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both p's replaced by a conversion electron, so that, from the
correlation for any one of the cases y —y, y —c (or c—p), c—c, the
correlation for the other two cases may be obtained immediately.
In general, the factor fz (Rose's b„) by which aI, must be multiplied
to allow for the replacement of a p-quantum by a conversion-

electron depends on the multipole order / and character (electric
or magnetic), on the atomic number Z, and the energy K(=hv/wc~)
released by the nuclear transition. However, in the approximation
used by Lloyd' (ejection of electron from an s-shell by electric
multipole transition, treated in the nonrelativistic limit), the
Z and X dependence vanishes and the expression for fl, (Lloyd's sl,)
becomes,

fk(l) =21(l+1)/L21(l+1)—k(k+1)j. (2)

Now Lloyd's approximation is just that used in reference 2, and
the point it is desired to make here is the following: By a double
application of the approximate fq (or rather 1/fI, ) to the approxi-
mate c—c correlation of reference 2, one arrives at the exact y —y
correlation. This is because, as explained by Rose et cl.,~ the p —y
correlation is independent of Z, E and the multipole character.
Thus from (2) above and (18) of reference 2 we have, in the
notation of that paper, the following completely general and exact
correlation formula for the y —y cascade JA(l1)JB(l2)Jg,

2l1(l1+1) 24(l2+ 1)
Xt"l10l10 Cl20l20 ~(JBJA~~1) ~lJB)

XW(JBJc'Id2', l2JB)PI,(cos8). (3)

(This of course checks with alternative formulas for the same
correlation, given elsewhere. ")Moreover, on dividing Table I of
reference 2 by fl,(l1)f&(l2), we have immediately a generic table for
all p —p correlations in the physically important case where l1, l2

have the lowest values allowed by the angular momentum and

parity selection rules. Lloyd's "basic" correlation and numerical
tables are derivable, as particular cases, from such a generic table.

A comparison was made in reference 2 between the departure
from spherical symmetry in I(8) for certain c—c cascades and the
corresponding p —p cascades given by Hamilton. ' The anisotropy,

A, was defined as (Ig eatest I]east)/Igreatest Such a definition is
preferable to one in terms only of I(s) and I(s/2), which would

take no account of the possibility that I(8) may have maxima or
minima for m)8)x/2; thus cos'8 —cos48 has a maximum at
8=3~/4 but is not distinguishable from a spherically symmetric
distribution by its values at 8=x and ~/2. It may be objected
that our definition takes no account of the width of a peak and so
does not distinguish, for example, between a cosine curve and a
delta-function, giving A =1 for both. However, incorporation of
peak-width into the definition of anisotropy would give a formula
whose application would be limited not only by its algebraic
complexity, but also by the fact that experimentally these angular
distributions cannot often be observed with sufhcient detail to
give a reliable estimate of peak-width. The comparison of A, ,
with A& z was limited to the dipole-dipole tables (Table II of
reference 2 and Table I of reference 3) plus a few examples from
the quadrupole-dipole tables. For every case tested the result
was found A, .&r Az» and in particular no example was found

of A ~ &
——1, although there were several of A, ,= 1.This naturally

led one to speculate whether it could be a universal, or at least
general rule that the correlation for a cascade involving conversion

electrons is stronger than that for the corresponding cascade with
conversion electrons replaced by p-quanta. In other words could

it be generally true that, for a given cascade JA(l1)JB(l2)Jc, we

have Ac—e r Ae—y &r Ay —y~
The question of anisotropy has now been thoroughly investi-

gated for the general angular distributions, 1+a2P2(cos8) and

1+a2P&(cos8)+u4P4(cos8), by examining algebraically the effect
on A of multiplying al, by some arbitrary factor Ill, . The purely
algebraic investigation showed that, invariably, the "A" of
1+asPs(cose) is reduced if ~as~ is reduced, and increased if ~a2~ is
increased. No such general rule was discovered, however, for

the 1+u2P2(cos8)+u4P4(cos8) distribution; for example, the re-
duction of both

~
a2

~
and ) a4

~
does not necessarily mean a reduc-

tion in A, it depends on the relative signs and magnitudes of the
ul, and Fl,. In physical examples FI, is of course related to f&,
thus it is (1/fp)' for converting I(8), , to the corresponding
E(8)r r. When fs is given by Eq. (2) above, a reduction in

~
as

~

always occurs for the changes c—f,—+c—y~y —y; in the exact
treatment of Rose et al. a reduction usually occurs, the exception
being when the substitution c~y is made in a dipole transition
(electric or magnetic) for which hv&mc2. The exact treatment
also shows that all the FI, approach asymptotically to unity in
the high energy limit, so that in this limit there is no distinction
between the c—c, c—y, and y.—7 angular distributions for the
same cascade.

To conclude, then, we may say that A, , &r A, ~ &r A~ „is by
no means the universal rule one might have expected from the
more limited investigation of reference 2. It does, however, apply
to all cascades in which one transition is magnetic or electric
dipole with hv&nsc', and the other transition is also dipole with
hv &mc', or is any higher multipole of any energy. For
1+a2P~(cos8)+a4P4(cos8) distributions no general rule can be
formulated, although it appears that on the average A is about as
often increased as decreased by replacing a conversion electron
by a p-quantum. In view of this it was not thought worthwhile
to extend the investigation to more complicated angular distribu-
tions, particularly as the algebra here becomes very heavy on
account of the numerous alternative analytic expressions for A,
depending on the number of maxima and minima in I(8), and
whether I(~) is greater or less than I(~/2).

I am indebted to Dr. Lloyd for helpful discussion and a copy
of his thesis; also to Dr. Rose and Professor Racah for sending
me advance copies of their papers. It is a pleasure to acknowledge
the computing assistance rendered by Miss Jean Tucker of this
establishment.
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Search for Long-Lived Nb94

R. E. HEIN, + C. M. FOWLER, t AND R. H. MCFARLANDf
Kansas State College, Maehatta22, Kansas

(Received November 20, 1951)

A 6.6—min activity produced by (n, p)' and (d, p)' reactions
on niobium has been reported by a number of investigators.

This short-lived activity assigned to Nb emits x-rays' which have
been characterized as the E-radiation of niobium. 4 Further E, I.,
and 3f conversion electron groups, characteristic of niobium, have
been observed from a highly converted 41.5-kev x-ray. 5 It is
reported that 99.9 percent of the 6.6-min activity decays by the
isomeric transition process and the remainder by P emission
(1.3 Mev) to Mo". Radiations from a long-lived isomer of Nb94

have not been detected and a half-life value of greater than 100
years is indicated on the basis of previous neutron irradiations of
niobium. 4

Since information on the long-lived Nb" is meager, an investi-
gation of this activity seemed desirable. Accordingly, a 500-mg
sample of niobium metal was bombarded for 4 months in the
Argonne reactor. A spectrographic analysis made by the supplier
indicated that less than 0.001 percent each of zirconium, titanium,
and iron were present as impurities in the sample. Our own
spectrographic studies indicate that tantalum is probably present
to a greater extent than 0.001 percent. Hafnium, however, was not
detectable spectrographically.
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TABLE I. Purification of irradiated niobium.

Purification step
Sp. act. (counts jmin jmg)

1 2
950 25

3 4 5 6
11 4 07 1

The Equation of Motion of the Lande Electron*
PAUL MOLMUD)

Ohio State Ur4iversity, Columbus, Ohio
(Received November 19, 1951)

&HE electron, in Landb's modification of classical electro-
dynamics, is a point mass with an associated charge density

function p, where
p= (3ea'j4z)(r'+a') sl'

a is a fundamental length, r is the distance from the point mass,
and e the total electronic charge.

The four-force on the electron is given, following Lorentz, by

Although the 6.6-min activity was too short to be observed in
these laboratories, one or more long-lived activities were present
in the irradiated sample. No positrons could be detected in the
emitted radiations using standard magnetic deQection techniques.
Based on aluminum absorption curves a large part of the activity
present could be due to Ta'". This qualitative observation was
checked by observing the electron conversion spectrum with a
fixed magnetic 6eld camera. Photographs were taken at three
different field values, and 30 conversion groups were observed
ranging in energy from 30 kev to 415 kev. All but three of these
lines matched those reported for Ta"'.7 The remaining three
lines, 120~2, 276~2, and 415~4 kev, were initially interpreted
as E-conversion lines for a niobium triad (y= 140, 296, 436 kev).
That interpretations based only upon evidence of this type can
be erroneous, is seen from the fact that these lines are actually
conversion groups arising from the Hf's' decay. ' Corroborative
evidence for the statement was provided through the separation
of Hf' ' macro amounts of niobium, and Ta"' in that order from
the irradiated niobium on anion exchange resin columns. ' The
activity which preceded the niobium off the column exhibited a
delay state of approximately 20 psec, which again points toward
Hf'". On the basis of these experimental results, all of the con-
version electron groups observed in the irradiated niobium can be
accounted for by Ta"' and Hf"' activities.

Since a low intensity niobium activity could be masked by
the tantalum and hafnium activities, a large sample (220 mg) of
the irradiated niobium was decontaminated from these extraneous
activities. Six decontamination steps with anion exchange resins
reduced the specific activity to a constant value for the niobium.
In each step the first fractions oR the column (Hf"') and the last
fraction (Ta"') were discarded. The specific activity of the
niobium after each column separation step is given in Table I.
From aluminum absorption curve evidence, the activity still
remaining in the niobium is probably Hf"'.

On the basis of this investigation a minimum half-life of 5X10'
years is proposed for Nb'4.
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where x is the four-vector of force density due to external and
self fields acting upon the charge density, and dv is an element of
three-volume. The region of integration is a sphere of radius R
where R increases without limit.

The change of mechanical energy-momentum of the electron
between two time intervals is equated to

1cdv',

where d7- is an element of four-volume.
Following Dirac, 2 this volume integral is transformed into a

surface integral. Then, using the methods of Dirac, the inversion
of in6nite series, and Lande's signal law,

r2—c2t'+a2= 0

the equation of motion of the electron is obtained as an infinite
series:

mod&= lim
Q(n+ p) f»z"(1+Xv' cos8) & sin8d8d p

z

+16R R ) 1 R +( + ') ( ')eQB„(n+p) 1—Rv

+ ,'(p n—) (a—.+p) eQ(Re) 'pz'z„+dz„/ds5
XP(1—Rv')-& —(1+Rv')-&j

plus terms of higher order in R8. Here, mo is the mechanical rest
mass of the electron, z is a positional coordinate in four-space and
dots indicate differentiation with respect to proper time, s(c=1),
n and p are arbitrary pure numerics such that the effective 6eld
of the electron is given as n (advanced held) plus p (retarded
6eld), f» is a component of the external field six-vector, 8 is the
magnitude of the three-acceleration in a coordinate system in
which the electron is instantaneously at rest, Q is the total charge
enclosed by the sphere of radius R about the point mass,

Q= J47rpr'dr=eR'(as+Re) &

where Q=e for R))a. This series converges, if and only if, Rv&1.
If R is arbitrarily restricted to a 6nite value, in other words,

if the effective radial extension of the charge of the electron is
de6ned as R, then it can be shown that the above series will
reduce (under the proper limiting conditions) to the equations of
(a) Lorentz-Dirac, ' (b) Eliezer, and (c) Groenewald. ,

The conditions to be introduced into the series are: R is finite
and much larger than a, v'R«1 (quasistationary motion), and f„,
to be of negligible variation over the distance 2R (the wavelength
of the external field is to be much larger than 2R, the effective
diameter of the electron).

Under these conditions the series assumes the form,

moz„= (n+ p) Qf»z" ——,'(n+ p)'Qe(R'+a') &z„

+-,(p—)( +p).Q("„+d.-„/d.),
plus negligible terms of higher order in Rv'. Then:

(a) When we de6ne m=mo+-', Qe(R'+a') & and allow only
retarded fields (i.e., a=0, p=1), the Lorentz-Dirac equation is
obtained

mS „=Qf„„z"+-3eQ(Pz„+d~„/ds).

(b) By using m as an (a) and taking a= —tc and p=K+1,
Eliezer's equation results

mS'„= —3eQ(2m+ 1)(z'i„+dS'„/ds) +Qf„pÃ.

(c) Groenewald's equation was obtained by assuming, first of
all, that the charge of the electron is concentrated on its world
line and secondly that the self fields are the half-sums of advanced
and retarded fields.

To obtain similar results from the above series, Q is replaced
by e independently of R, a and p are each equated to -'„and then R
is allowed to approach zero as a limit. The resulting equation is

mod„= ef„„z"—(e'/2a) z„
plus higher order terms.


