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A boundary condition method is developed for deriving the coefficient Es, in the power series expansion
of the energy of an electron of wave number # moving in the lattice of an alkali metal. (The entire calcu-
lation proceeds within the framework of the Wigner-Seitz atomic sphere approximation.) If the electron
wave function is expanded as ¥i(r) =e® *(ug-+urk+usk2+ - +) it is shown that the boundary condition
[(8/0r)(s part of u2,) Jr =rs=0 leads naturally to an evaluation of Es, in terms of values at 7, of homogeneous
solutions of the Schrédinger equation and their derivatives with respect to energy and radius. In this way,
a simple expression for E, is obtained analogous to that derived by Bardeen for E,. For the case of metallic
lithium, this expression leads to the value E4=—0.031, which agrees with that obtained by the more tedious
method of evaluating the expectation value of the Hamiltonian using a wave function correct to the second

order in k.

INTRODUCTION

HE author and Kohn! have performed a Wigner-
Seitz calculation of the coefficient E; in the
power series expansion for the energy

E(k)=Eo+E+Edi+ - - -, (1)

of an electron with wave number %, moving in the
lattice of metallic lithium. The method consists in a
straightforward evaluation? of the expectation value
of the appropriate Hamiltonian using a wave function
correct to the second order in k. The value of the
cohesive energy obtained by a linear variation function
method! was combined with several small corrections
by Herring,* who obtained a theoretical value for the
cohesive energy of lithium which agrees with the
experimental value to within the probable error in
either.

Although the linear variation function method gives
more accurate results than those obtained from the
power series (1), we present here a boundary condition
method of obtaining the general coefficient Es,, which
avoids evaluating an expectation value of the Hamil-
tonian. In particular, we shall arrive quite directly at
the expression for E, derived by Bardeen.*

BARDEEN’S PROCEDURE

If we write the wave function of an electron in the
lattice of metallic lithium?® as a power series in %

* Now at the Research Division, Philco Corporation, Phila-
delphia, Pennsylvania.

IR, A. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950).

2 A numerical error was subsequently discovered which modifies
the value of the entries of Table I of reference 1 to those given
in an erratum, Phys. Rev. 82, 283 (1951).

3 C. Herring, Phys. Rev. 82, 282 (1951).

4J. Bardeen, J. Chem. Phys. 6, 367 (1938). Bardeen was
concerned only with the construction of #;, but his procedure is
apFlicable to the construction of the general u,, as we shall see
below.

5 The following considerations apply to any monovalent metal
to the extent that there is available a radial ion-core potential
which takes into account adequately the interaction between the
closed-shell and valence electrons. This is certainly the case for
lithium and sodium. See discussion in F. Seitz, Modern Theory of
Solids¥ (McGraw-Hill Book Company, Inc., New York, 1940),
p. 348.

Yi(r) = e Ty (r) = €5 (ot uik+uk®+ - - ),  (2)

(neglecting any dependence on the direction of k,
which 1is, of course, a fundamental weakness of this
approach), the Schrodinger equation®

(= VPV ())i(r) = E(R) (1), )

separates into the following set of equations familiar
from ordinary perturbation theory:

(= V24 V—Eg)ue=0,
(—‘ V2+ V—Eo)’l/h: 21(6140/62),
(— V24V — Eg)us=2i(0u1/ 02)+ (E2— 1) uy,

(—- V2+ V'—Eo)ugn‘: 2¢(au2n_1/6z)—l— (E2—' 1)M2n_2 (4)

+ -+ Eeutto,
(_ V2+ V— EO)MZn—{—l = 24,(6142”/62)4- (E:g‘— 1)%27,,_1

+-- '+E2nM1,

Here we have chosen k along the z axis of a spherical
coordinate system. V(r) is the empirical ion-core
potential computed by Seitz.”

The procedure adopted by Bardeen? is to find par-
ticular solutions of the set (4) by inspection. These are
then made to satisfy the Wigner-Seitz boundary condi-
tion® by adding appropriate multiples of solutions of
the homogeneous equation

(=VHV—Ey)y=0. ©)
Consider, for example, the second equation of (4),

6 Length is measured in units of the Bohr radius, energy in
Rydberg units.

7F. Seitz, Phys. Rev. 47, 400 (1935). Although Seitz used the
correct ion-core potential in deriving the results reported in this
reference, Herring discovered a small but significant error in the
published potential. Bardeen kindly supplied us with the correct
potential.

8 Tt will be recalled that if f is even, the Wigner-Seitz boundary
condition is 8f(r,)/dr=0, where 7, is the radius of the s-sphere,
whereas if f is odd, the boundary condition is f(r,) =0. The ground-
state wave function # is even, so that by the construction given
below, ; is even if ¢ is even, odd if ¢ is odd. The value Eg occurring
in (5) is determined by the boundary condition duo(7s)/dr=0.
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namely

By inspection, —izu, is a particular solution of (6).
The complete solution must satisfy the boundary
condition #,(r,)=0; this can be achieved by adding an
appropriate multiple of the p solution of (5). Thus,
the desired solution of (6) is

M

where f, is the radial part of the p solution of (5) which
satisfies f,(7s) =7s10(7,).
Now we place (7) in the espectation value®

wr=13(fp/7—%o),

f (o ) * (— VbV — 2680 92+ B e
v

(8
f (uo“l‘- Mlk) *uodr

which represents E(k) correct to second order in &.
(V=volume of the s-sphere.) By some ingenious
manipulation, Bardeen was able to transform the
resultant expression for E; into

Ey,= ’Y(rfp//fp)’ =Ts, (9)
where f,/=0f,/0r° and y=(4n/3)r3ud(r.); uy 1is

normalized, i.e.,
f utdr=1.
v

We have discovered that the boundary condition

a
[~—(s part of ugn)]
or

r=rg

will lead automatically to the expression (9) for E,,
and to similar, more complicated expressions for Ej,
Eg, etc. Let us first evaluate E, by this method.

EVALUATION OF E, BY BOUNDARY
CONDITION METHOD

Consider the third equation of the set (4), namely
(10)

If we operate on —izu;+322uy with (—V2+V—Ey), we
obtain 2¢du1/ 92— u,, which differs from the right-hand
side of (10) only by the absence of the factor Eau,.
Thus if f has the property that

(= V2V —Eq)f=1u,,

(— V2+ V—‘Eo)u2= 2z6u1/62+ (Ez—' 1)%0

(11)

9 If ¢ and ™ represent the true wave function to orders m
and %, respectively, Sy ™*HyM™dr/ fye* W dr represents the
energy correct to order m+4n-+1.

10 “Prime” will have this meaning hereafter.
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a particular solution of (10) is —izus-+32%u0+ Eof.
Such an f is given formally by differentiating
(= V24V —E)uo(E, r)=0 with respect to E, and then
setting E= E,."! This gives

(— V2+ V—Eo)(auo/aE)E=Eo=uo. (12)

Thus,

""izul'{-%Z2MQ+E2((9MQ/(9E)E=E'0 (13)

is a particular solution of (10). Recalling (7), it is seen
that (13) is a linear combination of s and d functions.
Therefore, the radial derivatives of the s and d parts
of (13) must vanish at the surface of the s-sphere. To
insure this we add appropriate multiples of s and d
solutions of the homogeneous Eq. (4). Accordingly,
the complete solution is

tr=(3rfp—5r"uo+cafa) Pt (37fp— 1100

+E2(6M0/3E)E=EQ+CSM0)P0. (14)

Here Py, P» are Legendre polynomials, and ¢, ca are
constants; fq satisfies '

14d
( r? dr
(Henceforth when E= E,; and r=r, appear as subscripts,
they will be abbreviated as Eq and r;, respectively.)
As far as the definition of wo(E,7) for values of
E not equal to E, is concerned, we observe that
(0uo(E, 7)/0E) py satisfies (10) provided the function
uy(E, ) reduces continuously to w#,(Eo #) when E
approaches Fy. Thus, if we define #"(E,r) as the
solution of (— V24V — E)uy*(E, r)=0 which is normal-
ized for any E, uo(E,r) is given by F(E)u,"(E,r),
where F(E) is any continuous function of E such that
F(Ey)=1. Then we have

(auo(E, f)/aE) Ey= FI(E())%()”(EO, 7’)
+ (duo™(E, r)/ OE) mo,

i.e., any two definitions of #,(E,r) lead to values of

(0uo(E, r)/dE) 8o which differ only by a multiple of

uo(Ey, 7), a difference which is already within the

arbitrariness of the functions #,. [ This fact is apparent

from the form of (4).] Moreover, since u,’(Eo, 7,)=0,

it is clear that (8%uo/ 970 E)rs, 5o is uniquely defined.
Now we set the s part of (14) equul to zero:.

1o, (r)F Ex(90/ 0rd E)r, mo=0,

d 6 '
r2—-)+ V—l————Eo) fa=0.  (15)
dr 72

(16)

(17)
ie.,

Eo=—3n.fy/(r)/ () r0E)rszo. (18)

The quantity (8%#/37dE)rs,my can be evaluated by
multiplying both sides of (12) by u, integrating over

11 This procedure was originated by C. Herring and A. G. Hill
in their paper on metallic beryllium, Phys. Rev. 58, 132 (1940).
These authors constructed an expression equivalent to Eq. (14).
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the s-sphere, and invoking Green’s theorem."? Thus,

fuo(" V2+ V“‘Eo)(auo/aﬂ)EodT= f%o2d7= 1,
14 14

f (a%o/aE) E'()(— V2+ V"‘Eo)uod’r
14

1
-{—f{‘—uo(a%to/a?’aE)rs,Eo ( 9)

+ (duo/ 37) (duo/ OE) mo}do=1,
— 47y 2ug(75)(8%uo/ OrI E)rs, Bo=1,
(0%u0/ 070 E)rs, mo= — 1/47r 2uy(7,).
Substituting this value into (17), we find
Ey= (47/3)r3uc(rs) (rf,'/fp)rs,

using f,(rs)=ruo(r;). This is precisely the expression
obtained by Bardeen as described above.

(20)

CONSTRUCTION OF u,
We have seen that %, must satisfy

(=V2+V—E)ty=2i0n—1/ 05+ (Eo— 1)tz

+.--4+E,uy (n even), 21)
(= V2V —E)ttn=210ur_1/ 35+ (Eo— 1t _» (
4+ +E,u; (nodd).
If we assume that %, starts as
(™ ()"
—[ to+ Uit +izun4], (22)
n! (n—1)!

it can easily be shown that the difference between the
right-hand side of (21) and the result of operating on
(22) with (— V>4V — E,) consists only of terms involv-
ing solutions of the homogeneous Schrodinger equation
(5) and their E derivatives of various orders evaluated
at E,. These terms can be generated by operating with
(—V*+V—E,) on higher E derivatives of said homo-
geneous solutions.® Finally, suitable multiples of the
homogeneous solutions themselves must be added to
the sum of (22) and these E derivatives in order to
satisfy the appropriate boundary condition at the
surface of the s-sphere. For example, if we apply
(= V-V —E,) to (22) for the case n=3, we find that
the difference between the resulting expression and the
right-hand side of the third equation of (4) is iE:P:fp;
similarly, for n=4 the difference is Esu+ EoxcaPsfa
+ E*(duy"/ dE) mo. Accordingly, the complete solutions

12 This use of Green’s theorem was suggested by W. Kohn.

13 Note that in differentiating (— V24V — E)u,»=0 more than

once with respect to E, it is vital that the wave function be the
normalized function %,®,

229

ug and u4 are given by
= §iz*uo+32%ur— iyt 1By P1(3f o/ E) 5o
+eoPrfotcrPsfs
us= — (1/24)z*uo+ 3151+ 52200 — 1203
+ E4(duo/ OE) B0+ 1 E2(8%uo™/dE?) o
+ ExcaP2(9fa/ OE) mo+ystto+yaPafat v Paf o,

where the ¢’s and 7’s are constants, P; is the Legendre
polynomial of degree /, and f; is the radial solution of
(6) with angular momentum quantum number /.

It will be observed that #., must contain the term
Es, in order to generate the Es,u, term appearing in
the right-hand side of (21). This accounts for the
possibility of evaluating E,, from the boundary
condition

(23)

[—a—(s part of M2n)] =0. (24)

or

For, since u,'(r,)=0, the equation obtained from (24)
cannot be satisfied by appropriate choice of a multiple
of u, added to #s,. Inasmuch as (8%to/ 970 E)rs,205%0,
the boundary condition (24) represents an equation
which can be solved explicitly for Es,.

EVALUATION OF E,

We now give an outline of the algebra leading from
the expression (23) for u#4 to a simple formula for Fy,
via the boundary condition [(8/d7)(s part of #4) Jrs=0.
The algebra is straightforward but somewhat tedious;
we will outline only the principal steps.

The radial derivative of the s part of u, evaluated
at r=r, turns out to be

1 1 1
—r3ug(rs) ——r2f p(rs) ——r3fp (75)
30 7 g0 30 T

1 (")M() 1 32%0
Y e sy
3 (9E rs, K0 6 6r<9E T,

2 ") 1 \ ") 1 (afp)
——rscafa(rs)——r2cafd (rs)+—E
g e =g db B )

: el : folre) i £/ ()
+-E n( ) ——Cof o (7s) ——FsCpf (75
3 " Norar)rem 3700 3 "7

1 63140" (92140
ror() +m(-) L)
2 676E2 7s.Eo ai’aE 75, EQ

We are able to choose the following particularly con-
venient definition for f,(E, 7;) at points other than Eq:

fp(E; 7s) =rsug™(E, 7s). (26)

It can easily be shown that the additional terms created
by any other definition are canceled by the accom-
panying change in ¢,. Thus we have

(afp/aE)rs ZVEBY=1T7s (()MQ/(?E)TS VB,

(27)
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as well as f,(rs)=7r.u0(rs). To reduce (25) further, we
must evaluate ¢,, which is determined by the boundary
condition (p part of #3)r;=0. The p part of u3 can be

found by reductions exactly analogous to those made
in finding the s part of #s. The result is

1 3 ' Oy
(p part of us)=—irug——ir’f,—irE; (~—)
10 10 0E / ko

2 (O
”—;i’cdfd-*—zl’:“z(’éE)Eo"*‘Cpfp) (28)

which leads immediately to the following expression

for ¢,p:
cp="L17s/5fp(r) I rPuo(ro)+2cafa(rs) ] (29)
The value of ¢g4 is obtained from
cafd (rs)=2E2(8%t0/ 0rdE)rs, o, (30)

which is an immediate consequence of comparing the
radial derivatives of the s and @ parts of u, [see Eq.
(14)7]. We have now reduced (25) to

1 rfo 1 u
_7s3u0 (1’3) (—'i) - "E27'32< ’ )
30 fp rs 6 oroE 75, B0
1 (92f 62uo
+‘Ezf's( ”) +E4( )
3 oroE rs,BQ oroE 75,80
1 63%0"‘ 2 62140
+—'E22( ) +—Eyr 32( )
2 676E2 rs,EQ 15 0roE s, EQ

), ] o

The quantity (8%u,/d70E*)rs, 5 can be evaluated in a
fashion similar to that used to evaluate (8%u#y/ 370 E)rs, mo.
Multiply both sides of

%(— V2+ V“‘EQ)(aZMO"/aEZ) Ey= (6%0"/6E) Eo, (32)

by #¢" and integrate over the volume of the s-sphere,
using Green’s theorem. Then
) dr
o

1 62140"
~fuo”(—V2+ V—EO)(
2Jy IFE?
a’l/t()" 1d
=fuo"( ) d7=———fu0”2d7=0, (33)
v 0E / B 2 dEVy

or finally

(63140"/67'8E2)r8 JEp= 0. (34)

The evaluation of (8%f,/d7dE)rs,mo requires a little
more care, but is otherwise quite straightforward. The
analysis is as follows: if ®, denotes the numerical
solution of the equation

1d/ d
(___ )+v+—-Eo)q>,,=o. (35)
r*dr\ dr

RICHARD A.

SILVERMAN
Equation (26) requires that

rsuo(7s, E)
®,(7s, E)

Introducing P=r®,, we obtain after some manipulation

6%}“1, auo”
Gt (C)
676E rs, B0 oE 75, B0

d
+ ¥sUo (73) EO)"“"

fp(r; E)= q)p(7'1 E). (36)

P(rs, E) Eo- 3

We have cast (8%*f,/9r0E)rs,zy into this form because it

is especially easy to evaluate numerically in terms of
functions we have already tabulated in connection with

our previous work.! (Note that {(d/dE)[P'(rs, E)/

P(r,, E)1} 5 is easily converted into the simpler form
——f PEy, 7)dr/ PX(E,, rs).)
0

Setting (31) equal to zero, we finally find

2 + (o7, ov0E)
E 7 s [¢] 0r0E rsy B
B0muo(ry)  2mug(ry) 3 " ’

- ——
4, 210(7.) 157rvuo(n)\ e
+——=0, (38)
3017140(7’3)
or, combining terms and solving for E4:
Es=(2/5)r2Es— (4/15) Ely " 2(rfd [ fa)rs ™t
4y Ey(8%f,/ 37O E)rg, 5o/ to(rs).  (39)

Substituting the appropriate numerical values into
(39), we obtain Es=—0.031, which represents a co-
hesive energy correction of 0.5 kcal/M. The discrep-
ancy between the value of E, obtained by this method
and that obtained by the expectation value method
(—0.029) amounts to about 0.03 kcal/M, which is much
less than experimental accuracy. Inasmuch as both
methods yield E4 as a difference of large numbers,
with consequent loss of one significant figure, this
discrepancy is easily accounted for despite the fact
that our wave functions are known to be accurate to
within less than one percent.

The author would like to express his indebtedness to
Professors Walter Kohn and Harvey Brooks for their
valuable advice in connection with this work,



