
COSMIC —RAY MESONS AT SEA LEVEL

APPENDIX II
The scattering corrections to the various points of

the spectrum measured in this experiment were calcu-
lated with a modl6catlon of the method used by
Germain. 2 Table IV summarizes the results of these

calculations. In this table the fraction of mesons lost by
scattering is expressed in percent. Because the corrections
are so small, they have not been applied to the results
in Table III.The author is indebted to Dr. S. Fernbach
for an enlightening discussion of these calculations.
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Energy of a Bloch Wall on the Band Picture. L Spiral Approach
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It is shown that the band or itinerant electron model of a solid
is capable of accounting for the "exchange stiffness" which
determines the properties of the transition region, known as the
Bloch wall, which separates adjacent ferromagnetic domains with
different directions of magnetization. In this treatment the con-
stant spin function usually assigned to each running electron
wave is replaced by a variable spin function. At each point of
space the spin of a moving electron is inclined at a small velocity-
dependent angle to the mean spin direction of the other electrons,
and this gives rise to an exchange torque which makes the spin
direction of the given electron precess as it moves through the

transition region, the precession rate being just sufhcient to keep
it in approximate alignment with the macroscopic magnetization.
Physical insight into the mechanisms involved is provided by a
rigorous solution of the wall problem for a ferromagnetic free
electron gas in the Slater-Fock approximation, although it is
known that the free electron gas is not likely to be ferromagnetic
in higher approximations. Rough upper limits to the exchange
stiffness constants for actual ferromagnetic metals can. be calcu-
lated without using any empirical constants other than the
saturation moment and the lattice constant. The results are only
a few times larger than the observed values.

I. INTRODUCTION

"'T has been shown by Bloch' and others that the
& ~ change in the direction of magnetization of adjacent
ferromagnetic domains takes place gradually, over a
d.istance of the order of 10 ' cm; the transition layer is
commonly known as the Bloch wall. The surface energy
of this transition layer is a quantity of fundamental
importance to the theory of ferromagnetic domains. '
The occurrence of the transition layer represents a
compromise between two tendencies, the tendency of
the exchange effect to make the magnetization vector
M vary as gradually as possible with position, and the
tendency of anisotropy forces to force M into directions
of easy magnetization. The former tend, ency can be
described quantitatively by saying that when the
spatial variation of the orientation of M is suKciently
gradual, it entails an increase AlV in the energy per
unit volume, given by

aw=A [vM['/cv',

where A is a numerical coe%cient characteristic of the
material. This coefficient A, which we shall refer to as
the "Bloch mall codFicient, " is also important in the
theory of the temperature variation of the saturation
magnetization at low temperatures (theory of spin

' F. Bloch, Z. Physik 74, 295 (1932);L. Landau and E.Lifshitz,
Physik Z. Sowjetunion 8, 153 (1935);E.Lifshitz, J.Phys. U.S.S.R.
8, 337 (1.944); L. Noel, Cahiers phys. 25, 1 (1944). For a summary
of wall theory and other aspects of domain theory, see C. Kittel,
Revs. Modern Phys. 21, 541 (1949).' C. Kittel, Phys. Rev. 70, 965 (1946); Williams, Bozorth, and
Shockley, Phys. Rev. 75, 155 (1949).

waves), ' and in the theory ot the inQuence of skin
effect on microwave resonance phenomena in ferro-
magnetics.

In the papers cited. under reference 1 the value of 3
is calculated, on the Heitler-l, ondon or atomic model,
according to which the electrons responsible for ferro-
magnetism are treated as localized on individual atoms
of the crystal lattice. The calculation has not been
carried. out previously on the band. or collectiv'e electron
ferromagnetism model, s such as is employed in the work
of Stoner and, Slater, where the electrons are not
localized, but are pictured as running waves moving
through the lattice. In view of the well-known inade-
quacies of either model by itself it is rather unsatis-
factory that the Bloch wall has not been treated. on the
running wave model, and it is with this gap that the
present paper and. a following one are concerned.

Specifically, we shall undertake to calculate A in the
Slater-Pock approximation, i.e., assuming that the wave

function of a crystal in which the spin d,irection varies

slowly with position can be represented as a determinant

of one-electron wave functions. Spin-orbit and other

purely magnetic interactions will be neglected.
Two approaches to the problem of calculating A for

' C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
4 C. Kittel and C. Herring, Phys. Rev. 77, 725 (1950).
5 For a discussion of the various models used in ferromagnetism

the following review articles are suggested: J. H. Van Vleck,
Revs. Modern Phys. 17, 27 (1945); W. Shockley, Bell System
Tech. J. 18, 645 (1939); E. C. Stoner, Rep. Prog. Phys. 1l, 43
(1946-47).

6 C. Herring (to be published).
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the running-wave model will be employed, and shown
to give equivalent results, at least for one case which
can be calculated rigorously by both methods. The
first and more obvious approach is to calculate the
energy of a block of crystal on which periodic boundary
conditions'are imposed, with the macroscopic M lying
always in the x-y plane and having an orientation p pro-
portional to s, with a factor suScient to make q increase
by a multiple of 2m in the fundamental period. This,
which may be called the "spiral approach, " is the one
used in the present paper. The second approach, to be
used in the forthcoming paper, ' is to calculate the
response of a crystal to an externally imposed force
which exerts a smail torque MXRsintra per unit
volume tending to create a sinusoidal variation of the
orientation of M with a wavelength 2sr/tt large com-
pared, with atomic dimensions. This "perturbation
approach" has already been discussed in application to
the more general problem of relating A to the energies
of spin waves. ' The spiral approach, though less power-
ful, is better adapted to giving an understanding of the
problem in elementary physical terms, and, it is for this
reason that discussion of the more complicated pertur-
bation approach is deferred to a separate paper.

( rI'+K+V —8)f =X P. — (2)

where the ); are constants, —V' is the kinetic energy
operator T in atomic units, E is the potential field
caused by all external sources (nuclei of atoms, etc.),
V ls the Coulomb potcntlal of thc clcctl'ons thcnlsclvcs
and 6, is their exchange operator. The energy in atomic
units (rydbergs) is given by

Z=g(2';;+K;;+-'V;;—-,'e;;)

=p(i[ p+Kj—i)+xs g~ zj ij
( 2

j

It can be shown that, if the external potential E is
invariant under a group G of symmetry transformations,
there will always exist solutions of the self-consistent
field Eqs. (2) for which V and 8 are also invariant

' J. C. Sister, Phys. Rev. 35, 210 (1930l; V. Fecit, Z. Physik
61, 126 (1930); P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26,
376 (1930). An excellent summary is given by L. Brillouin,
Aetuelitts Seieutifulues et Iudustrielies (Hermann et Cie., Paris,
1933-34), Nos. 71, 159, and 160.

Q. REMARKS ON POCK'8&EQUATIONS FOR A
MAGNETIC CRYSTAL

In the Slater-Pock-Dirac approximation~ one seeks
the set of one-electron wave functions f; which will

make the energy of the determinant ~f;(r;, s;)( a
minimum. The functions of this set can be chosen in
such a way as to satisfy the one-electron wave equations

under G, so that the P; can be chosen to reduce G. For
these solutions the determinant (P;(r;, si)( is taken
into a multiple of itself by all transformations of the
group. In the band theory of nonferromagnetic metals
one usually assumes that the solution which reduces the
space group and. the group of spin rotations has in fact
the lowest energy of all solutions of the self-consistent
field, equations. For a ferromagnetic metal this is
obviously not true, since the total wave function is not
taken into itself by all operations of the spin rotation
group, but belongs instead to a representation of very
high multiplicity; it is also obvious that the exchange
operator 8 will in this case not be invariant under spin
rotations. It is reasonable to assume, however, that for
a normal ferromagnetic crystal the lowest energy solu-
tions include one which reduces the space group and
tlic gl'oup of rotations of the spins about thc 8 axis.
Analogously, it will be equally reasonable to assume
that if we wish to consider a ferromagnetic crystal with
periodic boundary conditions and with M in the x-y
plane with a constant die/ds, then the lowest energy
solution of the self-consistent field equations will be one
which reduces a group which is derived from the space
group of the crystal by replacing each translation
operation T by an operation TDp where Dp is a spin
rotation about the s axis through an angle t,dq/ds,
where t, is the s component of the vector describing
the translation T. This is because the total wave
function for this case is obviously invariant under this
group. This fact will form the basis for the calculations
of the present paper.

III. CORRELATION ENERGY

Since the calculations of the present paper are to be
made using the Slater-Pock approximation, a few word, s
on the limitations of this approximation are in place.
In the Slater-Fock approximation the positions of the
various electrons are statistically uncorrelated except
for the correlations necessitated by the exclusion
principle. In the ground state of a ferromagnetic crystal
the ferromagnetic electrons will avoid each other fairly
well, since the parallelism of their spins makes the
probability of 6nding two of these electrons a distance
r apart go to zero as r—&0. In a state with varying spin
direction, however, there will exist a nonzero probability
density for ending two electrons of opposite spin at the
same place. This probability of finding electrons of
opposite spin close together will be greater for a
determinantal wave function, where electrons of oppo-
site spins are uncorrelated, than for the correct wave
function ln which cvcn clcctrons of opposltc splns will

avoid each other more than is possible in a determi-
nantal wave function, and thereby lower their interac-
tion energy. The difference between the energy of the
true wave function and, that of the determinantal
solution of Pock's equations is called the "correlation
energy"; from what has just been said, it is clear that
the correlation lowering will be greater for the state
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with varying spin direction than for the state with
constant spin direction. Therefore the methods of this
paper and of reference 6 will lead to a value for the
coefficient A in (1) which will be too large, at least if
the calculations are carried out without the introduction
of any empirical values for exchange integrals, etc.

It might therefore be supposed that almost any
calculation made with wave functions of more general
form than Slater determinants would give results
superior to those obtainable by the Slater-Pock method.
For example, Slater' has shown how the energy E„ofa
spin wave of wave vector x can be calculated by solving
a secular equation involving many determinantal wave
functions, corresponding to the many possible states
with a single reversed spin; since the Bloch wall coefE-
cient A can be evaluated from a knowledge of E„, one
might suppose that these calculations would provide a
superior method of estimating A. However, this is not
the case; as will be shown in the following paper,
Slater's wave functions for the spin-wave state, though
not of determinantal form, are related in a rather
simple way to the determinantal wave functions used
here, and the A values obtained by the two methods
are the same.

2 Ig (r s)I'=&
I-+5

g (r) =expL't*(«/«)(~*/2)lg (r—t) (6)

where in the last line g& is to be visualized as a two-row
matrix and where 0, is the Pauli spin matrix, the
exponential being merely the operator Dp rotating the
spin through the angle t,der/dz

Several qualitative properties of the wave function
(4) are worth noting here.

(1) Whatever the form of gs, there will exist at each
point r some direction along which the component of
spin has the eigenvalue +rs; gs may therefore be
described by the polar angles 8&(r), p&(r) of this
direction, and by a phase factor which, though the same
for-both values of the argument s„may depend in any
way on r. DiGerent choices of this phase factor merely
imply use of diferent functions I&.

(2) For singly-occupied levels' k, the deviations of

g J. C. Slater, Phys. Rev. 52, 198 (1937}.
9 Strictly speaking it is not possible to separate the one-electron

states of a ferromagnetic crystal into singly- and doubly-occupied
levels, because the electrons of the two spins move in diBerent
exchange tields, pand this makes the orbital parts of their wave

IV. FORM OF THE WAVE FUNCTIONS

From what was said at the end of Sec. II it follows
that the one-electron wave functions for the problem
we wish to consider may be written in the form

ps= exp(ik r)us(r)gs(r, s,), (4)

where NI, is a function with the periodicity of the lattice
and where, for each point r, gI, is a normalized spin
function which is unchanged by all operators TD&, i.e.,

(exp( iq s—/2) cos-s, 8s)

(exp(i mrs/2) sin-', 8s ) (7)

It will be verified below that the choice of the phase
factor in (7) causes the Ns to coincide with the ttsi'& to
within terms of order (die/ds)'. Using (7), the spin
distribution is completely described by the set of
functions 8s(r), gas(r), or equivalently by

rts(r) = V'(r) P(r) (9)

where g is a linear function of position dered so that
dy/ds= the macroscopic dy/ds and so that the average
of qA, over a unit cell, weighted with the charge density
INs I', vanishes when summed over all occupied states.
The quantities $&, rt& thus measure the deviation, in
distance on the unit sphere, of the local spin direction
from the mean direction (w/2, p). These quantities
must obviously be periodic with the periodicity of the
lattice; this follows mathematically from (6).

V. TERMS IN THE ENERGY

Let the function f& given by (4) be written as

y, = Xs(r)gs(r, s,),

where now g& is given by (7). The mean kinetic energy
of fs is, in atomic units,

Tss g I VxsI'd——r

= "I:I~»l'+2 Re»*«s(~gs gs)

+ I xsl'(~gs ~gs) j«(&&)
where the expressions in parentheses are spin scalar
products at a given position r. A straightforward

functions slightly diferent. However, the distinction is obviously
only of signi6cance in calculations much more re6ned than those
considered here.

8s, dies from the macroscopic spin direction 8=x/2,
q = t7, must be 0(did/ds) as d p/ds-+O. One consequence
of this is that at a given point of space the angle
between the directions 8s, ys, and 8s, ys. is 0(dp/ds)
whenever k and. k' correspond to two different singly-
occupied levels.

(3) The functions Ns can be taken to be of the form
Ns&'&+0(dp/ds), where rts&" are the solutions of the
self-consistent Geld problem for constant spin direction.
This specifies the phases of the gl, to within terms of
order dq/ds.

In the sections immediately following, we shall
assume the spin function gI, going with any particular
direction 8&, y& (direction of quantization of the spin)
to be de6ned by
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calculation based on (7} and using (8) gives, to the
second order 111 dqr/ds (1.6., to 'tllc second order 111 $s
Rnd 'gs),

(&gs, gs) = —(i/2) 6&q s (12)

(~g ~g)=lLI~4I'+I~q I'j. (1~)

Insertion of tllcsc lllto (11) glvcs Tsu 111 terms of XL& )s&

Rnd pp ol /Is.
Since the charge density for the state fs is simply

IxsI' and is independent of $s and qs, the Coulomb
energy in the presence of a spin gradient will depend
on the x~ in the same way as for the case of constant
spin direction. The exchange energy, however, will be
different, unless $s and qs happen to be independent
of k. For the kk' contribution to the exchange energy is
the self-energy of the distribution

xs *Xs(gs, gs), (N)

and we have from (7), to the second. order in dq/rh,

(gs gs) = &—(i/4)(~' —e.)(4+4)
—:(n—n.)'—l(4 —b)' (~5)

The total exchange energy of the ferromagnetic elec-
trons, which we shall not attempt to write down
explicitly„ is obtained by substituting (1&) Into (14},
evaluating the self-energy, and summing over k and k'.
Electronic states having the minority spin direction
could be taken into account if necessary, by assigning
to them spin functions of the form (7) but with (8, q)
close to (sm', qt+Ir) 111stcRd of 'to (sir& q&); sPlll scRlal
px'odUcts of stRtcs with DCRI'ly opposite spins would
then have to be evaluated, as well as those of the
type (15).

The total energy is made up of kinetic, potential,
Coulomb, and exchange contributions, and it is now
clear that each of these contributions either is exactly
thc saIQc function of thc Xp RS when the spin dlI'cctlon
is constant, or else equals this function plus something
that is second order in the $'s and q's, i.e., second order
in the macroscopic dq/Cs. Thus, as far as terms of the
second order 111 dqp/dz Rl'6 collcclllcd, Rrly'cllallgc 111 xs
would increase the energy, and so in the problem of
minimiring the total energy by proper choice of thc x~,
)s, and ys we can assume the xs to be of the same form
as when the spin direction is constant, Rnd vary only
the Ps and rls However, eve. n the variational problem
involved in finding the ps and rls which minimize the
energy is quite a formidable once in the general case,
and we shall here apply the approach just described to
only two simplihed cases:

(1} Tllc fl'cc elec'tl'011 case. Tile slnlpllflcRtloll llcl'6

arises, as will be shown below, from the fact that each
ps and qs is independent of position, and from the
related fact that cross terms between the $'s and q's

disappear from the exchange energy.
(2) The case where (s and IIs are arbitrarily con-

strained to be independent of k. Though this assumption
does not give as low an energy as when the $'s and g's

are unrestricted, it probably gives the right order Gf

magnitude for the Bloch wall coefIlcicnt, and it is
particularly simple because the exchange energy reduces
to the same value as for constant spin direction, so that
only the kinetic energy term Deed be considered. This
case will be discussed in Secs. VIII and IX below.
In the forthcoming paper' it will be shown that other,
less drastic, simplifying assumptions can be used to
make the problem tractable when the perturbation
approach is used. However, I have not discovered any
way of carrying through corresponding simpli6cations
using thc spll'Rl Rppl oach.

Bloch" has shown that an assembly of free electrons
xnoving ln R volume pclvRdcd by R uniform density of
positive charge will be ferromagnetic, in the approxi-
mation Gf dctermlnantal wave functions lf its dcllslty
is sufFiciently low. This case provides a convenient
illustration of the physical principles involved in the
Bloch wRB problem, and, since the solution for this case
can bc obtained without any approximations beyond,
those involved in the use of detcrminantal wave func-
tions, it OGcrs an opportunity to assess the accuracy of
various methods of calculation which involve additional
simplihcations, The utility of the free electron example
is somewhat marred by the fact that the correlation
energy for free electrons, which %igner" has calculated,
is so large that it will probably prevent a free electron
gas Gf Rny density fx'GYQ being ferromagnetic. Never"
theless, it is interesting to compare the results of
diferent methods of estimating the Sloch wall coe%-
cient for free electrons, starting from the (false)
RssuIQptlon that thc gx'OUDd state ls R dctcI'mlnRnt of
plane waves with parallel spins.

One such method is that based on the atomic approxi-
mation~ Rs used ln Hclscnbcx'g 8 theory Gf fcrro"
magnetism, Bloch'8 theory of spin waves, "and previous
theories of the Bloch mall. ' The determinant of plane
waves which approximates the ferromagnetic state for
the free electron gas can be approximated by a determi-
nant of "atomic" functions dc6ned by Wannicr'8
tx'Rnsformatlon

Io(r—R„)=PsLexp( —ik R„)/sljLexp(ik r)/0&], (16}

where 0 is the fundamental volume associated with the
periodic boundary conditions and S is the number of
electrons, and where the points R„may refer to any
RlbltraI'y lattlcc of poln'ts in spRcc. TIlc qURntlty ln
brackets is a unitary matrix on the indices h and e if
k/2m is allowed to run over a unit cell (Brillouin zone)
111 thc lattlcc Icclplocal to tllat of tile R„.Sillcc sllltRble

'0 F. Bloch, Z. Physik 57, 545 (I929).
'~ K. signer, Phys. Rev. 46, 1002 (1934).
'~ E. Vhgner, Trans. Faraday Soc. 34, 678 (1938).
'3See, for example, the reviews by J. H. Van Vleck, Revs.

Modern Phys. 17, 2'f (1945).
~' F. Bloch, Z. Physik 61, 206 I;1931).
'~ G. H. Kanruer, Phys. Rev. 52, 191 (I937').
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choice of this lattice will make the Brillouin zone nearly
spherical, it is reasonable to try to estimate the value
of the Bloch wall coefFicient either by assuming the
occupied k values to fill a Briliouin zone, or by assuming
them to 611 a sphere and ignoring the correction due to
the fact that the w's defined by (16) will in the latter
case not be exactly orthonormal. In this approximation
the procedure used in previous theories of the Bloch
wall corresponds to assuming the state with varying
spin direction to consist of a determinant of m s, each
with a spin function g which corresponds to eigenvalue
+2 for the component of spin along a direction in the
x-y plane and making an angle y„=Z„dy/ds with the
x axis, where Z„ is the s component of R„.Evaluating
the contributions to the energy in (3), we see that the
kinetic, potential, and Coulomb terms are the same as
in the ground state, while the exchange term is numeri-
cally smaller. A rough estimation of this change in the

exchange energy, given in Appendix I, indicates that
the Bloch wall coeKcient computed in this way has a
value

A =p/r, i

rydbergs per Bohr unit, where r, is the radius in Bohr
units of the sphere whose volume equals the volume
per electron, and where P is a constant which is certainly
greater than 0.026, perhaps by as much as a factor of
two or so. A more accurate estimate of p could be
made, but would hardly be worth while, since we shall
see presently that the atomic approximation is a very
poor one.

VII. APPLICATION OF THE SPIRAL APPROACH
TO THE FREE ELECTRON GAS

We now return to the approach of Sec. V. For a
free electron gas we may choose any vectors we please
for the fundamental translations of the "crystal lattice";
the requirement that the $a and g& defined by (8) and
(9) be periodic therefore implies that they must be
independent of position. Therefore, the (gq, g~) in (14)
is a constant, and the kk' contribution to the exchange
energy is just

~ (g~, gl, ) ~

' times the corresponding
contribution for the case of constant spin direction.
Thus using (15) and ignoring terms of higher order than
the second in the $'s and g's,

exchange contribution to energy (3)

(18)

where 0 is the fundamental volume associated with the
periodic boundary conditions. From (11), (12), and
(13) we have

kinetic energy=pit k'+(d p/ds)k, )i+(dp/ds)'j. (19)

The constants $q, gq must be chosen to minimize the
sum of (18) and (19).

It is obvious from inspection that the proper choice
of q~ is a value independent of k, and since the mean of
all the pi, must vanish, as specified under Eq. (9), we
must take ilq=0. The Euler equation for the fi, reduces
to

(20)

with the auxiliary condition that Pq $q
——0. Since the

possible values of h' are almost continuously distributed
over the occupied sphere in k-space, this is really an
integral equation of the Fredholm type. It may be
placed in a form convenient for computation by making
the substitutions

~ Lk(y) —k(y')]
dy'= —2m' yz, (21)

where, it must be remembered, dp/ds is to be evaluated
in atomic units.

The integral Eq. (21) and its solution have a simple
physical interpretation. Suppose that an electron mov-
ing with a given s component of velocity has a spin
direction which at each point of space divers from the
mean spin direction of the electrons to which it is
coupled by the exchange eGect. Then these other elec-
trons will exert a torque on the spin of the given
electron, in such direction as to tend to bring its spin
into coincidence with theirs. Since the spin behaves
gyroscopically, this torque will cause it to precess on
the surface of the unit sphere in a direction at right
angles to the line joining it to the mean spin direction
of its fellows. An observer traveling with the moving
electron would observe a constant magnitude for the
discrepancy between his spin and that of the neighbor-
hood, and would observe his own spin to precess in a
very Rat cone on the unit sphere, with a velocity
proportional to d p/ds times his s component of velocity.
This is essentially the right of (21); the left of (21)
corresponds to the suitably weighted average of the
torques exerted by the various other electrons oui the
given one, each term in the average being proportional
to the diGerence in the spin orientation of the two
electrons concerned and, to the strength of the exchange
coupling between them. The equation thus expresses
the proportionality of precessional velocity to torque.
We shall see in the forthcoming paper' that the same
integral equation results when the free electron problem
is attacked by the perturbation method.

r
y= k/k . , Q~(3S/4ir) dy,

k ~sg

where E is the total number of electrons in the funda-
mental volume 0, supposed all to have the same spin
when dy/ds=0, and where the region Si of integration
is the unit sphere. The result is
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I"IG. i. Deviation of spin orientation from the mean orientation
for free electrons, plotted as a function of rvave number for
cIcctrons moving ln the direction of the Inacroscopic gradient of
spin dlI'cctlon.

The solution of (21) which has mean value zero is
obviously of the form

k(y) = (v*/y)E(X), (22)

since the spherical sylnnmtry of the kernel causes each
term in an expansion of $ in spherical harmonics to be
transformed into a term vvith the same angular de-
pendence. A variational calculation, described in
Appendix II, gives for R the approximate form shown
in Fig. 1, vis. , the polynomial

E(S)=vL —(243/61o)y —(9/122)/j (23)

IBSEN bc expected to bc lovNr than thc energy oI A

value obtained, by any other method baaed on d,ctcrml-
nantal %ave functions. This ls cxcmpll6ccl, by thc coDl"

parison of (27) with the value (17) obtained. from the
atomic approach, as illustrated in Fig, 2. It is clear
that in spite of the uncertainty in the value of P in
(1/) the present value (27) is much the smaller. The
SUIlpli6cation to bc discussed ln thc next scctlon, that
of assuming all the spin functions the sa,c,c, corresponds
to replacing the last factor in (27) by unity; the
rcsultmg value of A is shovrn as the midd, lc curve in
Flg. 2.

According to (2'7), ferromagnetism should cease when
tllc clcctron density cxcccds thc value for vrhich

g,=5,4851 Bohr Units, even @&hen only @rave functions
of dcterminantal form are considered. Bloch, '0 con-
sidering only determinants of plane ~aves each vnth
constant spin direction, found that ferromagnetism
should cease when r, becomes less than (2s./5)(9s/4)&
X(2~+1)=5.4531. Thus (27) gives a slightly more
stringent criterion for ferromagnetisIn than Bloch's.
{Improvement of the approximate solution (23) would
merely increase the critical r„and probably only by a
very small amount. ) It is surprising that the critical r,
given by (27) comes so close to Bloch's value, since the
former is the condition for stability vnth respect to a
very gradual altexation of direction of magnetization
vrith position, spin parallelism being preserved, locally,
while the latter is the condition for stability vrith
respect to reversal of half the @pins at every point of
space. On Bloch'8 model the state anth all spins parallel
is stable with respect to removing a single electron at
the top of the Fermi distribution and inserting it in the

Thc Increase 1Il total energy, as coInpared %1th thc
state with all spins parallel, is the sum of (18) and (19)
%'1th thc 6rst term of each oInitted. It thus consists of
a term in (ds/ds)s one linear in p and dg/ds and one
quadratic in $; if the scale of P is so chosen as to mini-
mize the sum of these three terms, this sum can be
replaced by the term in d p/ds plus half the term linear
in $. Thus the energy increase is

E—Eo——x(d q&/ds)Pg k,gg+ (N/4) (dpjds)'. (25)

Combining (22), {23),and (25) gives

E—ED——(N/4)(ds/ds)'(1 —0.72169sk, ) (26)= (X/4) (dy/ds)~(1 —5.4851/r, ),
which by (1) and with 4','/3=Q/X gives for the
Bloch vrall cocfBcient

A = (E—Eo)/Q(d p/ds)'
= (3/16sr 8}(1—5.4851/r,}. (27)

The values (26) and (2'/), being obtained from a
rigorous solution of the self-consistent 6eld equations,

VALUE fF ALL SPI
FUf4CTtoN3 ARK

ASSUMED SAME

- EXACT SOLUTlON
FOCK APPROX IMAT

FIG. 2. Values of the Bloch wall coeSclent A for a free electron
gas& as coInputed by various Incthods of approximation. BottoIn
curve ' best possible approximation us1ng dctcl minantal %ave
functions, as given by Eq. (27), Middle curve: approximation
assuming all electrons to have the same spin function, given by
replacing parentheses by unity in (27). Top curve: lowlier limit
to value calculable from the atomic model, as given by Eq. (17).
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state k=0 with reversed spin, whenever

r,)2-4r(9»/4)&=3. 8002.

VIII. APPROXIMATION OF ASSUMING ALL SPIN
FUNCTIONS THE SAME

Although Fig. 2 shows that the correct value of A

may be considerably less than that computed on the
assumption that all electrons have the same spatially
varying spin function, it does show that for free elec-
trons the latter value is at least of the same order of
magnitude as the best value that can be computed from
determinantal wave functions, except near the critical
density where ferromagnetism disappears. Moreover,
the error is of course always in the direction of making
the computed A too large, It therefore seems worth
while to expend a little eGort toward computing A for
narrow bands of itinerant electrons, using this assump-
tion that at each point of space all the ferromagnetic
electrons k have the same spin orientation, i.e., the
same es(r), qs(r), or the same rls(r), $s(r), in the nota-
tion of Sec. IV. With this assumption the exchange
energy as well as the Coulomb energy is the same in
the presence of a gradient of spin direction as when the
spin direction is constan. t; this can be seen from the
fact that the exchange charge density (14) reduces to
xs *xs if the $'s and ri's are the same for all k.

Thus only the kinetic energy (11) needs to be con-
sidered; using (12) and (13) we have for the energy
increase over the state with uniform spin direction

E Es= — )V—y Qs ReLsxs VxsJdr

1+- l I vol'+ l vs I')psl»l'«(28)
4g

Here the summations extend over the singly filled

orbitals: me shall suppose in the present section that
the remaining electrons are paired oG with two electrons
of opposite spin to each orbital, and shall assume the
latter levels to be unperturbed by the fact that the
direction of magnetization is spatially varying. Now

since we are neglecting spin-orbit interaction, the wave

equation for each x& contains only real operators, and

there mill therefore be another orbital, with wave

vector —k, which is a multiple of xs* and which has

the same energy parameter Xq in the one-electron wave

equation (2). Thus for each k

xs*vxs+ x-s*vx-s =v
l xs l'

and is real; grouping the terms of the first integral of

(28) in pairs in this way, the whole integral can be seen

to vanish. We are left merely with the problem of
choosing $(r) and ip(r) so as to minimize the second

integral of (28) subject to the condition that the space
average of dy/d» be 6xed; obviously $ must be chosen

0.3

0, 2

O. t

0
2.0 2.2 2.4 2.6

f' lN 8OHR UN(TS
2.8 3.0

FIG. 3. Charge distributions for the 3d electrons of free atoms
of Fe and Cu+. The ordinate is the product of the 3d charge
density p by the atomic volume 00 of iron. The top curve is
taken from the calculations of Manning and Goldberg (see
reference 18} for Fe, made without exchange. The middle curve
is taken from the calculations of Hartree (see reference 19} for
Cu+, without exchange, and the bottom curve from those of
Hartree and Hartree for Cu+, with exchange. The vertical dotted
line is at the half-distance between nearest neighbors for Fe,
which is also the same as that for¹.
zero, while the variational equation for y gives

V pVy=0, (29)

where p=glxsl' is the charge density of the ferro-
magnetic electrons in atomic units.

Although our primary concern in this paper is with
the itinerant electron model, it is worth noting that the
approximation of the present section, as represented by
Eqs. (28) and (29), can be applied equally well to the
atomic model. One has merely to assign to each atomic
orbital a spatially varying spin function which is the
same function of position for all atoms, instead of using

spatially constant spin functions which are different

for neighboring atoms, as is done in the conventional
treatment, and as Fig. 2 shows, this may give a con-

siderably lower energy. The results of this and the
following section are in fact independent of whether an
itinerant or an atomic model is used.

Equation (29) is the same as that for the electro-
static potential in a medium of variable dielectric
constant p, when the mean field 8 is —die/d». The
problem of determining the Bloch wall coefFicient A in
the present approximation is therefore identical with

that of determining the gross dielectric constant Fc of
an inhomogeneous medium, and it is in fact easy to
show that

A = R/4 rydbergs per Bohr unit. (30)

(31)pmin+ &+ py

"The problem of estimating gross dielectric constants, perme-
abilities, etc., for inhomogeneous media has received considerable
attention in the literature. A comprehensive review has been
given by K. Lichtenecker, Physik. Z. 27, 115 (1926).

'r Note that the upper limit to A given by (30) and (31) is
identical with that given in Eq. (44} of reference 3.

While the exact calculation of k from any given periodic
density function p(r) is difficult, " it is obvious that rr

satisfies the inequalities"
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where p;„is the minimum value of the electron density

p over a unit cell, and p is the mean electron density.
More elaborate inequalities satisfied, by Fc can of course
be derived. Of more interest to us, however, is the
general picture of the variation of y with position. If,
as is doubtless the case, the charge density of the
ferromagnetic electrons is much smaller in between the
atoms than in the region well within an atomic cell,

p will be nearly constant over most of each atomic cell
and will vary rapidly with position near the half-way
point between nearest neighbor atoms. In fact, the
closer the charge density hugs the atoms, the more
nearly correct it is, in the approximation of this section,
to picture each atomic cell as having its own constant
spin orientation, diferent from that of its neighbors.
We shall show in the next section how this fact makes
possible a simple quantitative estimate of K, and hence
of A.

IX. ESTIMATES FOR ACTUAL METALS, ASSUMING
ALL SPIN FUNCTIONS THE SAME

To carry out the rough estimation of the Bloch wall
coefficient outlined in the preceding section one must
first make a reasonable guess at the charge density p(r)
of the ferromagnetic electrons. Figure 3 shows the d
shell charge density calculated for the free iron atom
by Manning and, Goldberg" by the Hartree method.
To illustrate the order of magnitude of the correction
which might be introduced if exchange were included,
charge densities calculated for Cu+ by Hartree and
Hartree" both with and. without exchange are also
shown.

Although the charge distributions in atom and metal
certainly di6'er and although the decrease of d electron
charge density at large distances from the nucleus is not
overwhelmingly rapid, it will sufIice for the present
crude estimate to use an expression for the gross
dielectric constant Fc which can be derived by assuming
that near the midpoint between two nearest neighbor
atoms

p ~ exp( —Xri)+ exp( —) r2),

where r~ and r2 are the distances from the two nuclei
and X is a very large constant. A little calculation
based on this assumption gives

rc= (3/2)'*po

for the body-centered cubic lattice, and twice this for
the face-centered lattice, where p~ is the charge density
of ferromagnetic electrons at the midpoint between
nearest neighbors. Substitution of this into (30) with a
po estimated by combining Fig. 3 with the known
number of ferromagnetic electrons per atom gives
values of A for Fe and Ni which are three or four times

'g M. F. Manning and L. Goldberg, Phys. Rev. 53, 662 (1938)."D.R. Hartree, Proc. Roy. Soc. (London) A141, 282 (1937);
D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A157,
490 (1936).

larger than the observed values of 2X10 ' ergs/cm
for Fe ' "and SX10 i ergs/cm for Ni"

When it is remembered, that the calculations of the
present section overestimate A, both by using the
assumption that all spin functions are the same, and

by neglecting correlation, this agreement to within a
factor of 3 or 4 is about all that can be expected. Crude
though it is, the agreement is gratifying in that no
empirical magnetic constants except the saturation
magnetization have been used in the present calculation.
The ratio of A to the saturation moment has been
estimated from h, m, e, and the lattice constant of iron,
by use of a very simple physical model. However, the
limitations of the model used in this section are severe;
for example, it would be very risky to try to predict
relative values of A for diGerent metals from their
respective values of po, since the correction factor
corresponding to the expression in parentheses in the
free electron Eq. (27) may vary considerably from one
metal to another. The forthcoming paper' will present
an alternative approach which throws some light on
how this correction factor can be calculated.

I am very much indebted to Dr. C. Kittel for bringing
this problem to my attention and for many helpful
discussions in the course of the work, and, to Dr. G. H.
Wannier for suggestions on the calculations of Ap-
pend, ix II.

APPENDIX I. VALUE OF A FOR FREE ELECTRONS
ON THE ATOMIC MODEL

We assume the wave function to be a d,eterminant
of functions of the form (16), each multiplied by a spin
function g„of the form (7) with 8„=z./2, p„=Z„dq/dz,
where Z„ is the s component of the coordinate vector
R„of the eth lattice site. Using the subscript 0 for the
state where all spins are parallel the contribution of
the m, e pairs of m's to the exchange energy is

( 2 & ( 2

(
mn nm /=

(
mn nm

f l(g„, g„)

I (g-, g-) I'= co"z(s -—e-)-1—l(Z- —Z-)'(de ldz)'.

Taking the origin of coordinates at one of the lattice
sites we have for an assembly of X electrons, to order
(dp/dz)'

( 2 ) ('dp) 2

Z —Z, =—g] on nO
/

Z„~( /. (1.1)
g -& ]r r'[ &0

The exchange integrals (On
f (2/f r—r'J ) f n0) o are messy

to evaluate; however, they undoubtedly decrease with
increasing

~
R ~, and their sum (including the term

'0M. Fallot, Ann. phys. 6, 305 (1936); see also C. Kittel,
Revs. Mo'dern Phys. 21, 541 (1949).

2' %williams, Bozorth, and Shockley, Phys. Rev. 75, 155 (1949).
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n=o) satis6es

( 2
g( on

~ E /r —r'f

1 ( 2
nO

f
=—g~ kk

)p X»'4 [r r—'f )p

APPENDIX II. SOLUTION OF THE INTEGRAL
EQUATION (21)

Equation (21) was derived by minimizing an expres-
sion equivalent to

= 2.31/r, rydbergs,

where r, is the radius in Bohr units of the sphere whose
volume equals the volume per electron. "

It can be verified that the term m=0 contributes
only a little over half of this sum. For by (16)

2
(

oo — — oo
i

[r—r'/

=self energy of (QÃ) 'Q exp[i(k —k') r]

(5—6)'
dydy'+8+' g ydy, (II.1)

"'~"'~
I y —y I'

the $ of (21) being merely the s component of the g of
(II.1). Equation (22) becomes )= R(y)y/y. The first
integral in (II.1), which we may call I, is equal to twice
the corresponding integral taken over the region of yy'
space where y&y'. Throughout this region we may
expand 1/~ y —y'~ as a series in Legendre functions of
the cosine of the angle 8 between y and y'. Squaring
this series and, inserting it in I, only terms in P„and
P„P„~~will give a nonvanishing result after integration
on 0. The result is

where 1VG(~ k —k'~) is the number of pairs of occupied
states k, k' which have a given value of (k—k'). A
simple geometrical calculation gives

G(k) =1—(3k/4k, )+(k'/16k, ').
When this is inserted into the preceding equation the
double integrations can all be carried out analytically,
and give the result

2

(
00 00 )=66k,„/35~=1.45/r, . (I.3)

/r —r'[ )
Since all the terms in (I.1) are positive, we under-

es™"e(E—Ep) if we assume that the entire difference
between (I.2) and (I.3) is due to those terms in whose
R„are nearest neighbors to the origin site. Therefore

E—Eo SZ ' (0 86y
(I.4)

Q(dp/dz)' 8Q E r, )
where Z„' is the mean square d.istance of nearest
neighbors in the s direction. For body-centered and
face-centered cubic lattices the right of (I.4) has the
values 0 026/rP a.nd 0.028/rP, respectively.

"See, for example, F. Seitz, Modern Theory of Solids (McGraw-
Hill Book Company, Inc. , New York, 1940)) No 75.

QO 2 ~1
I=32m'Q E.'y'dy

(2n 1)(—2n+3)~ p

1 p' 2(2n+2)
R2y2n+2dy

(4n' —1)~p (2n+ 1)(2n+3)
1 y'

X I RR'(y'"+'/y"~+')dydy' . (II.2)J, J,
Inserting a trial function of the form R=ay+by'into

(II.1) and (II.2) there results a quadratic expression in
a and b, with coeKcients which are infinite series of
terms containing products of factors of the type (2n+s)
in the denominator. These series can be summed by
decomposing the general term into partial fractions.
The choice of u and b which minimizes the quadratic
resulting from (II.1) is a= —243'/610, b= —9y/122,
where y is given by (24). Since, as Fig. 1 shows, the
cubic term in R is rather small compared to the linear
one, and since an independent calculation using a linear
trial function R=u'y gives almost the same value for
(II.1) as when the cubic term is included, it is likely
that this approximate solution is quite close to the true
one. The evaluation of I assuming R=c'y, or )=a'y, is
very easy, of course, since the integrand becomes unity
and I= (4~/3)'


