol otk ) (pr— BYr—mi?]
X[ (ps— k)2 —m2 1 [ (p1— k)2 —m2 ]k 2d,k.

That is, for Jo the factor (1; k,; -+ etc.) is replaced
by unity, for J, by k., for J,. by k.k,, and for J,., by
kok.k,. The manner in which J can be expressed in
terms of these integrals is illustrated, for the case of
matrix 7" in Appendix Z.

The J integrals can be worked out by the parametric
methods described in reference 1(b) (Appendix). They
involve integrals having four factors in the denominator
and will lead, therefore, to integrals over three param-
eters. (J, is integrated in this manner in Appendix Y.)
Generally these are very difficult to evaluate, although
Jo is particularly simple. This fact makes it possible
to circumvent some of the difficulties of J,, J,r, and
JUTV‘

It is possible to express these other J integrals as
linear combinations of the integral Jo and of other
integrals, all of which involve only three quadratic
factors in the denominator. These latter, in parametric
form, require only two parameters (and are much more
easily evaluated than a direct attack on J,, say, would

(22)
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indicate). This technique is useful in other problems
also” and is described in detail in Appendix Y.

III. CROSS SECTION FOR UNPOLARIZED LIGHT

If we call the sum J+K+L+M=R®, then
(&/7i)R® will be the correction to the matrix R of the
direct effect (1). If the corresponding correction to the
term S is called (e2/7)SW, the corrected matrix for the
Compton effect is

W'=W+(&/mi) WO = R+-S+ (/i) RO+ S).

The absolute square of the matrix element of W’, taken
between the initial and final electron states, gives the
probability of transition correct to one order in ¢? higher
than (6). We shall calculate in this paper only the cross
section averaged over spin directions of the electron
and polarization directions of the photons.

We need the spur:

i SpLBort-m)W' (pr+-m)W']

as in (7). Considering terms up to the first order in ¢
(which are all that are valid), (24) is

—3{(&/mi) SpL(portm)W (bt mW O]
— (¢/wi) SpL(Brtm)W O (Brrt-m) W T}

In evaluating (25) for unpolarized light we have re-
placed e; by v, and e; by v and taken one-half of the
resulting sum as discussed in connection with (8).
Some algebraic details are discussed in Appendix Z.8

The last two spurs in (25) are complex conjugates,
so that the correction to U is —¢?/7 times the real part
of

(23)

(24)

(25)

U®=— (40)7 Sp[(p+m)W D (pr+-m)W].  (26)
That is, U is to be replaced in (11) by
U'=U—(&/m)R.P.UD. (27
If we let
P(x, )= — (4)7 Sp[ (pa+m) RO (p1+m)W]  (28)
then UW=P(k, 7)+P(r, k) (29)

since the S® diagrams are obtained from the R®
diagrams (for unpolarized light) by the interchange of
ps and ps and of g, and —g.; hence the final result,
simply by interchange of « and .

71t has been applied by G. R. Lomanitz to completely evaluate
the €® corrections to the Moller scattering cross section of electrons
in his thesis Second Order Effects in the Electron-Electron Inter-
action, Cornell, 1950. Again, in the problem of scattering of light
by light, the integral with unit numerator is easily done, and the
other integrals can be reduced to it and simpler integrals alge-
braically. But here the algebraic complexity makes the problem
extremely tedious.

8 In actual evaluation it was found easier to take the spur first
and perform the integrals later. Thus, in place of the expression
T (Eq. 18), the expression T (Eq. A41) was substituted and the
values of the integrals from Appendix X substituted after taking
the spur. This has the advantage that some of the integrals do
not appear, or appear only in simpler combinations.
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The final result obtained in this way is:
P(k, 7)= (1—2y ctnh2y) In\- U
— 2y ctnh2y[ 2k(y)— k(2y) U
~+[—4y sinh2y(xk7)~1(2—cosh2y)
4
+2y ctnhy Jh(y)+1Ink) { 4y ctnth[— cosh?y

KT

k—6 4 1 7 «
—}—2 sech2y+—2— ——————— 1]

T K k 2« T

3r 37 3 7 8 8 2k—ri—ilr

22 2k 7T k7 k& 27(k—1)

1 2247 2 7 32
- ]+ ¥ cscth[————x—— —]

27 (k—1)? k 4 4«
—4y tanhy(;—-—)-l—ﬁl( )

12 3« K

()

+Go(x>[—+ —+ +K+ET+————1]

K K—

K T
~+terms antisymmetric in «, 7, (30)
where
4 sinh*y= — (k+7) (30a)
Y
h(y)= y*lf udy ctnhy (30b)
0
1
Go(k)=— ZK“If In(1—u)du/u. - (30c)
1—x

This is to be added to the same expression with « and 7
interchanged (29) and the real part taken to get the
correction* to the Klein-Nishina formula (11). We
discuss this result in the following sections.

We might note here, however, that the real part of
P(k, v) is obtained by writing In|«| for Ink and by
writing for Go(x) expression (30c) with In(1—#) replaced
by In(u—1). Since 7 is always positive, on the other
hand, P(r, ) is always real. This is discussed further
in Appendix W.

The imaginary part of P(k, 7) is not without interest,
as we shall show. This is given by = times the coefficient
of Ink in (30) plus 7 In(1—«) times the coefficient of
Go(K).

The loss of total intensity of a beam of photons is of
course proportional to the total cross section for a
photon to be scattered out of the beam. But this
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decrease in forward intensity is the result of an inter-
ference between the incident photon and a photon
scattered exactly in the forward direction. Therefore,
as is well known, the imaginary part of the forward
scattering amplitude is proportional to the total cross
section (formally this is referred to as the unitary
property of the S-matrix). We can use this relation to
check the imaginary part of P(k, 7) for the case of
zero scattering angle (for which, of course, p;=p,,
Q1= g, k=—1).
We write P(k, 7) again as a sum

P(x, )= (4m*) 1 spin oot KRV)2 oW, (31)

and can show easily that W),=1/m if there is no spin
change and no polarization change, and zero otherwise.
This can be seen, aside from the phase factor 4, from
the fact that for small scattering angles the Klein-
Nishina formula (13) is do=7,’dQ in the laboratory
system. Since 1(R®™), also vanishes when (W), does,

P(k, 7)=mY spin 2opot (RD)s. (32)

- But, including all factors, the complete e*-order matrix
element of RW is (according to reference 1(b)):

X=—— in Z ol 1<R(1)+S(1)>2 (33)
m (mr/2) 4

and from the unitary property referred to above, it

follows that the fofal cross section for Compton scat-

tering to order e* is just twice the real part of X.

Therefore,

orotal(to order e4)=2R.P. X = (2r¢®/7)LP.P(x, ) (34)

since S® has no imaginary part. That (30) satisfies
this identity can be readily verified.®

IV. THE INFRARED CASTASTROPHE AND THE
DOUBLE COMPTON EFFECT

In Sec. II we have derived the differential cross
section for Compton scattering for unpolarized light,
including radiative corrections, to order e®. The cross
section took the form

do=dox.x.[1+(&/m)5]

0=—-UW/U. (35a)

There are two reasons why this result cannot be
compared directly with experiment. In the first place
U® depends on the quantity N to which no experimental
significance has been attached. In the second place, it
is impossible in principle to design an experiment which
will guarantee that one and only one photon is emitted
by the electron in the scattering process. The best one
can do in an experiment is to require that if a second
photon is emitted, its energy is less than some value
9 W. Heitler, The Quantum Theory of Radiation (Oxford Uni-

versity Press, London, 1944), p. 157, Eq. (53). Our Eq. (33) agrees
with this result with r replacing Heitler’s 2v.

35)
with
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kmax. This can be done, for example, by measuring the
energies of the final electron and photon to some
specified accuracy, the sum of the errors in the meas-
urement being less than Zmax. In such an experiment
one would be measuring the cross section (35) plus the
cross section for the double Compton effect, dop,
integrated over all possible directions of the second
quantum and over its energy up to £max.

These two difficulties, both related to quanta of low
energy (if Amax is small), in one case virtual, in the
other real, are actually related. That this should be so,
can be seen physically from the fact that it is difficult
to distinguish between virtual and real quanta of
extremely low energy since, by the uncertainty princi-
ple, a measurement made during a finite time interval
will introduce an uncertainty in the energy of the
quantum, which may enable a virtual quantum to be
detected as a real one. It turns out in fact that dop,
integrated to kmax, also contains an infrared divergence
which just cancels the similar divergence in the radiative
corrections. We are computing, of course, only to order
%, but the multiple Compton scattering of a given
higher order will also cancel all the radiative infrared
catastrophes of the same order.

The problem is analogous to the perturbation theory
treatment of the scattering of an electron by a potential,
which has been considered by many workers, except
that in our case the primary process is the Compton
scattering considered in Sec. I. The cross section for
emission of an additional photon ¢ of energy w goes for
small w as (dq/w)(pa/p2-q—p1/p1+q)? times the Klein-
Nishina formula. Since this diverges as « approaches
zero, the probability of a single Compton process
unaccompanied by such emission is zero. What is
experimentally measured, however, is the probability
that a Compton process occurs and that no other free
photon is emitted except for a class of photons inacces-
sible to the experiment. This is equal, to our order of
calculation, to the probability of the single process plus
the probability of a double process in which one of the
photons emitted is in the inaccessible class. This class
is, of course, determined by the design of the experiment
and a single calculation cannot suffice for all experi-
ments. However, one feature common to all experiments
will be a finite energy resolution, so that a part of the
excluded class must consist of photons whose energy is
less than some energy Zmax.

We will first therefore find that part of the differential
cross section for double Compton scattering which gives
rise to an infrared divergence. This will be integrated
over all the directions of one of the photons, and over
its energy from zero to a value kmax, which we shall
assume is small compared to the electron mass, and
added to the previously obtained corrected cross section
for single Compton scattering. It has already been
pointed out that Schafroth? has demonstrated that a
cancellation of the infrared divergence occurs in order
¢® when the double Compton cross section is added to
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‘g A s, equivalent to 2p,-es. Thus, with ¢; small, we get
I (D=—Rpr-es/pr-qs, (ID=—Sp1-es/p1"s,
3= Py p,+a, (VY=Rps-es/ps-qs, (VI)=S5ps-e3/pa"gs.
7 A 7 Adding these we find the matrix for the double
5,95 by A, Compton process:.
— 7 . pa2res  pies
J 50, 7 &+, i @)
g d A p2rqs Pp1°qs
I r i Taking the absolute square of (37) and averaging over
polarizations and spins in the usual manner, it is clear
L, b, s, that we obtain the Klein-Nishina cross section dox.x.
(Eq. (11)) multiplied by the following factors: (a)
71 ] — d*qs/(27)3, the density of states for g3 (neglecting its
: £, =9, : A b, *4, 3 effect on the momentum balance, and therefore as-
— 7, —g U suming it is emitted independently of @), (b) €%, from
2 -q. P 3 % 2 the additional interaction vertex, (c) 2w/ws;, the
b — 4 — 4 normalization factor for the photon g3, (d)
3 2 T
e ea\ 2 2
P ’ ’ . 2 3__?1 3)=_( Pz_P1).
I s o bargs P1gs b2 qs P1-gs

Fic. 4. Diagrams for the double Compton effect. Here pz=p1+gi,
pa=p1—@z; the momentum condition is p1+¢1=p+ga+gs.

the single scattering cross section, but we must obtain
at least the zero order term in Fmex (for Emax&m) to
obtain a useful result. The completely differential cross
section for the double scattering has been computed by
Eliezer,!® but since we wish to make approximations
and carry out an integration, it is simpler for us to
obtain the desired cross section from the beginning.

Figure 4 gives the diagrams necessary for computing
the cross section for double Compton scattering. The
photon momentum ¢s= (w3, q3) is assumed to be small
in the following (ws<m). This, of course, implies a
definite coordinate system. To obtain a finite result we
assume the photon has a small rest mass A, so that
¢®= 2 Keeping terms only to order w;™, we neglect gs
occurring in the numerator of the (rationalized) matrix
element terms, and terms of order ws compared to
p#—m? and pL—m? in the denominators.

We find that terms III and IV are not of the desired
order. In view of the fact that we are to make matrix
elements between the free electron states #;, and u,, a
factor (pi+m)e;s (with e; the polarization vector of ¢)
operating on the left of u,, is equivalent to 2p;-e; and
a factor es(pot+m) operating on the right of u, is

1 C, J. Eliezer, Proc. Roy. Soc. (London) A187, 210 (1946).
When the class of photons inaccessible to the experiment does
not consist simply of those below a given very small energy Emax
(but consists, for example, of those in a given solid angle, or with
a limited momentum component, or having energies too large to
permit the approximations we have made) the contribution which
these events make to the measured cross section can be obtained
from Eliezer’s formula. Explicitly, one must add to our result
(39) the cross section for the double process given by Eliezer,
integrated over all the photons in the class inaccessible to the
experiment but which also exceed some arbitrary very small
energy Pmax. The sum, of course, will not depend on Zmax.

We collect these factors and integrate the photon
momentum over all angles and from q;=0 to the
sphere | qs| = Emax, Where kmax&m. Thus,!

62
dop=— dox.N.
)2
| 3] =Fmax Po P 2 d3q3
<[ ) . (9)
las| =0 paqs prqs/ (q+N)}

Observe that if we replace dok.n. by the cross section
doy for an arbitrary process of one electron, the result
(37) is valid for that process with one additional photon
of small energy in the final state. For if the ‘“‘small”
photon g3 is emitted from an electron line of momentum
p where p*=m?, its effect will be negligible. The only
diagrams contributing to the process with ¢ emitted
will be those of the original process, modified by the
emission of g either before or after the original process.
Thus the factor of (R+.S) in (37) will always be the
factor modifying the original matrix element (for small
q) and the result (38) is the general result for an arbi-
trary process of one electron, do, replacing dox.x..

It is most convenient to impose our restriction
kmax&m in the laboratory system.!? In this case, the
result of integrating (38) (expressed in terms of invari-
ants) is
dop=—(¢¢/7)doxr.n.{2(1—2y ctnh2y)[ In(2kmax/N)

—3 +4y ctnh2y[A(2y)—11},
with v and %(y) defined in (30).

1This expression (with A=0) has been obtained previously.
See, for example, R. Jost, Phys. Rev. 72, 815 (1947), and F. Bloch
and A. Nordsieck, Phys. Rev. 52, 54 (1937).

12 7, Schwinger, Phys. Rev. 76, 790 (1949) has integrated (38)
for the case of the scattering of an electron in a potential.

(39)
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When (39) is added to (35) the effect is to replace
the quantity

{2(1—2y ctnh2y) InA—4y ctnh2y[2k(y)—k(2y) } U
in U® by
{ 2(1 - Zy Ctnh2y> [ln(zkmax> - %:I

+8y ctnh2y[ 4(2y)—h(y)—3 ]} U.  (40)

We have now arrived at a physically understandable
result as the quantity kmax which replaces A in U® is
the sum of the experimental uncertainties in the
measurement of the final energies of the Compton
scattered photon and electron. Our result can be com-
pared with an experiment providing the energy resolu-
tion!® is known and kmax is sufficiently small.

Under the limits of validity of our formula, the term
in (40) containing Emax is positive, and thus makes a
negative contribution to the cross section. As the
energy resolution of an experiment improves, it is thus
found that the measured Compton cross section gets
smaller. This is reasonable since we are eliminating
from our observations more double Compton events.

The expression (35a) for § with U® given by (29)
and U given by (10) is valid also for the correction to
the two-quantum pair annihilation and the two-
quantum pair production processes, provided that for
the former problem we replace x by —« and for the
‘latter 7 by —7. This occurs because in writing down
the matrix element we represent the emission of a
photon by —g¢q and its absorption by +-¢, and because
a matrix p representing an electron also represents a
positron of four-momentum — p. However, the infrared
divergences in these problems are not compensated by
the corresponding three-quantum processes'® (which
are not divergent) but by the effect of Coulomb inter-
action. This will not be discussed further in this paper.

V. EXTREME RELATIVISTIC LIMIT

The Compton formula (12) can be written in the
laboratory system, with scattering angle ¢, as
(k+7)/7=%k(1—cos ). (41)
We assume |«|>>1 and consider the three cases listed
in Table I. This table also lists the approximations
made in obtaining the formulas for U and U® for the
three cases and the corresponding conditions on the
laboratory and center-of-mass scattering angles. The
energies (in units of mc?) of the incoming and outgoing
quanta are represented in the laboratory system by
w; and w,, respectively, and in the c.m. system by ».
The results are as follows:

Case I.
U=2
U®=4(1—2y ctnh2y) InA— 8y ctnh2y[ 2%(y) — k(2y)]
+4yh(y) ctnhy+In| k| (4y tanhy—1)
—2y?—4y tanhy+3— (In|«|)2—7%/6. (42)

18 Note that the two quantum pair processes are symmetric
with respect to interchange of p; and s so that (37) vanishes.
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Case II.

U=—[(/1)+(r/x)]
U®=U{(1-2y)(3+2 In\)+2y*—=°/6}

eI

T T K k|\?
+2ln——}+(1+——|——— {(ln 14~ )
| k] k 27 T
J T T
——ln(l—l-—)—ln - —{—7r2}. 43)
K K
Case III.
U=—«/7
3r+1 1
UW= U{Z(I—Zy) ln)\—i-—lnT[Zy—— + —~]
2 7 27(r—1)

2

Too( )i

The corrected cross sections, in the relativistic limit
are given in the laboratory system by

do=(re?/2)dQ(+*/ ¥)[U—(e¢/7)UV] (45)
and in the c.m. system by
do=(r®/8?)dQL U~ (¢¢/7)UV] (46)

with 7o=e2/mc2.

As we have explained in the previous section, for
actual comparison with experiment one must add to
(45) the cross section for double Compton scattering
(35) which is valid, of course, only in the laboratory
system with kp.x&m. If we write (39) as

dop=(—e/7)(r®/2)dQ(+*/*)Up 47
then we must replace U® in (45) and (46) by U®+-Up.

For our three cases, we get:

TasLe I. Approximation made in obtaining the extreme
relativistic limit of (30), expressed in invariants, laboratory
system quantities, and c.m. system quantities.

Lab system
Case Defined by Leads to conditions c.m. conditiong
I |+ /7KLl k]| =r>1 W2 W, tan%(0/2)«<1
1—cospKl/w
) (¢ near 0)
I |+ /r]~1 ™1 } wy near wi/2, »? cos2(6/2)>>1,
[k+7]>1f 1—cose~1/wr »? sin2(6/2)>>1
@ near
(2/wi))
I | (k+7)/7|>1 lK+Tl>>1} ws near 1, tan2(6/2)>>1
[k|>7 [ 1—cose>>1/w;
(¢>(2/en))
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Fic. 5. Plot of 8'=—U®W/U—2(1—2y ctnh2y) InX for 2.62 Mev
and 17.6 Mev as calculated from the exact expressions (29) and
(30) (solid curve). The dotted curves are calculated from the
extreme relativistic formulas (42), (43), and (44), and are num-
bered accordingly.

Case 1.
Same as (39).
Cases IT and III.

Up=U{2(1—29)[In(2kmax/N) — 1]
+4y[y+(72/24y)— 11}, (48)

In Fig. 5 we have plotted a comparison of the exact
expression for —U®/U (leaving out the term propor-
tional to In\) with the limiting cases expressed by (42),
(43), and (44). That is, if we write UV =aqa In\+b, we
have plotted —&/U. Especially simple formulas result
for b in the extreme relativistic limit for the cases ¢=0
and ¢=180°. At zero angle (where incidentally, the
double Compton effect and the In\ term in U® vanish) :

5(0°)= —Inr(1+41n7)+1.355. (49)

At 180 degrees,
b(180°)=—4.225U. (50)
Another simple case results from the condition
k=—27, in the extreme relativistic limit. This corre-
sponds to 90° scattering in the c.m. system. Here we
get U=5/2 and

5(90°, c.m.) = (2y2— 3y—2.29)U. (51)

TasBLE II. Percent correction to the Compton cross section for
unpolarized light arising from Eq. (30), excluding the term
proportional to In), at zero degrees and at ninety degrees in the

c.m. system; computed as a function of the laboratory energy of
the incident photon from the special equations (49) and (51).

Laboratory energy —(e2/m)b(0°) /U —(e?/7)b(90°, c.m.)/U
Mev percent percent
50 3.80 —0.32
150 5.26 —0.87
300 6.41 —2.13
1000 8.80 —4.35

BROWN AND R. P. FEYNMAN

A few results for high energies computed from (49)
and (51) are given in Table II. At 180°, the quantity
—(e&&/m)b/U is +0.98 percent.

VI. NONRELATIVISTIC LIMIT

In the nonrelativistic or Thompson limit our results
will be equally valid in the laboratory and c.m. systems,
since we will keep only the first nonvanishing terms.
In the c.m. system, we let the scattering angle be ¢ and
|q1[ = [(hl =w. Then

k=—2p;-q1=—2[ (14 o)+ w?]
7=2p1-qo=2[ (14 w?)}w+w? cos¢],
so that for w<1:
k=—20w(14wtw?/2+- )
7=2w(1+w cosptw?/24 - - ).

Since « depends only on w and dr=w?dQ/7, Eq. (11)
becomes

do= (¢4/2m2)d(1 — 20+ 262+ - - Y[U— (&/m) UD]. (54)

In Table IIT we give the nonrelativistic limits of
functions occurring in U® (Eq. 30). A straightforward
calculation then yields:

(52)

(53)

U=14cos?o+0(w) (55)
UW=—(4/3)w?(1—cose)U In\
+ (1+cose+costp—13 cos?e)dw? Inw+0(w?). (56)

The angular dependence of the 4w? Inw term is plotted
as f(o) in Fig. 6. Expression (56) disagrees with the
result of Schafroth.?

Since (1/k)+(1/7)=2%(1—cosp)— (w/2) sin?¢ in the
c.m. system and the same invariant is 3(1—cosf) in
the laboratory system, with @ the laboratory scattering
angle, it is clear that cosf=cose+0(w) for given «, 7.
Also, since «k+7=—2ww2(1—cosd)=—2w*(1—cose)
and w;=ws+0(w?), we get that wi=w-+0(w?) =~w, and
therefore (56) is valid with ¢ interpreted as the labora-
tory scattering angle and w the incident photon energy.
Equation (55) is valid, with this interpretation, to
order w?.

The double Compton effect (39) gives in this limit
(with Up defined as in (47))

Up=—(4/3)w*(1—cose)U In(2kmax/N)+0(w?). (57)

It will be observed that all the corrections vanish in
the zero energy limit.

APPENDIX W. ON THE TRANSCENDENTAL
FUNCTIONS Go(x) AND h(y)

The complete expression for the radiative correction
(29) is expressed in terms of the relatively unfamiliar
transcendental integrals Go(xk) and #%(y). These can
both be expressed, however, in terms of one of the
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so-called Spence functions,'* namely

L(x)=fx In(1—u)du/u (A1)

which we shall consider briefly.
It is well known that L(—1)=#%/12, L(1)= —=?/6.
If <1,

L= [ bt/

(= +~+ U )
If x>1,
L(x)=L(1)—{—f In(1—u)du/u
=L(1)—I—fx|:1n11——u|:l:i1r:]du/u
= L(x)%im Inw (A3)
where

I_J(x)=len|1—uidu/u.

For computational convenience, we can also write for

x>1:
dv
L) =LO)+ f ln(
v
= —3n’— L(1/%)+3(Inx)?, (A4)
and in a similar manner
L(—x)=(7?/6)— L(—1/x)+3(Inx)2.  (AS)
Since k=(m?—ps*) is always negative, Go(x)

=2«"[L(1—«)—L(1)] has an imaginary part whose
sign is not determined by (A3). To fix the sign we must
recall that according to the scheme of reference 1(b),
all photons and electrons are considered to have a
small additional negative imaginary mass. Thus « has
a small positive imaginary part, i.e., k=— | k|+18 with
8 vanishingly small. Therefore

Go(x)=2«"[L(1—«)— L(1) J+iw2«t In(1—«).

(Similarly, the term Ink in (30) is equal to In|k|-+47.)
We might also note that since 7 is always positive,
Go(7) has no imaginary part. :

Thus if —>1, 72>1 (from A4, AS):

Go()>~22¢[3(In| «| )2— (x2/6)+iw In|x|] (A7)
Go(r)~2r"%(In7)2+(72/3)]. (A8)

(A6)

14 For references see Fletcher, Miller, and Rosenhead, An
Index of Mathematical Tables (Scientific Computing Service, Ltd.,
London, 1946), p. 343.
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1 1 1 I 1 1 1 1
0 20 40 60 100 I20 140 160 180
Loboratory Angle ¢ (deg)

Fic. 6. Angular dependence of nonrelativistic limit of U®
(without In\ term).

Our other transcendental function

Yy

h(y)=y~1 f udu ctnhu
0

can also be expressed in terms of L(x). Integration by
parts gives

h(y)=In(sinhy)—y~1 f ’ In(sinh#)du. (A9)

Letting = ¢2* yields In(sinh®) =In(1—7)—In2¢ and the
integral is obtained directly :

7(y)=1n(2 sinhy) — y/2+(29)7'[#*/6+L(e*)]. (A10)

If y is sufficiently large that we can neglect e=%¥ com-
pared to unity, we get

h(y)~(y/2)+(x*/12y).
APPENDIX X. TABLE OF INTEGRALS

(A11)

In this appendix we will simply list the integrals
which enter this problem, reserving for Appendix Y a
discussion of the methods used. To simplify the presen-
tation of the integrals (which occur also in other
problems) we introduce the following definitions:

For factors of the denominator we write &%—

21k

=(1), B2—2p,-k=(2), B2—2ps-k—k=(x), k2=(0). We
write for frequently occurring vectors
ps=prtqu, Pa=p1—3qs,
2po=pi+ po, 290=q1+¢s,
20=p1—p2=q2— (1.
TasLe III. Nonrelativistic limits of functions occurring in

Eq. (30). These expressions are valid in either the c.m. or labo-
ratory system with ¢ the scattering angle and « the incident
photon energy.

%(H— = (1/ 48) (k+7)*4-0(")
h( ) 1+

9.
Go(K) 2(1+K/2+K2/9+ O =2In|x|(A4x/242/34--)
In|«| =In20+w+0(w®)
Inr=In2w+w cosp+Ew?(1 —cos?p)+0(w?)
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The integrals are defined by

4 =8ifd4k/(1)(2), B(1>=81'fd4k/(1)(x)

CoO=8; f #E/)0), D=8 f #8/(0) (&)

F=8ifd4k/(1)(2)(x), G<‘)=81'fd4k/(1)(/<)(0)

H=8i f P/ DR)), T=8i f @/ (1)(2) () (0).

Integrals B®, C® G® are defined as BW, C®, GO®
but with (2) replacing (1). Their values are obtained
from those of BW, CW, G by replacing p, by ps, ¢1 by
gs, and Q by —(Q. We use the notation, as in reference
1(b), that

Fyean=8i f (1 ko Rok)d8/ (1)) (), etc.
Let:

b= Q= —sinbiy=}(s-+1),
a=—InA?

(v is real as 0*<0)

b=1—y cothy
c=(k/x—1) Ink
d=2y csch2y=(1-b0)/(1—p)

u
— In(1—u)
o U

L(x)=

h(y)=(1/y) f yu cothudu

v=r4-4p(l—«).
Integrals
Ao=2a—4b+2

ByW=2a+42=B,

CoW=2a—2=C,
Dy=2a—2+2¢
Fo=19? cschy-

G =(2/0)[L(A—x)—L(1)]=Go
Ho=2d[ —In\+1(2y)— h(y)]
Jo=(2d/)[2h(y)— h(2y)—In(x/N)]
A= (2a—4b+3)po,

B®'=(a+3$)(p1o+pa0)

CoP=(a+3)p1o
Do=[(x/xk—1)(c—1)+a+5]ps
Fo=Fopos+[Fo— (2b/ 1) 1q00
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GV =[Go—(2¢/x) Ipro+ (2/0)[Go— (2— k/K)c—2]q1a
H,=2dpg,
vJ o= [2uF o~ (2p—K)Z—Golpos
+[@p—)Fo+2(1—p)Z~ (2— £)Go 00
with
Z=Ho+«Jo=2d[—Ink+h(y)]
For=Fopor+[(Fo—2b/ 1) poost (Fot Yo— 28/ 1) qos 1qo+

. — Y0Q¢Q7+[ﬂy(l+%a+%jsu
with

Yo=(Fo—2b—1)/2p

-

k—1 & xk—1

3k—2c¢ 1
Gvr(v‘_—'Plu[’lrl:Gﬁ— ]

3 22— 9%+6¢ 6—5«1
+(P1a91r+q”1711)[-60+ f —]
K

T
k(k—1) «
6 k+44x>—18k+12 ¢
+qlvq17|:"'G0 } -
K? K¥(k—1) K

2k4+9%—1217 1
]+;6,,|:260—3+2a+2

k—1 «

K—

2
d
K

(k—1) &
H,.=dposport (0/w)QsQs+580-(a—20+3)
Jor=0Qr+Bosport vapartessr

where:
e=Fo— Qo= Bopos— Yo Psq

4y =G,M—G,®
18,=kFo— (2— ) (H,+J )+ (1= 1) (G,V+G,®)
o= 2u—K)F,42(1—p)(H,+xJ ;)

—32=10)(G.P+G.®)
Sor=08qr— (QoQr/ 1) +4(1— &) (pospo+/)
—2Q2— &) (pocpart pacpor)/v]
+4(1— ) (pseps./v)

[soo=1]
Joro=0:QptBorPoptYorpspteoSroterso,
where
€e=Fo— Q7= Borpor—Yorpsr
dpos=GorM—Gor®
VBor=kFor— (2—K) (Hsr+xJ 61)+ (1—K) (Gor P +Gor®)
VYer= (2 ) For— 21— ) Hort-xJ )
=321 (GorP+Go.?).
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APPENDIX Y. ON THE INTEGRALS IN THE
CORRECTED CROSS SECTION

In this section we will describe the methods by which
the integrations occurring in the e*-order matrix element
have been performed and will give some examples of
the calculations.

Those integrals which are scalars (those with no %
in the numerator) have been done by the parametric
method discussed in the appendix to reference 1(b).
Those which are tensors (having one or more k’s in the
numerator) can be done either by the parametric
method, or can be derived by an algebraic procedure
described below from those of lower tensor order.

We now do several examples of the integrals to
indicate the methods employed.

(a) The Two-Denominator Integrals

These all have the form x(A?) (where we need only
the case of A much greater than any of the momenta
involved in the problem), with

(=8 f (13 k) (B—2p1- b— A

X (B—2py- b— Ag)~(— A) (R— AD)—1d%.  (A12)

To reduce this integral and those considered below we
use the methods of reference 1(b).

In the first place we combine the denominators by
making use of the relation

ab= [ dloytsi—nT* (A1)

and similar expressions for 1/ab? 1/ab?, etc., obtainable
from (A13) by differentiation. Thus x becomes

1 1
x=8@'f f f(l; ko)dy2zdz(— A?)d*k
0vo

X[F—22p, k—2A,— (1—2)A2]3  (A14)
with p,=piy+p2(1—9); A,=A1y+Ax(1—y). Using
(12a) of reference 1(b), we get
x= f f 2adady(— A2)(1; py)

X[2p2 420,41 —2)A2] 1. (A15)

To facilitate the work we observe that in the limit of
very large A? (with §K1)

f‘ (1—2)"dz(— A?)
0 P(z)+A2(1—z)
. 1 (1—2)"dz(— A%)
=_f -2 dz+f1_51>(1)+A2(1—z)
~—1/n, n>0

~In[P(1)/AZ], #=0. (A16)
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Writing
(15 2py0) = (1= (1—2); [(1—2)*—2(1 —2)+1]py0),
(A15) becomes

x= f Zdy{(l pd 22 ] arn)

The second term gives (2; 3(p1o+p20))- In the first term
1

= [ 205003 pu) WG A+A)/X], (ALS)
0

notice that with 20= (p1— p2),
pi= P2+ Q%+ 2p2 (p1— p2)y,

A1=’m2—P12, A2=m2_p22
so that
B A=Ay —y) = mi+ QL 2y~ 1) ~1]

Now let m=1, Q*=sin?), and 2y— 1=tana/tand,
so that dy(secza/ ZtanB)da We get

Ay =cos? sec’a
so that

0
(sec?a/tanb)da(l; py.(a))

- XIn(cos?d sec?a/A?). (A19)

This integral can be done easily. For example,

[ tanf

f sectada In(sec?a) = dy In(14-4?)
9

— —tand

=4 tanf[ In(sech)— 1]+40,

the last integral being performed by parts. In this
manner we obtain integrals 4, B, C, D.

(b) The Intregal G,®

As an example of the three denominator integrals we
integrate Go®. The parameterization method gives

G0 =8i f AR(B—2py- B~ (B —2pa- k— ) (B

1 1
=8 f f f dk2dyxdu(B—2p,- k—A)=8  (A20)
[ ]

with
by= (A=y)p1typs=pityq1, pa=%py, As=xyx.
Using (12a) of reference 1(b) again,
1 1
GV = f f 2dxdy(xpP+yx) L (A21)
0vo
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Since
1
j\dac(ax—i—b)”1=a”1 In(b+a)/b,
0
and since p,2=1

—ky

1
GoW=— f 2dy(1—ky)~2 Inky
0

2 pldy
=—-—f —In(1—9).
KY 1.7

(A22)

In the last step we have let 9=1—xy. We obtain
finally:

GO =G =Go=(2/0)[L1A~1)—L(1)]. (A23)

(c) The Integrals H

These are the same as those done in the radiationless
scattering problem. They are given in reference 1(b),
appendix. Equations (23a), (24a), and (25a) should
have the signs of their left-hand sides changed.

(d) The Integral J,
J'o=8ifd4k(k2—2p1-k)—1(k2—2p3-k—K)_I

X (B2—2pq- k)1 (R2— N1 (A24)
We have given the photon %2 a small mass A as an
infrared cutoff. When this integral is parameterized it

becomes

1 1 1
Jo=8i f f f f 6dadyds(1—x)2dsk
0 0 0

X[R—2zp, k—xzk—N(1—3z) ™% (A25)
By (13a) of reference 1(b),
8ifd4k(k2~2p k= A)t=—3(p*H-A)2
so that
1 1 1
Jo=— f f f 2dxdydz(1—x)2
0o Yo o
X[2pL+xzc-+N(1—2) ]2 (A26)

with po=(1—2)p,+aps, py=yp1+(1—)pa
We break the x integration into two regions (e1):

1 1 1 1 1 1 1 € 1
fdxfdyfdz=fdyfdxfdz+fdyfdxfdz.
0 0 0 0 € 0 0 0 0
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@ 1)
In (I) we let A—0, getting

1 1 1
(I)=f dyf dxf 2dz(1—x) (zp24xk)~2
0 € 0
f f‘ (1—x)dxdy
e kx(pli+ Kx)
In region (II), since % is small, we neglect 2 compared
to x:

(A27)

1 1 €
(ID)= f dy f dz f 22%dx 22p, 2+ 2x5%a
0 0 0
+-zra+N2(1—2) ]2
1 1
=2f dyf dze?[ 2P+ N(1—2)
0 0

X[2p,+2ea+axet N(1—2) ]
with a=p,- (ps—1,).

In (IT) we now break the 2 integration into two
regions; 0<2z<z, and 2,<z<1 such that AN<z2p,?
Kzcxe. Thus for <2z, we neglect z relative to unity
and 2?p,? relative to zke. For >3, we neglect A. There
results:

(A28)

fl 2edzdy 2 Ke
20 P2 5(pP+2ea)+ke]  kpy? Zcpuz’
2ex’dzdy

fo (@A N) (are+ )

f“ 2edz ()\z-xez A2 )
- 0 (NP2 \22p 20 kest N2

I o
=—In (neglecting terms of order X).
kpy? N
Adding these together we get
ldy e
D=} —n . (A29)
o kpy® NPy}

We can now use the same substitution for y as that
leading to (A8). Notice that in this case A,=0. We get
dy/xpt=da/sin20, p,2=cos?d/coste so that (II) be-
comes:

0 2do Ke
()= f [In——~——+ln(cosa)]
_osin26L N cosf
40 Ke 0 4d
= In } f
sin20 A cosf J, sin26

In(cosa). (A30)
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We have still to finish evaluating (I), Eq. (A27).
First investigate the denominator p.>+-xx. Since
pf=1—k and 2p;- p,=2—x,

p=(1—2)p o> (1—0)+a(1—2)(2—x)
2= (1—2)(p,2—1)+1.

Letting 1—x=sing/sinf, 2y—1=tana/tang with Q°
=sin%), we get

p,2=sin?0[ (tana/tan’p)—17],
24 k= sin%¢p ctn2¢p(secta—sec?p)+ 1=cos’p sec’e,

—dx=cospdp/sing, dy=sec’ada/2 tans.
The integrand of (I) becomes

1 ( sinf ) (sinq&) (cosZa) (cos¢>dq5) (seczada)
k \sinf—sing/ \sind cos’¢ sinf tang

1 dopda

k sinf sinf— sing

and
f—e tand d¢ ¢ da
o=  =Zf ——
0 k v _g sinf(sinf—sing)

fﬂ—e tanf 2¢d¢
B 0 K sine(sinﬁ—sinqs).

(A31)

Integrate (A31) by parts, using No. 436, Dwight’s
Tables of Integrals, to get

49 e tand
()
K sin26 2 cos@
0 4d¢ sin (80— ¢)
+ f ln( ) (A32)
0 sin20  \cos}(6+¢)

which can be put in the form

(n=-

OH=-— In

In(cosa)
K sin26

46 € sind f” 4da
cos?d o sin26

0 4da
+

In(tana)
0 sin26

and can now be added to (A19).
This gives the result,

—49 l’ K
]0‘—_'— 11"1
K sin20|_ A\ tand

-6t f dv ln(tanv)]. (A33)

Another integration by parts and the substitution
6=1y gives the result in the table:

Jo=(2d/0)[2(y)—h(2y)—In(/N) 1. (A34)
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(e) The Integrals J,, J,ry J,r»

From the preceding work on J, it may be supposed
that to attempt these more complicated integrals by
the parametric method would involve great labor.
Fortunately there is a way to reduce these integrals to
a combination of integrals of a lower tensor order, and
those of a smaller number of denominators. We will do
J, as an example but it should be clear from this how
Josr and J,,, are done. This method can of course, be
applied also to G, Gor, etc. We shall be able to express
J, in terms of Jy and the integrals F, G having only
three denominators.

Using the notation indicated in Appendix X for the
denominators, (1)="£k2—2p, -k, etc., we write

k.d'k

er': g} —= aﬁla—l_ﬁ 2a+ 30y
] DO Parn?

(A35)

a, B, v being scalar functions of p;, ps, and ps. The
vectors pi1, P2, ps will in general define a three-space.
It is clear that the vector J, cannot have a component
in the direction P which is perpendicular to this three-
space, since for k, in the P direction, the integrand is
an odd function and therefore J, must vanish.

If we now take the scalar products of J, with py, ps, ps,
since 2p;-k=(0)— (1), etc., we get

2p1- kd'k
2;#y]=8if—————

(1)2)()(0)
dik d*k
=8 — 8 =F;—Gy
tf D@ Zf W0
Y 2py- kd*k
PR D@00
d*k d*k
=8 —8 =Fo—Gy
) OO ’f )0 (A36)
Y 2p3-kd'k
P D@00
dik d*k
. .
zf D@0 J D@0
kd*k
_8' —
’f D@ WO)
=F0—}IG"‘K]0.

Taking also the scalar products with the right-hand
side of (A35), we get the set of linear equations:

Fo—Go=2a+B(1—3xk—3in)+~v(2—«)
Fo—Go=a(1—3x—37)+268+v(2—«) (A37)
Fo—Hoy—«Jo= (a+p)(2— )42y (1—«).
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Jo can now be readily obtained by solving these
equations for «, 8, and ¥.

To obtain J,, we write

kok-d'k
Jor= Sif——————————
1) (@) (%) (0)
= av?lr"*‘ﬁa??f'l‘ 'chsf‘l‘ €0sry

aqy Bsy Yo being vector functions of py, ps, P3, and € a
scalar function of the same variables. The tensor ed,,
now occurs on the right-hand side as it is possible for
Jor to have nonzero components depending on P. (If
k,=k.=kp, J,r need not vanish.) If we take inner
products with 1, pe, and p; now we get

Fo—GoW=20,4+28,(1—%k—37)+v,(2— &)+ 2ep1,

for 2p1,J s, and similar equations for p, and p;. This
gives us three equations for the four quantities as, 8.,
Ys € However, there is the additional independent
result obtained by summing J,, over ¢

kok.d'k
Joo=28i f _
(M@ (x)(0)
= F0= av?la+6a?2ry+ 70?3:7"!"46-

Solving these four equations we obtain J,. algebrai-
cally in terms of simpler integrals. In a similar manner
Jsr» can be expressed in the form given in Appendix X.

(A38)

(A39)

APPENDIX Z. EXAMPLES OF THE CALCULATIONS

We shall here illustrate by two examples the method
of evaluation of the transition amplitude.

The matrix T (18) can be written, if we rationalize
the denominator, as (p?=m?, ¢*=0)

T= f (F—2p-b—2g-b— )~ (B—2p- k)

Xd*kRC(R2)T (A40)

with
T=vu.(p+q—kt+m)e(p—k+m)v,.  (Ad1)
T can now be split into terms involving no k, one &,

and two k’s, and the results of the integrations over
k-space inserted from Appendix Y. Thus,

T=v.(p+g+m)e(p+m)y,—vy.ke(p+m)y,
—Yu(p+g+m)eky,+v.keky,
=2p(p+q+m)e—2pke+2ke(p+q)
—4m(e-k)—2kek,
where we have used Eq. (4a) of reference 1(b) and the

fact that the matrix T operates from the left on a state
u such that pu=mu. Inserting the integrals and
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grouping terms we now have,

&iT=2p(p+q+m)eGo—2(py.e—v.e(p+q)+2me,)G,
—2y,ev.Gyr.  (A42)

This expression can now be further simplified. For
example, the term in G, is (using Appendix X)

—2[Go—(2¢/x) [ p*e—pe(p+q)+2m(e-p)]
—4/0[Go— (2—«/K)c—2][pge—qe(p+q)]

with k=—2p-¢. Since p>=m?, ¢*=0, ¢-¢=0, and quite
generally ab--ba=2a-b, this term becomes finally

—2[Go— (2¢/x)](2m2e— peq)
+@/0)[Go— 2—«/K)c—2]-[2(e* p)g+xe].

Combining this with the terms in Gy and G,, in (A42)
(expanded in the same manner) we obtain the expression
for T given in the text (19).

To illustrate the simplification that occurs upon
taking the spur, for unpolarized light, consider the
term J (21). This may be decomposed, as was T above,
into a sum of terms involving various numbers of k’s
in the numerator. For example, the term involving
three k’s is

- f vkeskey, &/ (D2)(0)  (Ad3)

using the notation of Appendix X. If we replace ey, by
Y« and ey by v, this gives a contribution to the spur
P(k, 7), Eq. (28), of a numerical factor times

[swar @00 (A44)
with
g(k)=SpL(potm)y.kvskyaky,(pr+m)W]
=x"H{4(py k) (P2 k) (p3- k)
+ B[ 3m(prtpo) - k— (pr- pot-2m2) (ps- k) 1}
+77H{4(p1 k) (P2 k) (pa- k)
—m R (pr1+pat-ps) -k} (A4S)

It will now be seen that the factor %% will cancel the
factor (0) in the denominator of (A44) leading to the
integral F, (Appendix X). Also, we can write

2p1-k=—(k2—2p1-B)+ k2= —(1)+(0)

leading to integrals G,,® and F,,. Thus it is not
necessary, for unpolarized light, to use integral J,,,.
(A44) can now be written

2(’(*1P27p3r+ T_I?QUPH) (Fa‘r —Go'r(2))
F 32 (p1o+poo) — k71 (p1 pot-2m2) pie

—m2T—I(PIU+PZG+P36):IFI' (A46)



