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Fermi Energy of Metallic Lithium
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A boundary condition method is developed for deriving the coeScient E2„ in the power series expansion
of the energy of an electron of wave number k moving in the lattice of an alkali metal. (The entire calcu-
lation proceeds within the framework of the Wigner-Seitz atomic sphere approximation. ) If the electron
wave function is expanded as p&(r) =e'~'(Np+Nik+N2k2+' ~ ) it is shown that the boundary condition
f(8/Br) (s part of N2„) |r=r, =0 leads naturally to an evaluation of E2„in terms of values at r, of homogeneous
solutions of the Schrodinger equation and their derivatives with respect to energy and radius. In this way,
a simple expression for E4 is obtained analogous to that derived by Bardeen for 82. For the case of metallic
lithium, this expression leads to the value E4= —0.031, which agrees with that obtained by the more tedious
method of evaluating the expectation value of the Hamiltonian using a wave function correct to the second
order in k.

INTRODUCTION

'HE author and Kohn' have performed a Wigner-
Seitz calculation of the coeKcient E4 in the

power series expansion for the energy

E(k) =Ep+Ezkz+E4k'+ (1)

of an electron with wave number k, moving in the
lattice of metallic lithium. The method consists in a
straightforward evaluation' of the expectation value
of the appropriate Hamil. tonian using a wave function
correct to the second order in tt;. The value of the
cohesive energy obtained by a linear variation function
method' was combined with several small corrections
by Herring, ' who obtained a theoretical value for the
cohesive energy of lithium which agrees with the
experimental value to within the probable error in
either.

Although the linear variation function method gives
more accurate results than those obtained from the
power series (1), we present here a boundary condition
method of obtaining the general coeKcient E2,„, which
avoids evaluating an expectation value of the Hamil-
tonian. In particular, we shall arrive quite directly at
the expression for E2 derived by Bardeen. '

BARDEEN'S PROCEDURE

If we write the wave function of an electron in the
lattice of metallic lithium' as a power series in k

* Now at the Research Division, Philco Corporation, Phila-
delphia, Pennsylvania.' R. A. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950).' A numerical error was subsequently discovered which modifies
the value of the entries of Table I of reference 1 to those given
in an erratum, Phys. Rev. 82, 283 (1951).

3 C. Herring, Phys. Rev. 82, 282 (1951).' J. Bardeen, J. Chem. Phys. 6, 367 (1938). Bardeen was
concerned only with the construction of ui, but his procedure is
applicable to the construction of the general u„, as we shall see
below.

~ The following considerations apply to any monovalent metal
to the extent that there is available a radial ion-core potential
which takes into account adequately the interaction between the
closed-shell and valence electrons. This is certainly the case for
lithium and sodium. See discussion in F. Seitz, 3Iodern Theory of
Solidsl(McGraw-Hill Book Company, Inc. , New York, 1940),
p. 348.
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pp(r) =s» &up(r) = s'~ ~(up+ uzk+uzk + )) (2)

(neglecting any dependence on the direction of k,
which is, of course, a fundamental weakness of this
approach), the Schrodinger equation'

separates into the following set of equations familiar
from ordinary perturbation theory:

(—7'+ V—Ep)up=0,

(—V'+ V—Ep)uz= 2i(Bup/Bs))

(—7'+ V—Ep)uz = 2i(Buz/Bs)+ (Ez—1)up,

(—P+ V—Ep)uz„= 2z(Bu2~ z/Bs)+— (E2 1)upp 2
(4)

+ +Ez.up,

(—V'+ V Ep)uzn+1 —2z(Bup„/pjs)—+(Ep 1)uzp I

+ ' ' '+Ez~uz,

Here we have chosen k along the s axis of a spherical
coordinate system. V(r) is the empirical ion-core
potential computed by Seitz. '

The procedure adopted by Bardeen4 is to find par-
ticular solutions of the set (4) by inspection. These are
then made to satisfy the Wigner-Seitz boundary condi-
tion' by adding appropriate multiples of solutions of
the homogeneous equation

(—V'+ V—Ep)/=0.

Consider, for example, the second equation of (4),

~ Length is measured in units of the Bohr radius, energy in
Rydberg units.' F. Seitz, Phys. Rev. 47, 400 (1935). Although Seitz used the
correct ion-core potential in deriving the results reported in this
reference, Herring discovered a small but significant error in the
published potential. Bardeen kindly supplied us with the correct
potential.' It will be recalled that iff is even, the Wigner-Seitz boundary
condition is Bf(r,)/Br=0, where r, is the radius of the s-sphere,
whereas iff is odd, the boundary condition is f(r.)=0.The ground-
state wave function uo is even, so that by the construction given
below, I; is even if i is even, odd if i is odd. The value E0 occurring
in (5) is determined by the boundary condition BNp(r )/Br=0.
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(—V'+ V—E,)u, =2I(Bu,/Bs}.

By illspcc'tl011, —'lsuo Is R pRI'tlculal sollltioll of (6).
The complete solution must satisfy the boundary
colldltioll ui(Y,)=0r; 'tliis CRI1 be RC111CVCd by adding Rll

appropriate multiple of the p solution of (5). Thus,
the desired solution of (6) is

where f~ is the radial part of the p solution of (5) which
satisfies f„(r,)=r,uo(r, ).

Now we place (7) in the CI pectation value'

(uo+uik)*( '7'—+V 2ik—B/Bs+k'}uodr

j~(uII+uik) uorfr

which represents E(k) correct to second order in p.
(V= volume of tile s-sphere. ) By some ingenious
manipulation, Bardeen was able to transform the
resultant expression for E2 into

E2= ~(~f.'/f, ) =",

f,'= Bf,/'Br" and y= (4Ir/3)r, au(P(r, ); uo is
normalized~ 1.e.)

8—(s part of u2„)
Bp'

will lead RlltoIIIRtIcRlly to 'tile cxpl'cssioli (9) foi' EI,
and to similar, more complicated expressions for E4,
E6, etc. Let us first evaluate E2 by this method.

EVALUATION OF E, BY BOUNDARY
CONMTION METHOD

Consider the third equation of the set (4), namely

( 7'+ V Eo)u2=—2I Bui/BS—+ (E2 1)uo {10)— .

H we operate on isui+ 2z—uo with -(—7'+ V—Eo), we
obtain 2iBuI/Bs uo, which—differs from the right-hand
side of (10) only by the absence of the factor E2uo.
Thus if f has the property that

( %+V Eo)f=—uo, —

I If P&~) and P(~& represent the true vrave function to orders m
and n, respectively, J'p( )~II&'"}de.// J'p& &*&&"&dr represents the
energy correct to order m+a+1.

» "Prime" veil have this meaning hereafter.

a particular solution of (10) is —isui+-I, s'uo+Emf.
Such an. f is given formally by differentiating

(—&+V—E)uo(E, r) =0 with respect to E, and then
setting E=Eq."This g1ves

( V'+—V Eo—)(Buo/BE) x =~0= uo.

isui—+ ',s'uo+-K(Buo /BE) II=«

is a particular solution of (1.0). Recalling (f), It is seen
that (13) is a linear combination of s and If functions.
Therefore, the radial derivatives of the s and d parts
of (13) must vanish at the surface of the s-sphere. To
1nsul"c this %'e Rdd Rpp1 opr1Rtc multlples of s Rnd

solutions of the homogeneous Eq. (4). Accordingly,
the complete solution is

u2= (-,'rf, ', r'u—o+-c~f~)P1+ (-,'rf„,'r'u—o-

+EI(Buo/BE) S=SO+c,uo)PD. (14)

Here I'~, P2 are Legendre polyriomials, and t,"„cd are
constants; fd satishes

{15)

(Henceforth when E=Eo and, r =r, appear as subscripts,
they will be abbreviated as E~ and r„respectively. )

As faI' as 'tllc dc6nltlon of uo(E, r) fol' vRlllcs of
E not equal to Eo is concerned, @re observe that
(Buo(E, r)/BE)zo satisfies (10) provided the function
uo(E, r) reduces continuously to uo(EO, r) when E
approaches Eo. Thus, if we define uo"(E, r) as the
solution of (—I7'+ V—E)uo"(E, r) =0 which is normal-
ized for any E, uo(E, r) is given by F(E)uo"(E, r),
where F(E) is any continuous function of E such that
F(E0)=1.Then we have

(Buo(E, r)/BE) zo ——F'(Eo)uo" (Eo, r)
+ (Buo"(E, r)/BE) IIO, (16)

i.e., any two definitions of uo(E, r) lead to values of
(Buo(E, r)/BE)II0 which differ only by a multiple of
uo(E0, r), R dlffcl'cIKc w111c11 ls already wit!1111 tile
arbitrariness of the functions u„. LThis fact is apparent
from the form of (4}.] Moreover, since uo'(Eo, r,) =0,
it is clear that (B'uo/Br BE).„~0 is uniquely de6ned.

Now we set the s part of (14) equii to zero:.

,'r,f„'(r,)+E2(B'uo/Br-BE)r„IIO= 0,

E1 Isr,f,'{I,)/(B'uo/——B—rBE)r„zo.

TliC qllalltlty (B uo/BABE}rN, IIO cRIl bC CVRluR'tCd by
IllllltlplylIlg bot11 sides of (12) by uo, llltcgl'RtlIlg ovei'

"This procedure eras originated by C. Herring and A. G. Hill
in their paper on metallic beryllium, Phys. Rev. 58, 132 (1940).
These authors constructed an expression equivalent to Eq. (14).
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the s-sphere, and invoking Green's theorem. "Thus,

t zzp( —P+ V Ep—) (Bzzp/BE) zodr = No'dr = 1,
V 6y

(BNo/BE) zo( 7'+—V Eo)—zzodz.

N3 and N4 are given by

zoo= ozs'Np+ zs'zzi —zszzz+zEzPi(Bf„/BE) zp

+c„Pif„+cyPzff
zzz

———(1/24)s'zzp+ o iszzzi+,'-z'zoo —isuz

+E4(Bzzo/BE) zp+-', E 'z(B' zoo/BE') zo

+ EzodP2(Bfa/BE) zo+ y~zzo+ vd oft+ roP4foi

(23)

+~t {—up(B'zzp/Br BE)r„zp
S

+ (Bzzo/Br) (Bmo/BE) zp}do = 1,

4z—rr, zzzp(r, ) (Bzzzp/Br BE)r„zp 1, ——

(B zoo/BrBE)r„zp = —1/4zrr, ,zip(r, )

Substituting this value into (17), we find

8—(s part of zzz„) =0.
Br rs

(24)

(19) where the c's and y's are constants, Pi is the Legendre
polynomial of degree l, and fi is the radial solution of

(6) with angular momentum quantum number l.
It will be observed that N2 must contain the term

E2„ in order to generate the E~„no term appearing in
the right-hand side of (21). This accounts for the
possibility of evaluating E&„ from the boundary
condition

Ez = (4zr/3) r,zzzp'(r, )(rf„'/f„).„(20)
using f„(r,)=r,zzp(r, ). This is precisely the expression
obtained by Bardeen as described above.

CONSTRUCTION OF u„

We have seen that N„must satisfy

For, since zzp'(r, ) =0, the equation obtained from (24)
cannot be satisfied by appropriate choice of a multiple
of zzp added to N, „Inas.much as (Bzuo/BrBE). „z«0,
the boundary condition (24) represents an equation
which can be solved explicitly for E2„.

EVALUATION OF E4

(—P+ V—Ep) zz„= 2iBzz„ i/Bs+ (Ez—1)zz„z
+ +E„zzp (zz even),

( P+ V L—p)zz„= 2zB—zz„ i/Bs+ (E, 1)zz„z-
+ +E.li (zz odd).

If we assume that N„starts as

is" is" '
zzp+ zzi+ ' ' '+zzzz„

(zz —1) t

(21)

We now give an outline of the algebra leading from
the expression (23) for zz4 to a simple formula for E4,
via the boundary condition [(B/Br)(s part of zz&)]r, ——0.
The algebra is straightforward but somewhat tedious;
we will outline only the principal steps.

The radial derivative of the s part of n4 evaluated
at r=r,, turns out to be

1—.' o(,)—.'f,(")-—.'f, '(.)
30 10 30

it can easily be shown that the difference between the
right-hand side of (21) and the result of operating on
(22) with (—P+ V Ep) consists on—ly of terms involv-

ing solutions of the homogeneous Schrodinger equation
(5) and their E derivatives of various orders evaluated
at Eo. These terms can be generated by operating with

(—V'+ V—Ep) on higher E derivatives of said homo-
geneous solutions. " Finally, suitable multiples of the
homogeneous solutions themselves must be added to
the sum of (22) and these E derivatives in order to
satisfy the appropriate boundary condition at the
surface of the s-sphere. For example, if we apply
(—7'+V Ep) to (22) for th—e case zz=3, we find that
the difference between the resulting expression and the
right-hand side of the third equation of (4) is iEoP,f„;
similarly, for zz=4 the difference is E4up+EzcoPzfg
+Ezz(BNo"/BE) zp. Accordingly, the complete solutions

"This use of Green's theorem was suggested by %V. Kohn.
"Note that in differentiating (—V'+ V—E)u0"——0 more than

once with respect to E, it is vital that the wave function b(.. the
normalized function up,

1 (Bzzp) 1 ( B'zzp i
3 &BE ) r„zo 6 EBrBE) r„zo

Bf
cdfd(z. ) r,'rafd'(z, )—+—Ez{-

15 15 3 E BL') ~, , zo

(Bfp/BE)r„zp= r, (BNp/BE)r„zp, (27)

+ E,zr, { {
C—„f„(r,) r,c„—fy—'(r, )——

3 EBrBE) „z 3 3

1 B zoo B zip

+-E.'{ { +E
I

LBrBL") r„zo EBrBE) r, , zp

XVe are able to choose the following particularly con-
venient definition for fp(E, r,) at points other than Ep.

f„(E,z',) = r,zzp "(E, r,). (26)

It can easily be shown that the additional terms created
by any other definition are canceled by the accom-
panying change in c~. Thus we have
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r,so(r. , E)
f„(r,E)=— C „(r,E).

C,(r„E)
(36)

Introducing I'= rC „,wc obtain after soxnc manipulation

10 &BE& zo ( Bof„q (Bso"q
I«—f+ E

I I +cf (») ~B"BE~„, , ~ BE
, I BE&z,

d (P'(»„E))
+r,so(»., Eo)

dE ( I'{»„E)) zo.
(37)which leads immediately to the following expression

fol cp:

as well as f~(r,)=r,so(r,). To reduce (25) further, we Equation {26) requires that
must evaluate c„,which is determined by the boundary
condition (P Part of so)r, ——0. The P Part of so can be
found by reductions exactly analogous to those made
ln flndlng thc 5 pRI't of N4. Thc I'csult ls

1 3 (Bso)
(P PRI't of so) = o—r so ——or fp 'L»Eoi

10

c,= L o/r5f. ( r) jL».'«(')+2«A(» )j (29)

Thc value of cq is obtained from

cafe'(r, ) =2Eo(Boso//B»BE). „zo, (30)

%'hlch ls Rn lIQIncdlRtc conscqucncc of coIllpRrlng thc
radIal derivatives of the s and d pa~t~ of so Lscc Eq.
(14)j.We have now reduced (25) to

1 (rf„'y 1 ( B'so y

30 & f„)., 6 (B»BE1.„zo

1 ( Bof„'I ( Bo«$
+-Eor.

i I +E4i
3 (B»BE&„,z, (B»BE)...z,

1 (Bsg) 2 (Bsog+-E'i, I +—E" 'I
2 &B»BE').„zo 15 (B»BE&»., zo

We have cast (B'f~/Br BE)»„zo into this form because it
is especially easy to evaluate numerically in terms of
functions wc llavc RllcRdy tRbulatcd I'n collllectI011 wltll

our previous work. '
i

Note that [(d/dE)LP(»„E)/

P(r„E))Izo is easily converted into the simpler form

P'(Eo, r)dr/I" (Eo, r,) I.
Sctt111g {31)equal to zero, wc finally find

E2 E2
+ + E,r,(B'fp/B»BE)-r. ,zo

40o»«(r. ) 24o»so(», ) 3

cl 8 ~s

4o»r, 'so(r. ) 15m'y«(r, )

The quantity (B'so/BrBE'). „zo can be evaluated in a
fashion similar to that used to evaluate (B'so/Br BE)~„zo.
Multiply both sides of

—,'(—r + V—E,)(B'so"/BE')zo ——(B«"/BE)zo, {32)

by No" and integrate over. the volume of the s-sphere,
using Green's theorem, Then

1 (BosoÃ P— ' so"(—V'+V —Eo)i I
d7

E BE') z,

(B«$ 1
d»= — "so"—'dr =0, (33)

( BE) zo 2dE~r

or 6nally
(Boso"/Br BE')r, , zo ——0. (34)

The evaluation. Of (Bof„/B»BE)r„zo requires a little
Inorc care, but is otherwise quite straightforward. The
analysis is as follows: if C„denotes the numerical
solution of thc cquRtlon

1d( dy 2

I

——
I

r'—I+ 1'+—Eo IC'.=0 (35)
r' dr E dr) r'

=0, (38)
30o»so(r.)

or& coIQblnlng tcl'Dls Rnd solving for E4.'

Eo {2/5)r oEo—{4/15)E——ooy Ir o{rfg'/fg)r. '
+yEo(Bof,/B»BE).„zo/so(», ). (39)

Substituting the appropriate numerical values into
(39), we obtain Eo —0.031, wh——ich represents a co-
hesive energy correction of +0.5 kcal/M. The discrep-
ancy between the value of E4 obtained by this method
and that obtained by the expectation value method

(—0.029) amounts to about 0.03 kcal/M, which is much

less than experimental accuracy. Inasmuch as both
methods yield E4 as a di6erencc of large numbers,
with consequent loss of one signi6cant 6gure, this
discrepancy is easily accounted for despite the fact
that our wave functions are known to be accurate to
within less than onc percent.

The author veld like to express his indebtedness to
Professors %'alter Kohn and Harvey Brooks for their
valuable advice jn connection with this ~oak,


