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The meson production cross section for protons incident on nuclei is formulated in terms of two-particle
transition rates and the struck nucleon momentum distribution in the nucleus. Three different momentum
densities are assumed. They are a modified Chew-Goldberger, a Gaussian, and a Fermi distribution. With
these, it is attempted to fit the experimental #* and =~ meson spectra obtained by bombarding C? with
345-Mev protons. The effect of the exclusion principle is estimated on the basis of a single particle model
for the nucleus. Meson reabsorption and scattering, after production, are also taken into account, but only
roughly. The calculations show that the gaussian distribution approximates nuclear conditions best, and
that the fundamental proton-neutron and proton-proton production transitions matrices are most probably

not equal.

I. INTRODUCTION

XPERIMENTAL studies of the production spec-
trum and angular distribution for w-mesons have
been made for protons incident on various elements,
notably hydrogen,'=3 carbon,*® and lead® at energies of
345 and 381 Mev. In this paper an attempt is made to
explain these spectra in terms of an analysis of the
production of mesons in free nucleon-nucleon collisions
as described by Watson and Brueckner,” (hereafter re-
ferred to as W.B.). The treatment is similar to that of
Lax and Feshbach for photomeson production in nuclei.®
The analysis need not depend on any particular
meson theory, but assumes that the matrix element for
meson production in proton-proton (P— P), and proton-
neutron (P—N) collisions are known in detail. Unfor-
tunately, little is presently known about the latter, nor
is the excitation curve known for either types of meson
production. On the other hand, a great deal of evidence
(see reference 7 for example) seems to indicate that both
the charged and neutral mesons are pseudoscalar. The
spin dependence of the matrix for the production from
either proton-proton or proton-neutron collisions is
based on this assumption, but the calculation can easily
be extended to apply to any other type of meson.
The evaluation of the transition matrix of the problem
is carried out by performing closure over all but the
interacting nucleons. Except near threshold, the pro-
duction spectrum at a given angle of meson emission is
then shown to be proportional to the momentum dis-
tribution of the struck particle in the nucleus, folded
into the free particle production rate. The consequence
of the exclusion principle is to reduce the momentum
space available, and is calculated on the basis of a
single particle model for the nucleus.
* This work was performed under the auspices of the AEC.
! Cartwright, Richman, Whitehead, and Wilcox, Phys. Rev. 78,
823 (1950).
2 Peterson, Iloff, and Sherman, Phys. Rev. 81, 647(A) (1951).
3 M. N. Whitehead and C. Richman, Phys. Rev. 83, 855 (1951).
4 C. Richman and H. A. Wilcox, Phys. Rev. 78, 496 (1950)—
345 Mev.
5 Block, Passman, and Havens, Phys. Rev. 83, 167 (1951)—
381 Mev.
6 M. Weissbluth, Phys. Rev. 78, 86(A) (1950).

7K. M. Watson and K. A. Brueckner, Phys. Rev. 83, 1 (1951).
8 M. Lax and H. Feshbach, Phys. Rev. 81, 189 (1951).

The absorption and scattering of the meson by the
nucleus, after production, are treated as separate
processes.

At sufficiently high energies above threshold, the
cross section is expected to be equal to the number of
protons and the number of neutrons in the nucleus
multiplied by their respective free-particle production
cross sections. As the energy of the incident proton is
decreased, not all the nucleons can contribute to the
process (i.e., the whole momentum distribution is not
available), and the “production efficiency” may be
said to decrease, approaching zero at threshold. This
efficiency is a consequence of the dynamics of the
problem and is independent of the exclusion effects,
which will tend to decrease the cross section still
further near threshold. At a given proton energy, the
efficiency is a function of the angle of emission of the
meson. It is largest for mesons emitted forward. For
mesons emitted at 90° to an incident proton beam of
341 Mev, it is only somewhat over 0.5.

The theoretical results derived in the first part are
applied to carbon bombarded by 341-Mev protons. It
is shown that the spectrum obtained for meson pro-
duction at 90° to the incident beam depends mainly on
the nuclear momentum density. At 0°, however, for
meson energies up to 80 Mev, the spectrum depends
largely on the free particle meson production matrices.
For the sake of simplicity these are assumed to differ
only by a numerical constant for P—N and P—P col-
lisions, even though this hypothesis will be shown to be
inadequate. It is then attempted to deduce some infor-
mation both about the matrix elements and about the
nuclear momentum distribution involved in the cross
section.

II. FORMULATION
A. Free Particle Meson Production

Before considering the actual problem of meson
production in nuclei, it is worthwhile to review some of
the features of creation in free particle interactions.
The cross section for meson formation in a nucleon-
nucleon collision can be expressed in terms of an
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R-matrix.”® W.B. show that, due to the short range of
interaction required for meson production, a zero range
approximation can be introduced for the nucleons in the
final state. If the meson is assumed to come off as a
plane wave, and momentum conservation is factored
out (in units of Z=c=1)

do=[(2m)*/vr]| 2m)ix»(0) ]2 (@, p'| 7| p)|?
X 8(q+n/+ny’—n;—nz)dl, (1)

where q is the meson momentum, p’ and p the final and
initial relative momenta, respectively, and vz the rela-
tive velocity of the interacting nucleons. If u, and M
are the meson and nucleon masses, n; and n, the
individual particle momenta,

o' =q— (u/2M)(n1+ny),
p’'=3(m/—ny),
p=3(n:—ny).

The |(27)¥x,’(0)|? factor in Eq. (1) (p’ refers to the
eigenvector and O is used to indicate the zero-range
approximation) comes from the final state nucleon
interaction, on the hypothesis that only their relative
motion S-state need be considered.! If ¢, is the meson
energy, T'r and T the final and initial nucleon kinetic
energies, respectively, then the phase space volume
available,
dJ= dqdnl’dng’é(qo—i— TF— T[)

A sum over the final spin states and an average over
the initial ones is implied in Eq. (1).

A partial wave analysis of the final nucleon states
has been used. If a similar consideration is applied to
the meson angular momentum, and only P- and S-states
are included, the matrix |7 |2 in the cross-section formula
can be written as:

|7P|2=a(g*/u?) cos6+b(g*/ k) +-e, (22)
for meson production in P— P collisions, and as
|7V [2=a'(¢*/u?) cos?0+b'(g*/u?)
+¢'(g%/ u?) cosb+d'(g/w) cosb+¢’, (2b)

for mesons produced in P—N collisions. The coef-
ficients, a, b, e, etc., are numerical factors which depend
on the initial momentum, p, and on the spin and isotopic
spin states of the reaction. § is the meson angle in the
center-of-mass system of the interacting particles. No
cosf terms appear in Eq. (2a) because of the exclusion
principle.

W.B. investigated the consequences of charge inde-
pendence for nuclear forces, taken together with angular
momentum and parity conservation, as well as the
Pauli exclusion principle, for the process considered.
For mesons created by incident protons their results
are summarized in Table I. The case of #° production

9 C. Mgller, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
23, 1 (1945).
10 See Appendix, K. Bruckner, Phys. Rev. 82, 598 (1951).
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TaBLE I. Transitions permitted by angular momentum and
parity conservation, as well as by the Pauli exclusion principle
for pseudoscalar mesons, when the relative final nucleon angular
momentum is an S-state. My, My, and M; are the isotopic spin
representation of the R-matrices. The notation used is that of W.B.

Meson in S-state Meson in D-state

P4pat DTS RZUNRE s Ma=ars i)
P+N, nt 3Po—1So Mi=(1* V) ;‘g;}—uso Ma=(1+ t+}#V)s)
PAN, 7~ Pe1Sy Mi=—(1-t-|rN|00) :ls)i}-—ﬂSa Ma=(1-t}/N|s)
P+4P,n0a 3Pg—1Sy Mi=—(10¢|r¥|t~) forbidden M= —(19¢"|rP|t7)
PHN, 70 3PoiSe 0 PO St 0
ProsSt Ma=(0slNlm)  SHhSe Ma=(10npVs)
P15, 0 ,‘gg}—»asl My =(10 sV |)

& Bjorkland, Crandall, Moyer, and York, Phys. Rev, 77, 213 (1950) show
experimental evidence of the suppression of this reaction.

will not be studied in any further detail here, though the
treatment can easily be extended to include it as well.

W.B. also obtained the general spin dependence of
the R-matrices on the assumption of pseudoscalar
mesons. If the index “1” refers to one of the interacting
particles and “2” to the other, this dependence is given
by a combination of

A)=T(, 9) e+ U(p, q)-e®V(p, q)-0®
+W(p7 q)"’(l) X0(2)7 (3)

and similar quantities 4(2) obtained by interchanging
“1” and “2” and replacing p by —p. The R-matrix
must be symmetric with respect to nucleon exchange.
Thus, for a 7+ meson P-state, if T is an even function
of p, we would take T-(e®—o®), since the isotopic
spin dependence (see Table I) of R is odd.

In this manner, then, except for numerical factors,
an almost complete specification of the free particle
production matrix is possible.

B. Production in Nuclei

For meson production in a fairly heavy nucleus, at
energies of the order of 350 Mev, the interaction can be
assumed to take place between the incoming proton
and a single nucleon. The wavelength of the incoming
proton, as seen by the nucleus (if 4>>1, the center-of-
mass system and the laboratory frame are approxi-
mately equivalent) is X=2.3%X10"14 cm. Since this is
quite small compared to internuclear distances (~2.8
X107 cm) the above approximation is justified. On
the basis of an impulse approximation! then, the prob-
ability amplitude for meson production in a nucleus,
4, is proportional to

A
Gr, 2 RJGI),

i=1

11 G. F. Chew, Phys. Rev. 80, 196 (1950).
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where R; is the appropriate two-particle matrix of the
form
(q, ny/, 0’| R|my, ny).

Momentum conservation can be factored out, giving'?
(', p'|7|p)é(a-+ny"+n —n—ny).

Gr and Gy are the final and initial antisymmetrized
nuclear wave functions in momentum space. Thus, if
the momentum, n”, spin and isotopic spin, £, of a
particle, ¢, is indicated by »,”

1 A+l

G 1 PP1
1= ( 1) Z ( ) A+41
X¢I(771”' M/ T oo 77A”)€(77A+1N)y (4)

where ¢; is antisymmetric and (—1)?P;441 is the
particle permutation operator which insures that Gy is
also antisymmetric. e is the wave function of the in-
coming particle. This is a plane wave, and may be
written as

e(na1”)=0p(na11")€ (£411),

where ¢ represents the spin, isotopic spin wave function.
The cross section for meson creation is then

(2m)*

2

8(Ep—

4
z|(6n & r6r)
F =1
where v is the relative velocity of the incident proton
and the struck nucleus, P’ is the total momentum of the
interacting nucleons in the final state, and >_r indicates
a sum over all possible final nuclear states, consistent
with over-all energy conservation.

Since the meson-producing interacting is a strong,
short-range one, it is expected that the excitation energy
of the final nucleus, excluding the two colliding particles
will be small. If the effect of this slight excitation on the
energy conservation is neglected, we can sum over all
final states of (4 —1) particles, and thus obtain a partial
closure approximation to the cross section. The exact
energy conservation condition is then replaced by :

5<TF+Q(;+EF"TI_B[); (6)

where T is the final kinetic energy of the interacting
nucleons, and T'; the initial kinetic energy of the inci-
dent proton, since the initial nucleus is at rest. Br and
By are the initial and average final nuclear binding
energies, respectively.

Due to the large momentum transfer involved in the
interaction, we can take the final state wave function
to be separable. Then, if ¥» and x are antisymmetric
wave functions

Er)dgdP’, (5)

doa=

Yo

Gr(n- - 2 2 (—1DFPy,

r;és 8 AT A+, s
X« ne s oner - na)x(n4, naga).  (7)

12 Tn order not to obtain the square of the -function, the artifice
employed is that of using Q instead of ¢ in the second §-function,
and integrating over this momentum.

'77A+1)"
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With this separation, the evaluation of the matrix
involved in the cross section Eq. (5) is carried out as
follows:

M=% r|(Gr, i RG)|*=2¢| (Gr, ¢1) |2 (8)

This defines ¢r=3_; R;Gr, which must also be antisym-
metric. If closure is performed over all final states of

¥r, and a sum over the final spins of the struck nucleons,

M is given by

=—Z 22 (e SUNEE

2 s syt

X l X*(nn ns)X(nr’: ns’)a(gr,_ Sr)a(gs,_ &) ,
“na+1)’y, (9)

where |71+ -n441)" represents ¢;, and an integration
over all variables is implied. All terms in the sum are
similar. The matrix may thus be replaced by a typical
element

*NA+1

X'ﬂl""’?r""’l&"

“nasa| x*(my, ng)x(ny, ny')
X 5(51'— 51)5(52'- 52) , nn2m3: *

If r is represented by [g1---n4), and if the free
particle R-matrices are given an added index to indicate
both interacting particles, the meson production matrix
becomes

M="(n"nsns"
“Nat1).

———Z 2 2 Xmindnse e omd
A+1d5 ¢ 126 &

X (") Riatx* (g, mo) x (', my")(&/ — 1)
X 8(&s'— o) Rise(nd”) | muma- - i+ -

C. Diagonal Elements

o4l

“N4).

The matrix M has both diagonal and off-diagonal
elements. The diagonal terms represent the main con-
tribution to the cross section, except near threshold,
since the off-diagonal elements would not occur at all
if correlation effects did not exist for the location of
nucleons and if wave interference is neglected. The
diagonal terms, M° are considered first. If the center-of-
mass motion of x(n; n;) is factored out

Mo=

Z 2 (Y| €*(&/)Ryjop’ (ni+-ny)

1i2i 4
Xx*(m;—n;)op(n/4-n;" ) x(n/—n/)Ri;e (&) | ¥r).

Though the colliding nucleons may have final momenta
considerably larger than in the free particle case, it can
be argued, that due to their intimate interaction, the
zero range hypothesis of W.B. can still be used. The
final state of these nucleons is again approximated by
con51der1ng relative angular momentum S-waves only
x(n;—mn;) is thus replaced by x,(0) for S-states, and is

(10)
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taken as zero otherwise. With this simplification, and if
momentum conservation is factored out,

M=

'e*,(fz/)lrwl 1(27’) Xp’ (O>l2
Xé(q+P'—=P-k)e'(&)|yr), (11)

where k is the struck nucleon momentum eigenvector.

The spin and isotopic spin sums in Eq. (11) can be
performed by making use of the representation of the
R-matrices shown in Sec. A. Thus, by means of Table I,
the isotopic spin dependence of M? is completely speci-
fied. For mesons emitted in a P-state, (omitting the
8-function and the factor | (2)¥x,(0) |2 for the moment),

M(xt)= <¢Il§ Z{ts|r| )
+ U+ 7] 5)?

Mo(r )=l X At ri¥]9)?] ).

FE I

A+1i=i

(13)

Similar expressions are obtained if the meson is emitted
in an S-state. The actual spin dependence, as shown in
Eq. (3) is not required. It can be shown that, for the
transitions involved (see Table I) we need only consider

i’,jP=K'0'j and 1’1;,'N—“—‘L'0‘j,

operating on the initial nucleus wave function, where K
and L’are functions of the meson and colliding nucleon
momenta. All other forms cancel for pseudoscalar
mesons.

Averaging over all nuclear spins, and performing the
isotopic spin sum, we obtain for both meson P- and

S-states
Z
L2 "ﬁl > y

A—
ZK?--
2

¢z>,

where Z is the number of protons, and 4 the total
number of nucleons in the nucleus.

These matrix elements can be expressed in terms of
the normalized momentum distribution of the struck
nucleon, p(k) by integrating over all nuclear coordinates
on which the R-matrix does not depend. .

The contribution of the diagonal elements to the
cross section is thus given by (if the omitted factors
are again taken into account):

(27)* A—-Z
2. 2
Vo f(ZK+ 2 L)
X | (2m)¥x»(0)] 20(k)dké(q+P' —k—P)
X 8(Ep— Er)dP'dp’dq, (16)

since dq= qoqdTdQ,, where T is the meson kinetic energy
and d, is an element of solid angle about the direction
of emission of the meson, we have, in terms of the free

Mo<w+)=<¢f (14)

—Z
12

A
)= (15)

do%(zt)=
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particle cross sections

dO'AO(T+) 1 { dO‘P_p
—_— / 2
iTde, w J | drde,
dop-n
+d-2) m]pax)dk, (172)
aTdo,
do'A°(7r_)

wzp(k)dk (17b)

N f (4~ Z)
dT aQ,

The correct energy conservation condition, as given
by Eq. (6), is implied in these equations, and it is
assumed that the excitation function of the free particle
cross section is known.

On the basis of the diagonal terms alone, if K?=L?
the ratio of

do 47t /do % (7)) =(A4-2) /(4 —Z).
For a nucleus such as carbon, where Z=A4/2, this ratio
is 3:1.
D. Correlation Effects

It remains to consider the off-diagonal elements, M,
of the matrix M. These occur because of wave inter-
ference effects and due to the antisymmetrization of the
wave functions. Since the production process involves
large momentum transfers, the former type is expected

to be small. Tt is neglected in the actual calculations,

where a single-particle model is used to evaluate the
correlation terms. For the present, however, these re-
strictions will not be imposed. _

The magnitude of the matrix M decreases as the
energy of the incident proton increases above threshold.
Since the latter is at approximately 165 Mev,® M is not
expected to alter the cross section appreciably at 341
Mev.

If an average is performed over the spins of the in-
coming particle, the general off-diagonal matrix element,
referring to Eq. (9), can be written as

1
M=—— % 2 2 {m'n'ns

conal €*(&)
A1 1ziziiz=i i
X Ratx* (s, n2)x(nd, ﬂz'»(&'*’él)
X5(£2 - &)wa,(‘ft) l N "7A> (18)

M contains several types of terms, corresponding
physically to an exclusion of either or of both of the
interacting particles in the final state. With reference
to Eq. (18) the three distinct off-diagonal matrices
which occur may be represented by :

(1)  M’; this occurs if 7=1; I7%j5%1 or 2;
(2) M"; this occurs if j=1; 5451 or 2;
(3) M, this occurs if I5#£j7£i5%1 or 2.

13 W. H. Barkas, Phys. Rev. 75, 1109 (1949). He obtains 155
Mev for #+ production and 178 Mev for =~ production.
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M’ and M" involve an overlap integral over a single
particle variable, whereas M’ involves one over two
variables. If these overlaps are large, the contribution
of the off-diagonal matrices will be important, and in a
direction to cancel the diagonal ones.

The spin and isotopic spin sums in M’ and M’ can be
evaluated as by Lax and Feshbach? by methods due to
Wigner and Feenberg.!* M’, for example, involves pair
correlation functions p(ny, n;). To a first approximation
only momentum space symmetric and antisymmetric
correlations, p(|n;—n;|) are differentiated. The actual
dependence of M’ on n; and n; can only be obtained if
x is known, and if the overlap is performed. If x(n;, ny)
is replaced by individual plane waves:

x(n;, n5) = 8pa(nz) p,(n),

we obtain for M’

1
M=—— 3 X XWlEratridm” —n")
A1 teisiisi o

X3(P—q—pae()|¥r). (19)

" The exclusion effect is now implicit in the wave
function ¥, as will be shown in more detail, later. A
similar result is obtained for M”, except that the final
momentum involved in the §-function is now that of the
other nucleon in the final state, ps.

{ . If Vjiis defined as the momentum space orientation
mean value of 8(n;/’—n;”)6(P—q—p;) and an average
over nuclear spins is performed, we obtain for mesons
emitted in P-states:

¥

1
M (a)=——" X T ZWl|*E)(Lro;-0)
A+

1isimiosei i
X (sa|0]177)(1727( 0] sij) (&) [ ¥r),  (20)

where O is the isotopic spin representation of the
R-matrices, and the notation is that of Table I. A
similar, but more complicated result is obtained for
M'(zt), since contributions occur from both P—P and
P—N collisions, though there is no interference between
these two since their 0-operators are orthogonal (M, Ms)
in isotopic spin space. For mesons emitted in S-states,
such interference is possible as can be seen by referring
to Table 1.

The state |¢z) is now broken up into its symmetric
and antisymmetric parts |¥r)=[¢r®+ ¢ ) and the
spin and isotopic spin sums are carried out. If

Vo= @@ | Val¢r®) and Vo= @[ Valyr@),

the leading terms, of order 4 and A2 become for mesons
in P-states

Mp_p (xt)=—3K2A{3(Vit- Vo) +164(Vi—Va)}, (21a)
Mp_w'(n%) = =3 LA (3(Vit- Vo) +754(Ve—Va)}, (21D)

4 E, P. Wigner and E. Feenberg, Reports on Progress in
Physics, Phys. Soc., London 8, 308 (1941).
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where Mp_p’'(nt) refers to 7+ mesons and Mp_y'(7%)
to =+ or 7~ mesons created in P—P and P—N col-
lisions, respectively. The results obtained for S-state
mesons is exactly the same, to this order, and so is that
for M"'. M'", on the other hand, is really a three-particle
problem, and will not be evaluated, since it is expected
to be small at 341 Mev. It may be important, however,
in explaining the experimentally observed increase of
the =% to = ratio in carbon from 5.140.8:1 at 341
Mev*® to approximately 14:1 at 278 Mev.1¢ (The inverse
of this ratio was actually measured, by bombarding
carbon with neutrons.) A general argument has been
advanced by Chew and Steinberger!” to explain this
considerable increase near threshold. The cause is
ascribed to the exclusion principle, which should be less
important for =+ production than for #— production
in P—N collisions (i.e., only one particle is excluded on
an alpha-particle model in the former case, whereas two
are in the latter). It is therefore to be expected that M'"’
will be larger for =~ than for =+ production by P—N
collisions in nuclei. The energy dependence of the 7+ to
«~ ratio, which is due to an effective raising of the
threshold for =~ production on the argument of Chew
and Steinberger can also be deduced. Near threshold
we may expect M’ to be important. At 341 Mev,
however, the energy remaining to the struck nucleon in
the final state is larger than 80 Mev, as long as mesons
of kinetic energy less than 100 Mev are studied. It is
thus quite probable that at least one particle will
hardly “feel” the exclusion effect and will be ejected
from the nucleus. Part of the increase of the 7+ to 7~
ratio with decreasing proton energy however may also
be accounted for by the difference of the free-particle
excitation function and matrix elements involved in the
P—P and P—N production processes. Some experi-
mental evidence of this is seen in the fact that Block-
man, Passman, and Havens, at Columbia, obtain a
ratio of 114-3:1 for carbon bombarded by 381-Mev
protons.® This increase can hardly be ascribed to an
exclusion effect.

At 341 Mev, then, it is expected that either M’ or M"’
will be of physical interest. If one of these matrices is
large, the other one will be small, in general. In order to
evaluate either of these matrices explicitly, and hence
Vs and V., a particular nuclear model must be chosen.
We take a rather simple one here, namely a single-
particle model, and neglect wave interference.

If the nuclear wave functions are taken as plane
waves enclosed in a box in space, of volume V= (4/3) = R?
where R is the nuclear radius (Fermi gas model), the
matrix M’ becomes

w4y =— [ 2K+ 2) W ko000

X 6(P+k—q—p;—p:)dkdp.,

15 Richman, Weissbluth, and Wilcox (to be published).
16 Bradner, O’Connel, and Rankin, Phys. Rev. 79, 720 (1950).
17 G. F. Chew andiJ._L. Steinberger, Phys. Rev. 78, 497 (1950).

(22a)
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M/ (a=)=— f HA—2) L2V xp(®)p(p2)

Xo(P+k—q—p;—p:)dkdp,, (22b)
where Vg=(4/3)mKmas® is the volume of a sphere of
maximum momentum, corresponding to the space
volume V. The spin sums were evaluated as before, in
obtaining Eq. (21), and are correct to the same order.
A similar result is obtained for M”/, with the roles of p;
and p, interchanged.

1/Vg if 0<k<Kmax

23
0 if Knax<k. =

p(k)=

In the case of a nucleus represented by an excited
Fermi gas (i.e., temperature larger than 0°K) we assume
that the nuclear wave functions can still be represented
by plane waves inside a nuclear volume. In that case
(k) is to be interpreted as the momentum of a nucleon
on this new model. In this manner the correlation effects
can be computed for a general momentum distribution.
Equation (22) still holds, but the momentum distribu-
tion is now unspecified.

The explicit effect of the exclusion principle is now
apparent. If the average value of p(p) for the transition
process is large, then M’'~M and the cross section
becomes very small. Appropriately, (o(ps))a is large
when ps~k, and both are small in magnitude.

The use of the single particle model in the calculation
of the correlation terms, rather than a more general
one, neglects the final state interaction of the two
colliding particles. Thus, on the Fermi model the
cross section does not go to zero, as it should, if the
final particles are excluded. In a strictly consistent
formulation, both the diagonal and the off-diagonal
terms should be treated in the same manner. Hence, on
a more general nuclear model than the one used for
evaluation of the off-diagonal matrix, a final state
interaction term should occur. Since the exclusion terms
are expected to be small in any case, we arbitrarily
insert a final state interaction here, so that the cross
section will at least go to zero correctly on the Fermi
model.

If M and M’"" can be neglected at 341 Mev, the
cross section for 7+ and 7~ mesons in a nucleus, 4, can
be written as:

do'A ('n"") 1 do‘P_p dO’P..N

S [z 1 (4-2) ]

iTde, wJ | drdg, dTde,
Xvrp(K)[1—Vip(k+A)Jdk, (24a)

doa(r™) 1 dop_n

e (-2

iTd9, dTde,
Xvrp(K)[1—Vp(k+ A)Jdk, (24b)

where A=P—q—p..

209

With the inclusion of the correlation effects as
treated, it is seen that if L? is equal to K2 the ratio of
7+ to 7~ production is still (Z+4+A4)/(Z—A4).

E. Absorption and Scattering of Mesons

So far the outgoing meson has been represented by an
undamped plane wave. Evidence from photomeson
production,'®1® however, indicates that the meson may
interact with other nucleons before it is emitted from
the nucleus in which it was produced. The problem of
the interaction of mesons with nuclear matter has been
treated by Brueckner, Serber, and Watson,® who cal-
culated the effect of meson absorption on the production
cross section. They quote evidence that this effect is
similar for 7+ and #— mesons, and conclude, further-
more, that the scattering effects are, in general, small
compared to the reabsorption ones. They find that the
mean free path, A,, for meson absorption is of the order
of 2-3 ao, where ao=14X10"2 cm is the effective
nucleon radius.

The time taken for a 40-Mev meson to travel a
distance of 3 gy is of the order of 10~% sec. Since this is
small compared to the characteristic nuclear time (taken
here as a measure of the time taken for a nuclear dis-
turbance to cross the nucleus, approximately 1022 sec),
the probability of meson reabsorption before the
nucleus feels the effect of its production is large.
Rather than using damped plane waves for the emitted
mesons, we therefore treat the meson absorption
problem as a separate process.

The information available on absorption, to date, is
still scant. For this reason, and due to the other uncer-
tainties involved in the production problem, we neglect
the meson energy dependence of the reabsorption
process. The analysis of Brueckner, Serber, and Watson
shows that the absorption cross section decreases
somewhat with meson energy, but is substantially
independent of this energy for larger than 40-Mev
mesons. On this assumption, and using the model of
Fernbach, Serber, and Taylor,® they find that the
production cross section is reduced by a factor, f,

fa=3{(1/22)— (1/6")+ (1/2*) (1+x)e~"}, (25)

where ¥=2R/\,, and R is the nuclear radius. For
Aa=3a9, and R=¢oA?%, this factor is equal to 0.6.
Experiments performed by Bernardini, Booth, and
Lederman at Columbia? indicate that, whereas the
elastic scattering of mesons by nuclei is indeed small,
and approximately energy independent, the inelastic
scattering cross section increases rather rapidly with
meson energy beyond 30-50 Mev. Thus, the cross
section for inelastic scattering at 100-110 Mev is about
four times that in the range of 30-50 Mev. The net

18 R. F. Mozley, Phys. Rev. 80, 493 (1950).

19 R, M. Littauer and D. Walker, Phys. Rev. 83, 206 (A) (1951).
20 Brueckner, Serber, and Watson, Phys. Rev. 84, 258 (1951).
2t Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).

2 Bernardini, Booth, and Lederman, Phys. Rev. 83, 1075 (1951).
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Fic. 1. Modified Chew-Goldberger (A) and Gaussian (B)
momentum distributions for a nucleon in C2.

effect of this inelastic scattering is to increase the low
energy meson spectrum at the expense of the high
energy part. The order of magnitude of this effect can
be computed, simply by taking A, in x of Eq. (25) to
represent the total mean free path for a meson inter-
action to occur after creation. A, decreases then some-
what with meson energy. The effect on f, is slight,
however, for meson energies smaller than 80 Mev. If
fa=0.6at 20 Mev it is only reduced to ~0.55 at 80 Mev.
The consequences of scattering are therefore neglected
in the subsequent calculations.

III. COMPARISON WITH EXPERIMENT
A. Method of Calculation

There is a fair amount of experimental information
available at present for meson production in nuclei. The
fundamental nucleon-nucleon production data is still
rather scarce, however. Whereas the production of
positive mesons by P—P collisions has been, and is
still being fairly extensively studied both experimentally
and theoretically,!=% %% little is known as yet about the
production of either positive or negative mesons in
P—N collisions. For this reason, only the experiments
of meson production in carbon,%!® at 341 Mev are
analyzed in terms of the theory developed in the pre-
vious section. Both the element and the energy are
chosen because of the availability of experimental
information.

The equations derived for the meson cross section
(both do 4° and do 4) involve not only the free transition
matrix elements, but also the momentum distribution
of the bound, struck nucleon. Theoretically, it is pos-
sible to deduce this momentum density from the experi-
mental data. It is simpler, however, to start with a
given normalized momentum distribution, such as that
of Chew and Goldberger,* and to fit it to the experi-
mental cross section. From an analysis of the deuteron
pick-up data of York,?» Chew and Goldberger arrive at

# K. M. Watson and C. Richman, Phys. Rev. 83, 1256 (1951).
2 G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950).
% H. York, Phys. Rev. 75, 1467 (A) (1949).

M. HENLEY

the distribution
Up

k)dk=———dk,
o(k) 72 (ap?+k2)?

where ap corresponds to an energy of 18 Mev. As
pointed out in their paper, this momentum density is
in doubt at the high end. This distribution, further-
more, gives an infinite average kinetic energy to a
nucleon in the nucleus. A preliminary analysis,?
showed that, due to its long tail, Eq. (26a) did not seem
to fit the 90° meson production spectrum obtained by
Richman and Wilcox.* For this reason, in the calculation
made here, the distribution was modified so as to give
a finite average kinetic energy of 48.1 Mev, and still fit
the experimental points obtained from York’s data
fairly well. Then

(26a)

dk
et

where C4 is the normalization constant, ap and B are
constants with 8=2.5ap. This distribution represents
the square of the Fourier transform of the wave function
¢(r)~(e—2pr—¢=F") /r. It is shown as curve 4 in Fig. 1,
together with the experimental points of York.

Two other momentum distributions were also inves-
tigated. One was a Gaussian. type, with an average
kinetic energy of 19.3 Mev, chosen so as to still fit the
low momentum points obtained by Chew and Gold-
berger

pa(k)dk=C (26b)

ps(K)dk=Cp exp(— ak?)dk, 27)

where Cp is the normalization constant. pp is shown as
curve B in Fig. 1. The third distribution chosen was
that for a 0°K Fermi degenerate gas model of the
nucleus, with a maximum momentum of 200 Mev/c. A
further momentum density has been suggested by
Heidmann,? namely that of an excited Fermi gas at a
temperature corresponding to 9 Mev. This distribution
resembles the Gaussian one somewhat, but was not
treated, chiefly because of mathematical complications.

Using these momentum densities, assumed to be the
same for a proton and a neutron in the nucleus, it is then
possible to calculate the energy spectrum at a given
angle of emission of the meson. Since the free nucleon
production excitation function is unknown, the de-
pendence of K2, I?, or of the factors ¢, b, ¢, etc., in Eq.
(2) on the initial particle momentum is replaced by an
average, constant value, determined by fitting the cal-
culated free particle meson spectra to the measured ones
at various meson angles. Furthermore, since L? is not
known we set it equal to AK? and note whether it is at
all possible to fit the experimental carbon data with this
choice. It will appear later that this last assumption is
not a very good one. This is really not surprising, since

( 26 E) M. Henley and R. H. Huddlestone, Phys. Rev. 82, 754
1951).
27 J. Heidmann, Phys. Rev. 80, 171 (1950).
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no odd angular dependence can occur in the case of
P—P cdllisions, but may be present in P—N inter-
actions. Thus ¢’d’ in Eq. (2b) need not be zero. Taking
L2=AK? implies, in fact, that A=a//a=b"/b=¢/e and
¢'=d'=0. Nevertheless, the calculations are made with
this choice of L2, due to lack of more information. The
numerical value of A is fixed by the =% to #— ratio. In
order to fit the observed value of 15 5.14£0.8:1, A=3%
is chosen so that the calculated ratio, using either Eq.
(17) or Eq. (24) becomes 5:1 (since dop_y=2%Adop_p).

Deuteron formation is neglected in calculating the
meson production spectrum in nuclei, since it is ex-
pected that the probability of this process is consider-
ably reduced by the nuclear structure. Experimentally,
no deuterons have been observed in meson production
from carbon.

It follows from the theoretical analysis of W.B. and
from the experimental information of Whitehead and
Richman® that the predominant term in the partial
wave analysis of =+ production in free P— P collisions
is one with the meson emitted in a P-state with a cos?
distribution in the center-of-mass system. In fact,
Whitehead and Richman show that the differential
cross section in the center-of-mass system of the process
as a function of 4, the meson angle is

dop_p/dQ=(3.2020.78)(0.07140.068+ cos*0)

X 1072 cm? sterad™L.  (28)

If we consider meson S- and P-states only, the ob-
served symmetrical component may be due to either
b(¢®/u?) or e (or both) in Eq. (2a). It was shown by
Brueckner, Serber, and Watson? that some S-state is
necessary to explain the experimental results of
Panofsky, Aamodt, and Hadley® for the capture of =~
mesons in deuterium. They show, in fact, that the ratio
of meson S- to P-state [e¢/a in Eq. (2a)] is approxi-
mately 3.

The calculation of typical spectrum—that for =+
mesons emitted into P-states at 90° to the incident
proton beam—is shown in Appendix A. Exclusion
effects are not considered in this computation.

The evaluation of the correlation terms can be sim-
plified considerably by choosing an average value of
p: in Eq. (22). Thus, Passman, Block, and Havens, Jr.*°
assumed that the meson is always emitted with its
maximum possible momentum. The justification of this
hypothesis rests on the large final state nucleon inter-
action which occurs when their relative momentum is
zero. In this case the magnitude of M, in general, is very
small for mesons emitted both at 90° and at 0°.with
respect to the incident 341-Mev proton beam. In fact,
on the Fermi model, the off-diagonal terms do not con-
tribute at all.

An approximate upper limit to the exclusion effect, on
the other hand, is obtained if one of the two final

28 Brueckner, Serber, and Watson, Phys. Rev. 81, 515 (1951).

29 Panofsky, Aamodt, and Hadley, Phys. Rev. 81, 565 (1951).
3 Passman, Block, and Havens, Jr., Phys. Rev. 83, 167 (1951).
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Fic. 2. 90° #* spectrum for a meson P—cos?d state. Exclusion
results are neglected in (a) and their approximate maximum effect
is shown in (b). Curves A, B, C are for a modified Chew-Gold-
berger, a Gaussian, and a Fermi distribution, respectively, in this
and all subsequent figures.

nucleons takes most of the momentum so that little
remains to the other one. In this case M" is certainly
small if M’ is large and vice versa. The evaluation of M’
is carried out in Appendix B, where the approximations
employed are also shown. A more thorough treatment
of the correlations is not carried out for the present,
since the sparseness of fundamental information is not
thought to justify it.

B. 90° Meson Spectra

On the assumptions discussed in the previous section,
the spectra for mesons emitted into P- and S-states at
90° to the incident beam are shown in Figs. 2-4, both
without, and with maximum exclusion. In each of these
plots, curves A, B, C are the spectra obtained with a
modified Chew-Goldberger, a Gaussian, and a Fermi
momentum distribution, respectively. The curves are
normalized to the free P— P production spectrum, and
the absorption factor, f,=0.6 is taken into account.
The graphs are multiplied by an arbitrary renormaliza-
tion constant I'; chosen so as to obtain an approximate
fit to the experimental points, somewhere in between the
no-exclusion and the approximate maximum exclusion
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Fi16. 3. 90° 7+ spectrum for meson S-state. Exclusion effects are
not shown, but are similar to those in Fig. 2. The cross section is
normalized to ¢/a=1 in Eq. (2a).

curves. Theoretically, I' should be equal to unity. The
experimental points have been corrected for nuclear
absorption, taken as nuclear area.

Figures 2(a) and (b) show the spectra obtained for
mesons emitted into P-states with a cos?d distribution
in the center of mass of the interacting nucleons. If
L?= AK? this term should represent the main contribu-
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Fic. 4. 90° =+ spectrum for combined meson P—cos?6, P sym-
metrical, and S-states, corresponding to 5/¢=0.06 and e/a=3%
in Eq. (2a). Exclusion results are neglected in (a) and their
approximate maximum effect is shown in (b).
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tion to the cross section. It is noted, however, that
I'=1.7, so that the calculated spectrum falls consider-
ably too low. It might be remarked at this point that
the continuum part of the free P— P cross section, as
calculated by W.B. was also too small by 20-30 percent.
Not too much emphasis will thus be placed on the
values of T, though they will be indicated in all in-
stances. Whereas the over-all best fit is obtained with a
Gaussian type momentum distribution, it is seen that
the calculated spectrum maximum occurs at meson
energies which are too small. The calculated spectra
also rise too sharply at small meson energies, though the
exclusion effect corrects this to a certain degree. At
the high energy end of the spectrum, the Fermi
momentum distribution cuts the cross section off too
rapidly, while the tail of the modified Chew-Goldberger
momentum distribution still contributes too much. The
Gaussian distribution, on the other hand, follows the
spectrum decrease fairly well. At energies beyond those
considered, the exclusion effects again lower the cal-
culated spectrum considerably.

Figure 3 represents the cross section for mesons
emitted into S-states, normalized to ¢/a=1 in Eq. (2a).
The remarkable fact here is the close correspondence to
the P—cos?0 spectrum. In fact, experimentally, except
for the difference in T, it would be difficult to distinguish
between them. For this reason, the combination of
P—cos? and % S-state is not shown. It is obvious,
however, that the main effect of the S-state will be in
the renormalization constant, T', which becomes ap-
proximately equal to 1.6.

Figures 4(a) and 4(b) show the spectrum for the case
of a combination of meson P—cos?§, symmetrical P, and
S-states with e¢/a=% and 5/¢=0.06. The chief result
of the 6 percent symmetrical P-state, as expected from
its ¢* dependence (this dependence is suppressed by the
cos?@ in the P—cos? term), is to shift the spectrum
peak to higher meson energies, more in agreement with
experiment. It also gives a correctly normalized spec-
trum; that is I'=1. On the basis of the 90° experimental
spectrum of production, the above combination-type
coupling gives the best fit of those considered. It must
be remembered, though, that cosf interference terms
have not been treated, and these would tend to have a
similar, but lesser, effect on the spectrum, as the ¢? term.

In Fig. 5 the calculated spectrum for combined
meson P—cos?f and S-states with ¢/a=% is compared
to the experimental data of Richman and Wilcox (cor-
rected for nuclear absorption) for =~ production at 90°.
It is.true that the statistical errors are much larger for
7~ than for =+ production, but it is also noted that the
experimental spectrum increases more rapidly at low
energies, in better agreement with the calculated cross
section. Aside from this, no new features appear. The
Coulomb effect has been neglected here, as throughout,
but it should be small for all but very low energy
mesons. The same value of T is used as for the equiva-
lent 7+ spectrum.
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C. 0° Meson Spectrum

Preliminary experimental results have been obtained
by Cartwright,®® Merrit, Schulz, and Heinz* for the
production of mesons in carbon, in the direction of an
incident 341-Mev proton beam. Their findings can shed
considerable light on the matrix element for meson
production in P— N collisions. The experimental points
together with the calculated spectrum for meson
P cos?d terms is shown in Fig. 6, and for S-state
(e/a=1) terms in Fig. 7. In each case, the same value
of T is used as for the corresponding 90° curve. The
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F16. 5. 90° 7~ spectrum for combined meson P—cos?d and
S-states, corresponding to =0, e¢/a=% in Eq. (2a). Exclusion
effects are neglected in (a) and considered in (b).

symmetrical P-wave spectrum was not calculated, but
for 0° mesons it should be quite similar to the P—cos?
one. If 5/a=0.06, the main effect of the ¢* term will
merely be a renormalization of Fig. 6(a) by a factor of
about 1.06.

The cross section at 0°, unlike that at 90°, is noticed
not to depend greatly on the nucleon momentum dis-
tribution. A plausible argument for this result can be

1 W, F. Cartwright, University of California thesis (April 16,
1951).
# Merrit, Schulz, and Heinz (private communication).
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made as follows. At 90°, the meson spectrum in nucleon-
nucleon collisions is cut off at about 9 Mev by energy-
momentum conservation. Hence, in calculating the
broadening of this spectrum to 80 Mev by the mo-
mentum distribution, the form chosen for this density
is expected to influence the spectrum to a large extent.
At 0°, however, the free nucleon cutoff does not occur
till about 70 Mev, so that in considering the meson
spectrum up to 80 Mev, the free-nucleon transition
matrix will be of paramount importance.

The P—cos?d coupling (Fig. 6) cross section is too
small at low meson energies, and increases too rapidly
at high ones. Both these facts, together with the rapid
turning of the experimental spectrum at about 55 Mev,
suggest that there is an extensive admixture of S-states
and probably of cosf interference terms. Comparison of
Figs. 6 and 7 shows that a fairly good fit is obtained if
S- and P-states are used in a ratio of 1:1 (¢/ea=1) or
more.

The effect of the exclusion terms is not shown in any
of these latter figures, but has been calculated. For the
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FiG. 7. 0° #t spectrum for a meson S-state, normalized to e/a=1
in Eq. (2a). Exclusion effects are neglected.
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maximum exclusion effect, calculated similarly to the
example shown in Appendix B, a 50 percent reduction
in the cross section was obtained, almost uniformly, so
that the shapes of the curves are hardly altered. The
computed decrease in the spectra was actually somewhat
less than 50 percent at small energies and somewhat
higher at 80 Mev. The approximations used in these
calculations are not thought strictly justifiable for this
large a correction. On the other hand, it is doubted that
a more careful computation will give a result which will
change the shape of the spectrum greatly, and certainly
not sufficiently to explain the experimental one.

IV. CONCLUSIONS

We have seen that it is possible to analyze the meson
production process in nuclei in terms of the free nucleon-
nucleon production cross sections. We have shown,
furthermore that the exclusion effect is not expected to
play a very large role in determining the meson spec-
trum, at the experimental incident proton energies
considered (341 Mev), except possibly for mesons
emitted in the direction of the beam. Even here, how-
ever, these terms will probably not affect the shape of
the spectrum to a great extent. The main result of the
meson interaction with nuclear matter after creation is
an almost uniform reduction of the cross section for the
range of meson energies considered. This decrease is
chiefly due to meson reabsorption.

The theoretical development was applied to carbon
bombarded by 341-Mev protons. Three different
momentum distributions were used for a nucleon in C?
in an attempt to fit the experimental meson production
spectra at 90° and 0°. These were a modified Chew-
Goldberger, a Gaussian, and a Fermi distribution with
average kinetic energies of 48.1, 19.3, and 12.8 Mev,
respectively. The calculated results are still preliminary,
due to a lack of knowledge of the fundamental transition
matrices. When this information becomes available, it
should be possible to decide which of the momentum
densities chosen approximates conditions inside the
nucleus.

The calculated spectrum at 90° did not depend
strongly on the free-nucleon transition matrices in-
volved, but varied considerably with the momentum
distribution chosen. The experimental spectrum could
be fitted best with the Gaussian momentum density.
For 7+ mesons emitted at 0°, with energies up to 80
Mev, the cross section was found to be relatively inde-
pendent of the momentum distribution, but quite
sensitive to the free nucleon transition matrices. The
preliminary experimental data is consistent with a
considerable amount of meson S-state (possibly as much
as P-state). This shows that the meson production
matrices in proton-neutron and proton-proton col-
lisions are not equal. Some experimental evidence for
this can be derived from the =+ to =~ ratio, which is
5.140.8, at 345 Mev and 1143:1 at 381 Mev. Initial
results obtained for the =~ spectrum at 0° in C®2 offer
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further evidence. Its shape seems to be quite different
from the 7t one at the same angle.® In this respect, it
may be pointed out that, whereas cosf terms (6 is the
meson angle in the interaction center-of-mass system)
are forbidden by the exclusion effect for meson pro-
duction in proton-proton collisions, these terms may
very well occur in the case of proton-neutron interac-
tions, but have not been considered.

It is thus seen that experiments, presently in progress
at Berkeley, on the production of mesons in carbon at 0°
are of great interest, as they can shed considerable light
on the free proton-neutron meson production cross
section. The 7~ meson is only produced in such col-
lisions for incident protons. On the other hand, since the
exclusion effects are especially small at 90° and the
meson cross section is relatively independent of the free-
nucleon transition matrices at this angle, the experi-
mental spectrum can be used as a useful tool to probe
the nucleon momentum distribution in a nucleus.
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APPENDIX A
Evaluation of 90° Meson Spectrum

The specific case of 7+ meson production at 90° to
an incident 341-Mev proton beam is treated here. Cor-
relation effects are neglected, and only mesons emitted
into cos?¢— P-states by proton-proton collisions are con-
sidered. For this example, the free particle production
cross section in the center-of-mass system of the inter-
acting nucleons, can be written as:

dop_p@=[(2m) /vr®]| (2m)ixo(p'®)|?
Xa(g*®/u?) cos?0dI®. (A1)

The superscript (¢) is used here to indicate center-of-
mass variables. Aside from this, the notation is the same
as that used in the main body of the paper. Thus dJ©
is the phase space volume available

AT =20 Mg (Tomax®@ — fTOV AT OGO,
= ZWM%#(Tmax(C)—fT(C))%dq(c)/Q‘h

where f=14u/2M, T is the meson energy, and
Tmax® the initial kinetic energy of the nucleons minus

(A2)

3 Walter Dudziak, private communication.
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w in the center-of-mass system, computed from Eq. (6),
with Br—Br® neglected. This result also neglects
proton-neutron mass differences.

The factor ¢ has been defined in Eq. (2a), and its
numerical value is adjusted to fit the experimental
spectra at various meson angles. Deuteron formation is
taken into account in obtaining the magnitude of @ but
is neglected in the case of meson production in nuclei.

In order to perform the integration over the mo-
mentum distribution of the struck nucleon [see Eq.
(17)], the cross section must be transformed. to the
laboratory frame. This is performed relativistically by
making use of the generalized relative velocity definition
of Mdller,® which makes vp©ky© Py an invariant,
where ko), Py@ are the initial energies of the inter-
acting nucleons in the center-of-mass system. Since,
furthermore dq/q, is a relativistic invariant as well as
the cross section, we obtain in the laboratory frame

) M}
dop_p= ai Po k@ | (2m)2x0(p’@) I 2
vrPoko p
(PO -q©)2 dq
X (Tax@— fT@)2}  —, (A3)
(P@)? 1ab Go

where p’© is the relative momentum of the interacting
nucleons in the final state and the quantities in the
brace are to be expressed in terms of laboratory vari-
ables. This can be accomplished relativistically, but it
must be kept in mind that k and P need not have the
same line of action. It thus turns out that the relative
velocity of the two systems,

Bz[(P+kll)2+k.L2]%/(P0+k0)y (A4)

where &, and k, are the components of k parallel and
perpendicular to P, respectively. Then, referring to Eq.
(17) we obtain for the contribution of P— P collisions
to the cross section

dos® dq [ (2m)aM? ‘P0<c>k0<c>

VA 9o

2w) o 7(e)} |2
(P<c>)2l( )V ixo(p") | -

g -k+qo(Po—ko) I?
fq)) ;

uvoPoko

vk
X(U—- (2P— p()dk,
Ptk
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where y=(1—3%)~% and
U=2v[Po— P?/(Po+ko) 1= 2M~+(f—1)u—vgof. (AS)

Over the range of integration of %2 of importance
B$~0.3, so that y~1. Furthermore, as seen from Eq.
(A4), the effect of &, on 8 is quite small, since when &,
is large, the momentum distribution has cut off, and
since P2k over the integration range. For these two
reasons, k, is neglected in computing v. If we take
(2P— fq) to define the z-axis of a cylindrical coordinate
system, all but the z-integration can be performed
analytically for the momentum distributions chosen.
The latter integral is then performed numerically for
various values of gp.

APPENDIX B
Evaluation of Correlation Effects

The effect of the exclusion principle on the cross
section, as given by Egs. (22) and (24), can be calculated
on the basis of a single particle nuclear model. The com-
putation involves a double integration over k and either
p: or p;, the other one being taken out by the é-function
in Eq. (22). It was not felt worthwhile carrying out the
actual integrals at the present state of experiments.
As discussed in the text, an approximate upper limit to
the exclusion is obtained if one of the final particles
taking part in the reaction has most of the available
momentum. In this case, an average value is assumed
for p; and p;, consistent with momentum and energy
conservation, so that only one integration has to be
performed. It suffices to specify the direction of either
p2 or p;. They are assumed to be along the same line of
action. Since ps+-p; is fixed by momentum conservation,
this hypothesis leaves the least momentum to p;, for
a given value of p,, and the magnitude of these momenta
is then entirely determined by momentum and energy
conservation. M’ can thus be taken to correspond to a
small value of p;, in which case p» is sufficiently large
that M"'=0.

The integration over k is further simplified in this
computation by taking k,=0 [see Eq. (A4) for the
definition of this quantity]. With this assumption, the
integration is carried out as that in Appendix A.



