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The eigenvalue problem in quantum electrodynamics is discussed from the point of view of the Fredholm
theory of integral equations. Starting with positron theory —the theory of a quantized Dirac field inter-
acting with an external field only —the external potentials are replaced by bare photon fields. To insure
causality the photon operators are ordered in time. Certain integral equations for the Fredholm minors con-
structed on the Feynman kernel are taken to be the equations for the wave functions of n particle systems.
An expansion in interaction patterns rather than the coupling constant is indicated. The one particle problem
is treated in the first pattern approximation. Procedures proposed by Snyder and Snow and the mass renor-
malization scheme are discussed in this connection. Finally a purely formal derivation of the Bethe-Salpeter
equation for the two-body problem in the lowest pattern approximation is given.

I. INTRODUCTION

S EVERAL new attempts" have been made recently
to deduce from a Geld theory the equations for a

system of two Dirac particles in interaction. The
problem has been approached from the point of view
of the 5 matrix' and by a formal extension of the theory
of Green's functions. ' The difficulties of a rigorous
deduction of these equations have been emphasized by
Nambu. ' Work in this direction has therefore been
either purely formal or largely heuristic.

Using arguments of the same character, it is intended
to provide in this note additional motivation for the
acceptance of certain equations as approximate de-
scriptions of bound systems. The mathematical imagery
employed is that of the Fredholm theory of integral
equations. Intuition is relied on to extract from it a
workable set of equations for one, two, and many body
problems.

In brief outline the procedure is the following. We
Grst investigate an electron-positron field sub-
ject to an external electromagnetic field only. The
integral equation considered is that of a scattering
problem with an inhomogeneous term corresponding to
the wave function of a free particle in the absence of
the external field. The associated homogeneous integral
equation may have nontrivial solutions, if certain rela-

*Research carried out under the auspices of the AEC.' H. A. Bethe and E. E. Salpeter, Phys. Rev. 82, 309 (1951);
M. M. Gellman and F. Low, Phys. Rev. 84, 350 (1951).' J. Schwinger, Proc. Nat. Acad. Sci. 37, 452 (1951).' Y. Nambu, Prog. Theor. Phys. 5, 614 (1950).

tions between the energy, the mass and the charge are
satisfied. These represent the bound states of the system.
The restrictions on the values of the parameters are
expressed by the requirement that the Fredholm
determinant constructed on the kernel vanish. The
wave function of the system is then given by the Grst
Fredholm minor. If for a particular relation between
the energy, the mass and the charge the determinant as
well as the first minor are identically zero the solution
of the equation is given by the second minor, if this
quantity does not vanish. The second minor is anti-
symmetric in its two indices and satisfies the homo-
geneous equation independently in both. It is therefore
the wave function for a two-particle noninteracting
system. The external Geld is now replaced by a quan-
tized electromagnetic Geld satisfying Maxwell's equa-
tions without sources. If a radiation Geld of such charac-
ter is to give rise to a causal interaction between
charged particles the photon operators must be chro-
nologically ordered' and an expectation value relative
to a state w'ithout photons taken. An expansion in
various patterns of interaction, rather then in the
coupling constant is then carried out and the effective
potentials that arise out of various modes of interaction
are isolated. The Bethe-Salpeter equation is obtained in
the lowest pattern approximation.

II. ALGEBRAIC PRELIMINARIES

The Fredholm theory in its conventional form is
somewhat clumsy for our purpose. Our Grst task will

4 M. Fiertz, Helv. Phys. Acta 23, '731 (1950}.
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therefore be to And operational expressions for the
Fredholm minors. The integral equations that they
satisfy will then be immediately evident from these
representations.

We consider a set of operators A», A2, . A„. Let a
typical matrix element of anyone of these be denoted by
(xlAly). The symbol A)A p stands for an operator
whose matrix element &xIAiAoly& i'(&IAil r)&r IAply»
where the repeated variable v is being summed or
integrated over. We similarly define a symbol (a cross
product) A)XAp with a matrix element

( 1»IAixAplyiyo&=o"&»IA)ly, &&»IAply, ) (1)

The letter e'& is here the familiar alternating symbol.
Associated with A~XA2 is an operator A~XA2+ whose
matrix element is given by the expression,

&»»IA)XAp+Iyiyo) = o"&'*IAily»&*JIAolyp& (2)

In general

(x, x„lA,x XA„ly, . y„)
=o'"'""'")&»IA)ly*(i))" &*-IA-ly'(. )& (1')

and

(x, "x IA,x "xA+ly, " y I=o'"" ""'&"(»IAilyi) "&'*(-)IA-ly-& (2')

If A~ —— ——A„=A we shall write

A, x "XA„=[Axj".

where 6(')(l() is the Fredholm determinant and 6('&(X)
the frst minor. The operational expressions for these
quantities are

6()(X)=exp[Tr log(1 —l(E)],

6(')(X)=[1—)iEj 'Kexp[Tr log(1 —)(E)]. (10)

From these representations one readily infers that

Tr 6("(X)= —d, &"'(X),

6"&(X)=KA(o)(X)jXEd, ("(X)
Kh(o)()() jl(h(')(X)E', (12)

where 6(o"()() is the derivative of the determinant with
respect to l(. It is seen from (12) that if 6(')(X)=0, then
6(')()() is a solution of the homogeneous equation
associated with (7).

The second Fredholm minor may be dered opera-
tionally as

6"&(l()=[[1—XE] 'EXj'exp[Tr log(1 —)&K)7. (13)

The well-known properties of this operator

Tr 6('&(X)=6(')"()(),
6(')(l() =Exh")(X)jXK'6(')(X), (14a)

6(')())=6(')()()XKj)(E.A(')()(), (14b)

6(P)()()=Kxh&i&(l()+jhow(')(l()'K, (15a)

6"'(l&)=6'"(l()XK'j)ih"'(l().E (15b)

It is readily seen that are readily deduced with the aid of the formulas given
in the previous section.

IV. THE EXTERNAL ELECTROMAGNETIC FIELD
[Axfn+ [Ax]n

The equation we shall consider is

(16)

(owl El px'&=iS..~(happ')y, eoA„(x') (l.7).

We now define scalar operator multiplication into a
cross product of two operators. Thus

(~1»IA'AixAplyiyp&= &'ilA Ir&&r»IA)XAplyiyo), (3)

&'i»IA A)XAplyiyp&=(»IAlr&(~). IA)XAplyiyp& (4)
with

Making use of (1) we then obtain

A'A gXA2= AA &XA2) (3')

A, XA,+ A =A,AXA, +,

AgXA2+. A =A gXA2A+.

(5)

(6)

The extension of these definitions to a cross product of
e operators (1'), (2') is obvious. The Fredholm theory
can now be placed in this algebraic framework.

III. OPERATIONAL FORM OF THE
FREDHOLM THEORY

The integral equation,

A.A, XA,=A, XAA, . (4')

Scalar postmultiplication is defined for A~XA2+:

If A„ is independent of time one readily sees that the
boundary conditions incorporated into (16) with ))«p=0
are the correct ones for a bound state. The Fredholm
minors constructed on this kernel involve two param-
eters e and I(. We shall denote them bu 6& '(e, &(). These
are related to quantities appearing in the S matrix
theory by

(»(oi *.~-I~'"'Iy)P)" y.&.)

eo, 7'4.(i)(»)(0(yi) v")t)(uA"(yi)

X0"()(&.)(lt(y.)v")e()A"(y )

xexpl —o FI(x')dh' Ipp, (18)
( . I'"

is solved by
P=gjXEP,

[g&o&(y)7-ig(i) p)

(7)
where 'pp is the vacuum state; B(x), the interaction

(8) hamiltonian and T the temporal ordering operator. This
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6&0&(e, K) =0. (20)

With the parameters so restricted the solution is then
given according to (12) by (xl 6'"(e, K) ly), since then

6i"(e, K) =eE6&'&(e, K).
'

(21)

If this quantity should vanish identically for the par-
ticular values of e amd ~ we may obtain a solution
(according to (14) satisfying the two integral equations,

relation was showns to hold for 6&":

6&'&(e, K) = (yo, Syo).

With the operational representations developed in the
previous sections similar relations may be shown to
obtain for the higher Fredholm minors. That a quantity
constructed on a Feynman kernel is related to one
appearing in the solution of an integral equation with
retarded boundary conditions is not too surprising.
Somewhat similar relations were noticed by Jost and
Pais in their treatment of the nonrelativistic problem. '
Equation (16) with $0——0 is equivalent to the conven-
tional formulation of the bound state problem. If A„ is
independent of xo, Eq. (16) has translational symmetry
in time. We may therefore look for solutions of the type
f(r) exp[ —ikoxo]. For sufFiciently localized potentials
it is then seen that f(r) has a clear-cut asymptotic
behavior. If k02)K', p(r) exp[i(ko' —K')'*rj while if
ko'«', f(r) exp[ —(K' —ko')'r]. In the first case the
potential acts as a source of outgoing waves in the
second we have a particle bound by the external field.
The existence of these solutions will depend on whether
certain relations between kp K and e can be satisfied.

In the next sections we shall work with equations
that have translational invariance not only in time but
also in space. The relations that will have to be satisfied
will then involve the effective mass —k„k„ the me-
chanical mass a' and the charge e.

Equation (16) is a well-defined integral equation even
if the external potentials do depend on the time. The
restrictions on e and ~ that are necessary for the
existence of a solution of the homogeneous integral
equation are expressed by

introduce the action of a particle on itself or the inter-
action between particles we order the photon operators
in time and take the expectation value of both sides
relative to a state in which no photons are present. The
photon operators are taken to satisfy Maxwell's
equations without sources. Such operators commute
among themselves inside a temporally ordered bracket.

We shall treat the simpler equation (21) in some
detail. Writing f(x) for (xl 6&'&(e, K) ly) with y fixed we
have

f= e'E'P. (23)

Q(*))=—' ')~ S'(, )v"S'( y)v'

XD'( y)Q(y))d dy

4 F—e' S (xr,)y~S (rir2)q"S (»r, )q~

XS (r8y)&"D (»r3)D (r2y)(4'(y))ifrify (25)

The form of the interaction becomes clearer when we
go over to the differential equation,

I p—+. 1&P(x))=—e') V~'&(xy)g(y)&dy
E ax

-~') V'"(xy)Q(y)&~y,

The iteration procedure is now carried out in the fol-
lowing fashion

8)="(EV)
=~'(E'&(&)+~'[&EV&—&E')(EV&3
="(E')(4)+"L(E')—(E')(E')3(4)

+e'[(E'P)—(E')(E4$)—(E')(E'P)
+ (E'&(E'&(E'g )7= .. (24)

The bracket ( ) denotes liere vacuum expectation values
as well as ordering of photon operators with respect to
time. Retaining the first two terms of this expansion we
have

6&2&(e K) =eE'6&'&(e K)

6&'&(e K) =eE.6~2&(e K).
'

We observe that

(22a)
where

V&'& (xy) =zq~S~(xy) q~D~(xy)
(26)

&x»21~'"(~ K) lyiym)= —(»xil~'"(~ K)lyiy2&

This quantity may therefore be taken as the wave
function for two noninteracting Dirac particles subject
to an external electromagnetic field.

V. THE QUANTIZED RADIATION FIELD

Equations (21) and (22) are now taken to hold even if
the external field is replaced by photon operators. To

5 M. Neuman, Phys. Rev. 83, 1258 t,'1951}.' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

XD (xr2)D (riy)dr.

We have thus isolated the "self-energy potential" acting
on the electron due to its interaction with the bare
radiation field. Evidently V(2& and V&+ are due to
interaction patterns given in Figs. 1(a) and 1(b),
respectively. It will be noticed that interactions of the
type illustrated in Figs. 1(c) and 1(d) will not appear
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FIG. 1. Interaction patterns for the one-particle problem.

P(P) = dxi~r dxzf{(xi+x2 1)(zyP —1{)(zyPxz—+21{)
0 0

X
~

d'k[k2+ pzxix2+ 1{2xi i0] '— (2g.)

Writing

[k'+p'x, x2+ 1{zx, i0] '—
dM2xi[k'+ p'xix2+Mxi —zc]

—' (29)

we immediately obtain

[P2+ I{2 z0] 11{2yPIP(P) [zr
—1n—x{»]—1

X[1+ ' [x"'-(P'+ ') 'P'x{»]]4(p) (3o)

with

X(0)— dM(p')-' log[(M 2) '(0p'+—M -i0)]—
= log)i+ finite terms, (31a)

in this formulation. The reason of their absence is the
fact that we replaced the external field by a bare photon
6eld satisfying Maxwell's equations without sources. A
radiation field of this nature is linear. The virtual
photons do not polarize the vacuum and do not scatter
each other.

We shall now discuss the self-energy of the electron
in the first pattern appr'oximation. Equation (25) is
readily seen to have translational symmetry under dis-
placements in space as well as in time. In accordance
with the remarks of the previous section we therefore
look for relations between the invariant quantity p„p„
and the parameters e and I~:. More precisely, we try to
determine the effective mass of the electron when the
particle is subject to a potential arising from the emission
and subsequent reabsorption of a single photon. The
fourier transform of (25) (retaining only the first term
on the right side of this equation) is given by

0(p) = —4zn(2~) '[P'+"—20] '4 (P)4 (P) (27)

where

Xlog[(M —20) '(p'+M —i0)]]
= (3/4) logX+finite terms. (31b)

In the conventional treatment of the self-energy one
replaces imp in (30) by —I{and obtains a linear equation
in p' with the root

~ 'p'= —[1+~ 'n(x"' —x'")] '[1+x 'n(x'"+x'")]
——[1+(4zr) 'n logl{] '

X[1+(41{.)
—'7n logo{]

——[1+(22{-)
—'3n logX]; (32)

The right member of (32) agrees, with the expression
conventionally given for the self-energy of the electron
in the n-approximation. In the pattern approximation,
however, neither the replacement nor the expansion are
legitimate. It is therefore necessary to iterate (24)
which leads to an equation for p' of the form,

—[pzy 1{2] 2P21{2= [zr

X[1+zr
—In[x{0i (P2+ 1{2)

—IP2x{li]]2 (33)

According to the evaluations (31a) and (31b) of x{'i
and y&" as X—+ ~ the left side of 33 approaches a finite
value. The roots of (33) become

I{
—'p'= —(17/2) a4[(17/g)' —1]'* (34)

It is clear that the number of roots will increase with
the number of photons involved in the interaction. In
this treatment of the one-body problem some of the
degrees of freedom of the radiation field are apparently
transferred to the particle.

No physical significance is of course to be attached
to the numbers appearing in Eq. (34). They merely
reflect the diS.culties that are encountered in an attempt
to treat a one-body problem along the same lines as a
two-particle system. An electron with a definite me-
chanical mass could apparently under the inhuence of
its interaction with the vacuum Quctuations of the
electromagnetic 6eld assume any one of a large number
of experimentally observable masses. This difficulty is
by no means peculiar to the quantum theory of 6elds.
Its classical counterpart is the appearance of time
derivatives of high order in the equation of motion of
an electron interacting with its own radiation 6eld. It
has been suggested by Snyder and Snow' that am-
biguous quantities like x&'& and x'" should be subjected
to suitable limiting processes and evaluated to yield
zero. An examination of (33) shows indeed that the
diKculty of multiple roots could be removed in this
manner. However, the order of the divergence of an

7 H. S. Snyder, Phys. Rev. 78, 95 (1950); Phys. Rev. 79, 520
(1950); G. Snow and H. S. Snyder, Phys. Rev. 80, 987 (1950).
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expression, even though it can be changed by certain
rearrangements, and limiting processes, is a well-de6ned
mathematical concept and the reasons for the ap-
pearance of divergent quantities in the particular
physical framework on which our theories are based is
rather clear. It therefore seems to the author that such
forceful methods, even though they formally might
solve the problem in this particular case, could hardly
be considered as removing the physical difficulty.

The renormalization scheme is an attempt to extract
from expressions relating to real processes the terms
reflecting the change produced in the inertial properties
of the electron due to its interaction with the electro-
magnetic field. In contra'st to the suggestions advanced
in reference 7, the order of divergence and the form of
various ambiguous quantities is respected and their
cancellation after renormalization is noted in each
power of the coupling constant. From the point of view
outlined in this note that the physical arguments ad-
vanced in favor of renormalization may be objected to
on the grounds that they disregard the question of
transfer of degrees of freedom from the radiation to the
matter field and that this aspect should also be taken
into account, if the conventional treatment of divergent
expressions is being adhered to. One would therefore be
inclined to look upon renormalization as a tentative
formal prescription, as has been emphasized by many
workers in this 6eld, applicable to a class of problems
which can be treated in terms of an expansion in powers
of the coupling constant, rather than the taking into
account of a real physical change that would be pro-
duced in the effective mass of the electron if the bare
particle were subject to the action of the vacuum Quc-

tuations of the electromagnetic field. Whatever its
logical merits, once this rather simple prescription is
accepted and a certain computational technique con-
sistently adhered to, 6nite and unambiguous answers
emerge in every power of the coupling constant. It
should be quite clear that the class of rearrangements
to which the divergent expression are subjected in this
scheme are from a purely mathematical point of view
no more legitimate than other classes that could easily
accomplish the opposite purpose: turn the theory into
a completely meaningless array of symbols. Whether
one could admit all possible rearrangements of am-
biguous expressions and still extract from the theory
anything meaningful using sounder physical criteria,
as has been attempted in the work cited in reference 7

is an open question. These attempts, however, do
emphasize the fact that divergent expressions are indeed
ambiguous quantities, and therefore a theory involving

[~ (+1&l)P j (1)P(1)P (+2&2)7 j (2)P(2)

XD (rlr2)pp(1) p(2)(7)r2)dr. (36)

The corresponding differential equation is

( + ll '" + I«")
t)gl ) 1( 8Ã2 J 2

= —ie'y&" y&"D~(x,x2)P(x,x2). (37)

In (3/) y&') acts and the first, y(2) on the second set of
spinor indices of f(xlx2). These operators therefore
commute. Other iterations of Eqs. (22) giving rise to
potentials due to a single photon in the 6eld

a&2) =e2(x z )~&»,

6&2) =e2(E.E.)6&2) (38b)

are, of course, also possible. The meaning, consistency,
and extensions of these equations to include more
complex interaction patterns are currently being
investigated.

The author would like to thank Dr. H. S. Snyder for
his interest in this work. and for many illuminating
discussions regarding his views on the divergent aspects
of field theory. He is also grateful to Doctors E. J.
Kelly, R. Serber, G. Snow, and F. Villars for many
stimulating conversations.

them can only be regarded as a tentative prescription,
that procedures alternate to the ones that accomplish
the isolation of singularities are also possible and are
mathematically no less legitimate, and that attempts to
resolve the ambiguities on a sounder theoretical basis
encounter great difficulties.

We shall now give a purely formal derivation of the
Bethe-Salpeter equation in the approximation in which
a single photon gives rise to the potentials. The inter-
action pattern is easily visualized and the symbolic
expression corresponding to it is obtained by combining
Eqs. (22a) and (22b) and is of the form

6&2) = e2(E'IC. )5&2).

Denoting the matrix elements of 6' with yj, and y2 fixed

by

(&l&2 I
~'"

~ yly2) =0'a(1) a(2) (+1~2)

Eq. (35) assumes the explicit form

Pa(1) a(2) (+1+2)


