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Scattering of Radiation by Electrons in Relativistic Quantum Mechanics

OTTO HALPERN AND HARVEY HALL*
University of Southern California, I.os Angeles, California

(Received July 30, 1951)

The theory of the scattering of radiation by Dirac electrons is revised and extended. Assuming negative
energy states unoccupied, a formula for the cross section of coherent scattering of very hard quanta is
derived. It is, furthermore, shown that the previously claimed and accepted one-to-one correspondence of
the matrix elements for the cases of free or occupied negative energy states is generally untrue. It can be
proved that for moderately small quanta the cross sections of coherent and incoherent scattering by bound
electrons are approximately the same in the case of unoccupied negative energy states and in the pair theory
proper. Characteristic diGerences are shown to exist for very hard radiation. The historical development of
the problems here treated is also discussed.

I. INTRODUCTION

'HE treatment of coherent x-ray scattering as pre-
sented in well-known textbooks' goes back to

papers by Dirac' and Wailer, ' in which for the first time
a relativistic theory of these phenomena was presented.
Wailer's paper' limits itself to the treatment of coherent
scattering for incident frequencies whose hv is large
compared with the binding energy of the electron but
small compared with mc'.

The essential point in the relativistic theory is the
treatment of the transitions to and from intermediate
states of negative energy. In particular, the question
arises as to whether the two assumptions: negative
energy states free or occupied, lead to the same results
for the scattering amplitude. Dirac, ' in the paper
quoted, gave a general proof, according to which there
exists a one-to-one correspondence of the matrix ele-
ments for the two versions of the theory. The result,
therefore, should be generally independent of any as-
sumption as to whether the states of negative energy are
empty or occupied. %'e shall, in future, refer to these
two assumptions respectively as scheme I and scheme II.

In a brief communication4 we presented a revision of
these arguments customarily accepted. It was shown
that no one-to-one correspondence of the various matrix
elements exists in general if the exclusion principle is
taken into account properly. We furthermore pointed
out that the relation between schemes I and II becomes
rather dificult to visualize if the interaction between
the electrons is taken into account properly, and an-
nounced a more detailed treatment by us in a later
publication.

The present paper contains a more complete elabora-
tion of the ideas sketched in our first note. We here
extend the treatment to the discussion of high frequency
and inelastic scattering on the basis of scheme I as well

as scheme II, and show how for certain cases agreement

*Now at the ONR, Washington, D. C.
' G. %'entzel, Qlantentheorie d. S'ellenfelder (Vienna, 1943),

p. 185; W. Heitler, Quantum Theory of Radiation (Oxford Univer-
sity Press, London, 1936), p. 189.

~ P. A. M. Dirac, Proc. Roy. Soc. (London) 126, 360 (1930).' J. Vfaller, Z. Physik 61, 837 (1930).' O. Halpern and H. Ha}1, Phys. Rev. 75, 910 (1949).

between the two schemes can be analytically obtained.
We also discuss deviations between the two schemes for
special scattering problems.

Since we announced our views on this question, and
our forthcoming detailed treatment, the problems raised
by us have attracted the attention of two authors who
have presented their versions already. ' We shall here
proceed with the exposition of our theory and reserve
some comparative remarks for the closing section of
this paper.

The present paper divides itself up as follows. In Sec.
II, the coherent scattering of hydrogen for hv»nsc' is
presented as based on scheme I. Section III contains a
detailed criticism of the present views as presented in
the literature and text books. In Sec. IV, the approxi-
mate equivalence of schemes I and II is shown for
those cases in which the interaction between the elec-
trons is neglected. In Sec. U, we show that the one-
electron treatment is insuKi. cient for both schemes I and
II, and present in Sec. VI a general method based on
scheme II for coherent and incoherent scattering. Sec-
tion VII contains a discussion of the scattering of very
large quanta according to scheme II, while finally in
Sec, VIII the dBerences are examined between earlier
theories and the results obtained in this investigation.

IL THE SCATTERING OF LARGE QUANTA
ACCORDING TO SCHEME I

The differential cross section for coherent scattering
by a single atomic electron may be written in the form

(2.1)

The symbols in Eq. (2.1) are self-explanatory apart
from the partial amplitudes A ~+ and A ~, which will be
defined subsequently.

The quantity A &+ shall denote in scheme I as well as
in scheme II the scattering amplitude due to transitions
which involve positive energy states only. Defining the
matrix elements M', M' through the Eqs. (2.3), we can

' E. Arnous, Phys. Rev. 77, 149 (1950); W. H. Furry, Phys.
Rev. 81, 115 (1951).
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write for A ~+ the expression,

f'Mzpz( —kp) M'zzi(k)
A,+=&

I
Z&0 & Eo+ko —E

M zoz(k)Mzzg( kp) )
(2.2)

E,—k —E i

The matrix element M corresponds to the absorption of
the incident quantum k0 whose polarization vector is
assumed to be parallel to the unit vector eo. The matrix
element M' refers to the emission of the scattered
quantum which is polarized paralle1 to e. All quantities
are expressed throughout this paper in relativistic
units, i.e., mc' for energy, k/mc for length, and mc for
momenta.

In the limiting case of large quanta, since hv&&@ac',

terms of the order 1/kp will always be negligible com-
pared with unity. %'e, furthermore, assume that the
generalized 6ne structure constant a =Z/137 will be so
small that terms of the order 0,' can be neglected.

An inspection of the matrix elements M and M' enter-
ing into A~+ and A~ makes it obvious that transitions
from the bound state will occur only to such inter-
mediate states fz which have a momentum p which
equals the momentum of the light quantum plus a cor-
rection of the order of magnitude of the average mo-
mentum in the bound state. This means that

p= &0+pc

with po O(a); and since kp))pp —we have

po=ko+ (&o yo)/ko=ko+O(a).

(2.4)

(2.5)

The energy denominator Eo+ kp —E, therefore, takes on
the approximate value

or,
Ep+kp p, to O(1/kp)—

Eo—(&o po)/ko,

(2.6)

(2.7)

where we replace Ep= (1—a') & by one, since a' is being
neglected consistently. The term (kp pp)/kp in the sum
over intermediate states can also give rise to a correction

In Kq. (2.2), Eo represents the energy of the original
bound state, E the energy in the intermediate state,
while the vectors ko, h are the propagation vectors of
the incident and scattered radiation; in the case of
coherent scattering ko= k, E~——Eo.

In scheme I, the partial scattering amplitude A& is
the same as A~+ except that the summation must be
extended over negative values of E. %e finally give the
de6nition of the matrix elements,

r
Mz z(—k)=

J
Pz (a eo)fzc '""dV

(2.3)

M zz~(k)=
J

Pz*(a e)fz~e'"'dV

A,+—Pz» Mz, z(—k,)M'zzo(k),

Ai—:P,&o M'zo (k)M zo(- ko)
(2.9)

Using the completeness theorem and the well-known
factor

p(1+&/IEI) (2.10)

we can extend our summation now over all values of E
(negative as well as positive). The sharp dependence of
the matrix elements in Kq. (2.9) on p allows us to write

1/I EI =1/k„ (2.11)

so that the factor (2.10) can be written in the form

-,'(1+H/ko). (2.12)

Here, H is the Hamiltonian operator de6ned by the
Dirac equation HP=EP:

P= —Ln (1/i) grad+P —V]. (2.13)

Now, the insertion of Eq. (2.12) into Eq. (2.9) leads to

Az+—g ~tPzo (a. eo)e '"o"p(1+V/ko)fzdV
z:0 0

X J~fz"( e)c'"'pz dV (2 14)

zPo(n eo)e '""', (1+H/k, )(a -e)

Xc'"'PzodV; (2 15)

of O(a'), which is also neglected. The energy denomi-
nator E0+ko—E may vanish at certain points of the
integration range over E. This does not cause any
divergencies; in fact, a more detailed study shows that
these points do not contribute appreciably to the values
of the scattering amplitude. The reason for this can be
found in a simple argument referring to the method of
variation of constants which underlies the derivation of
all our expressions for do. A more correct formulation
would show that the population of the initial state
actually decreases like exp( —Ft), where the quantity I'
with which we are familiar from the theory of line
breadth was neglected in the derivation of do-. Other-
wise, the energy denominator would have had the form

Eo+k p E+i I—'/2 (2.g)

and would never have vanished. Integration over this
region containing an apparent singularity shows that
it contributes to the value of A only a term which is
proportional to a higher power of n'.

The second term in Eq. (2.2) corresponds to an in-
verted order process, emission followed by absorption.
The energy denominator, therefore, becomes of the
order Eo—ko —E, which allows us to neglect this term
as compared to the first, since the matrix elements in
the numerator are similar in both cases except that
—ko and klare interchanged. Ke, therefore, arrive with
these simplifications at the following expression for
A+ 3
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and since according to Eq. (2.13),

He""''=e'"'(H a—k) (2.16)

It is easy to see how one can extend the treatment to
the case of many electrons.

we have, with the abbreviation

q=k0 —k (2.17)

Ag+= tgzp*(a. ep)e "'
J

X-', (1+(H—a k)/kp)(a e)gzpdV. (2.18)

In the integrand of Eq. (2.18) we can neglect the
whole term

(a e,)[(H—a k)/ko](a e). (2 19)

The part of the numerator containing H is independent
of k0., and this part is, therefore, small of the order
1/ko, while the other term

(a eo)(a k)(a e)/ko (2.20)

contains an odd number of e factors, and, therefore,
vanishes for bound stationary states.

Our expression for A~+, therefore, takes on the form

A)+——
~

fzp*(a eo)(a e)e ' «f pdzV. (2.21)

The partial scattering amplitude A~ can be treated in
an entirely similar manner; it turns out only during the
derivation that the processes of emission and absorption
are interchanged, which means that in the final formula
e0 must be replaced by e and vice versa. Now,

—,'[(» eo)(a e)+(a e)(a. ep)]=(eo e), (2.22)

which, therefore, gives

A g=Ag++Ag

~ .—(ep e)
~

Pzp*Pzpe '«'dV
(2.23)

The integral expression for the scattering amplitude
exhibits the usual form factor as originally derived by
%aller for the scattering of very small quanta. No
further discussion of A ~ seems indicated in this connec-
tion, except that attention should be called here to a
point which acquires even greater signi6cance in scheme
II. For suSciently large values of q, that means for
scattering angles larger than a/kp, the form factor in
Eq. (2.23) becomes quite small (of the order of a high
power of a). Since all terms of the order a' have been
consistently neglected in the derivation given, we can-
not be sure that our 6nal result is correct at large angles,
where terms of the order 0.' become dominant.

III. GENERAL REMARKS ON THE RELATION
BETWEEN SCHEMES I AND II

It has first been argued by Dirac' and since accepted
by Wailer' and in various textbooks' that there exists
a one-to-one correspondence between the matrix ele-
ments leading to intermediate states of the two schemes.
The argument for this statement runs about as follows:

If the intermediate states are of positive energy, then
the contributions are obviously the same for both
schemes. If, on the other hand, the intermediate state
is one of negative energy according to scheme I, then it
gives rise to an expression of the type,

M zo ( ko)3P,—z, (k)
+Em-Abs. (3.1)

«&0 Ep+kp p—
Here, the electron goes first from its state of positive
energy E0 to the intermediate state of negative energy ~,

the matrix element being M@0«, and then it passes from
the state of negative energy e to the final state E~. The
energy denominator is obviously given by E0+k0—&.

If, on the other hand, the negative energy states are
6lled (scheme II), then Dirac' studies the following
process.

He considers an electron passing first from the nega-
tive energy state e to the 6nal state Ej, and then another
electron from its initial state E0 to the vacated state of
negative energy e. The energy denominator in this case
is the same as above. Obviously, these two expressions
are equal; and if we sum over all intermediate states of
negative energy, the total contribution to the scattering
amplitude is the same in both cases, since all individual
matrix elements are identical, even if changed in order.
This argument of Dirac, was, for example, used for the
calculation of the relativistic Compton eGect and led
to satisfactory agreement with experiment.

It was now pointed out by us4 that as correct as this
argument may be for the case of free electrons (Compton
effect), it becomes inapplicable when we are dealing
with coherent scattering or the incoherent scattering
by bound electrons. It is very clear that in the case of
coherent scattering the inverted order of transitions
proposed by Dirac is just as forbidden by the exclusion
principle as is the original arrangement of terms, The
6nal state to which the electron of negative energy
should pass is identical with the initial state, and there-
fore, occupied. All these matrix elements, therefore, do
not exist in scheme II.

7Vhile in the case now discussed the di6iculty arises
primarily from the exclusion principle and only sec-
ondarily from the fact that scheme II always leads to
a 2+1 electron problem, while scheme I is always a Z
electron problem, the case is slightly diferent for the
incoherent scattering by bound electrons. All the princi-
pal points can here, as well as in the case of coherent
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scattering, be understood by an analysis of the one-
electron problem (for example, H). Consider, for ex-
ample, the incoherent scattering in which the electron
is transferred. from the ground state to the second ex-
cited state. Here, it would in principle be possible to
invert the scheme I transitions as sketched by Dirac to
lead to a scheme II transition. But the dd5culty is now
of the following nature. In scheme I, we are always
dealing wit'h a one-electron problem, while in scheme II
the intermediate state would be formed in such a way
that we have the hydrogen nucleus surrounded by two
electrons, one in the ground state and one in the second
excited state. This intermediate state exists only if,
most unrealistically, the interaction between the elec-
trons is neglected. Otherwise, essentially only inter-
mediate states with one bound and one excited electron
in the continuum can occur. There is, therefore, no
identity of the individual matrix elements of scattering
for the two schemes, not so much on account of the
exclusion principle, but on account of the fact that cer-
tain matrix elements exist in the one- but not in the
two-electron problem.

It is very clear that this diGerenee in the number of
electrons occurring in the intermediate states of positive
energy constitutes a fundamental difference between
the two schemes, also for all coherent scattering
processes. The treatment, according to scheme II, will,
therefore, have to take into account not only the exclu-
sion principle, but also the change in the number of
electrons; that is, the dHkrent eGeetive fields and the
eigenfunctions corresponding to them. The principal

difhculty of the treatment which, therefore, requires
various methods, lies in the fact that this effective 6eld
is not a constant; that means that it depends on the
different intermediate states. It, therefore, becomes ad-
visable to proceed in the treatment of scheme II in
various steps of approximation, isolating the changes
between the two schemes. We, therefore, treat 6rst in
Sec. IV the changes brought about by the Pauli prin-
ciple alone, neglecting unrealistically the interaction
between the electrons, while later on in the paper we
include these interactions and their possible inhuence
on the form factor. %e have already pointed out in our
first note' that any changes between the two schemes
can be expected to show themselves, if at all, in the form
factor of the scattering amplitude.

It is thus proved that the individual matrix elements
of scheme I corresponding to electronic transitions from
an occupied state of positive energy to a state of nega-
tive energy and back have no counterpart in scheme II,
where all matrix elements refer to transitions from
occupied states of negative energy to unoccupied states
of positive energy and back. The remainder of this
paper will now be devoted to an analysis of the question
how far the s u m over the individual matrix elements,
in the absence of their one-to-one correspondence, de-
pends on the use of scheme I or scheme II.

A. The Use of Plane Waves

In this crudest approximation, we allow for interac-
tion only between the nucleus and the bound electron,
while treating the electrons in the negative energy states
or in their transitions from negative energy states to
intermediate states of positive energy, and back, as
being perfectly free.

Following the procedure in II, we can again write the
total scattering amplitude in the form

A2=A2++A2 . (4.1)

Here, A2+ can be neglected for small frequencies
(a'mc'/2«hv«mc') and can be described by Eq. (2.21)
for large frequencies, since the calculation of the positive
positive transitions is not influenced, in our approxima-
tion, by the electrons in the negative energy states.

A2, on the other hand is now given by the following
expression:

4g 0+rJ~ +r*O'4g

&~+ko —~r
+Em-Abs. (4.2)

In the eigenfunctions appearing in Eq (4.2), .the ex-
clusion principle must be taken into account. One is
here, strictly, dealing with an in6nite number of elec-
trons in the negative energy states, plus one electron in
the bound state. Since all electrons are equivalent, it is
sufBcient to calculate one term in the operator 0, which
more completely would have to be written as an in-
6nite sum

0=Or+Op+
=(eg eo)s '"'"+

O'=Oi'+O2'+

=(ar e)e '~'~+

(4.3)

A similar simplification can be carried out for the eigen-
functions 4"~,r. Since 0' is antisymmetrical in all the
electron coordinates, one can limit the treatment in the
present case to eigenfunctions referring to two electrons
only. The initial eigenfunction will then read

e~——-,'VZL&zo(xg) V, (x2) —Pzo(x2) U, (x&)$, (4.4)

where &&0.The intermediate eigenfunction will be given

IV. SCATTERING ACCORDING TO SCHEME II.
NO ELECTRON INTERACTION

Proceeding by various steps of approximation, we
treat in this paragraph the coherent scattering by a
nuclear atom (for example, H) under the assumption
that interaction between the electrons can be neglected.
Furthermore, we drop all terms of the order 0.', ko' or
higher. For the electrons in the negative energy states
or in the intermediate states of positive energy we now
make two diferent assumptions.
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by

%r —ov2[gzo(xi)Uz(xo) —Qzo(xo)Uz(xi)], (4.5)

where E&0, and the 6nal eigenfunction will agree with
the initial eigenfunction. fzo shall denote the eigen-
function of the bound state, while U, , g are plane wave
eigenfunctions. A2 thus takes on the form

t +~*O+rJ~+r*O'+~

+Em-Abs. , (4.6)

where 0, 0' now contain only two terms.
It should be pointed out that all the eigenfunctions

U, and Uz are mutually orthogonal, while fzo is not
strictly orthogonal to any of them; but, according to
well-known properties of the Dirac equation,

we put the denominator e+ko E— —-2, an approxima-
tion valid for hv&&mc'. The problem thus reduces to the
summation of the remaining three terms of MM' over
Ei,e. Each of these two summations extends within the
approximation used over a complete set of wave func-
tions, so that we have

P z&o (Eo/E) (E/Eo) =1, (4.14)

P «(Eo IO'I e)(of OIEo)=(EoIO'OIEo). (4 15)

In the sum of MM' over e, E each of the three terms in
question thus has the same value apart from the sign, so
that we 6nally obtain

P„zMM'/(o+ko —E)=-,'(E, lo'OIE, ). (4.16)

Interchanging the order of the emission and absorption
process and adding the result to Eq. (4.16) gives us
again, as in Eq. (2.23)

t+g*4rd Vrd Vo —— (Eo—/o) (E/Eo) (4.7) A~(eo e))tPzo*fzoe 'o'dV (4.17)

is always sufFiciently small in relation to

"+~,r*+~, rd Vid Vo (4.8)

Evaluating now exactly the expression corresponding
to Kq. (4.6), we find

M= 0 g~0% zd Vgd V2

= (E, IOIE,)(./E)+( IOIE)
—(Eo I

O
I E)(o/Eo) (e I

O
I Eo) (Eo/E)"

(4 9)

According to the orthogonality mentioned, the term
containing (o/E) vanishes and the term (Eo I Ol E)(o/Eo)
is small. So we 6nd

M=(of OI E) (of 0
I Eo)(Eo/E) —(4.10)

and by analogous procedure a similar expression for the
second matrix element

M =(EIO I
o) (E/Eo)(Eol0 I ). o(4.11)

In the product

MM™(ofOIE)(Ef0'I o)

+ (Eo/E) (E!Eo)(Eo I
O

I o) (o I
O

I Eo)
—(EoI o'I )( I oIE)(E/Eo)

—(Eo/E)(EI 0'I o)(o I
0

I Eo).

the 6rst term vanishes for all angles of scattering except
=0. This 8-function has obviously no physical mean-
ing; its contribution is reabsorbed in the incident beam,
and it can be put equal to zero.

Summing now over the expression

MM'/(o+ ko E), —(4.13)

The agreement obtained in Eq. (4.17) with Wailer's
result is exclusively due to the antisymmetrization of
the complete wave function. It cannot be called very
surprising, since we have deliberately, for the purpose
of analysis, neglected electron interaction.

B. Use of Coulomb Eigenfunction

%'hile still neglecting interaction between the elec-
trons, we describe the state of all electrons by coulom-
bian eigenfunctions under the inQuence of the nuclear
charge. %'e can again obtain expressions in analogy to
Eqs. (4.4), (4.5) and proceed with the evaluation as
before, leading up to the expression (4.12) for MM', ex-
cept that now all wave functions in the matrix elements
pertain to coulomb states and are, therefore, strictly
orthogonal. A2 can now be evaluated with some slight
difference only as compared with Eq. (4.16). We thus
obtain

=Z., z [(oIoIE)(EIo'I o)/(o+ko —E)3
+2, zf (Eo/E)(E/E')(EoIO'I o)( IOIEo)
—(Eo I

O'
I e) (o I

O
I E)(EIEo) (4.18)

—(Eo/E)(EIO'I e)(o IoIEo) f/o+ko

+Em-Abs.

In Eq. (4.18), terms of the structure

P, z (elOIE)(EIO'I o)/(o+ko E) (4.19)

appear for the first time. They would be present also if
we were dealing with a bare nucleus; one could even
generalize them by assuming any potential 6eld in the
absence of electrons and using the eigenfunctions corre-
sponding to that potential. For the case of a bare
nucleus they represent a scattering phenomenon to
which attention was 6rst called shortly after the dis-
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covery of the pair theory and which has received an
approximate treatment by various authors. ' For small

quanta, the value of Zq. (4.19) has been found to be
negligibly small indeed, while it must assume very large
values for hv&&wc' and suKciently small angles of
scattering. Estimates in the literature justify our as-
sumption that for moderate values of hv, Eq. (4.19) can
be totally neglected.

We shall, in the future, refer to terms of the structure
(4.19) as nuclear terms, without distinguishing the
cases of a bare nucleus with a coulomb field or any other
constant potential.

The remaining terms in the sum over E in (4.18) now
vanish exactly on account of the orthogonality condi-
tions unless E=Eo, so one finds Eq. (4.17) for Ao .
Apart from the nuclear terms which are vanishingly
small for hv«mc', we have, therefore, again established
equivalence between scheme I and scheme II. It has,
on the other hand, already become clear that a strict
separation in the scattering amplitude of electronic and
nuclear terms will, in general, not be feasible if terms of
higher order in 0.', ko' are included.

Ag ——Ay++Ay, (5.1)

one can readily verify that for the present case A&+ is
again negligible compared with A ~ .

The formal expression for A& is again given by

Mgr( ko)Mrg'(k)—
+Em-Abs. (5.2)

~A+ ~0

The point of importance is now the exact expression for
the eigenfunetions in the intermediate state.

Since we are dealing with a two-electron problem, we
have to antisymmetrize the eigenfunctions, and we can

' M. Delbrueck, Z. Physik 84, 144 {1933);N. Kemmer, Helv.
Phys. beta 10, 112 (1937); A. Achieser and T. Pomerantschuk,
Physik Z. Somjetunion 11, 478 (1937); R. Gluckstern and F.
Rohrlich, Phys. Rev. 83, 218 (1951).

V. DIFFICULTIES OF THE ONE-ELECTRON
MODEL TREATMENT

The procedure followed by Wailer' and also adopted
so far in the present paper will now be shown to be not
satisfactory if we consider systems with more than one
electron. The difFiculties appear already in calculations
done according to scheme I, although in this case it is
sometimes not dificult to justify the approximation
used. Analogous calculations according to scheme II, on
the other hand, can in general not be carried out on
account of mathematical djtQiculties; this will require
the introduction of some new method like that pre-
sented in VI.

Turning 6rst to a two-electron problem in scheme I,
we want to discuss the scattering of small quanta by,
for example, the neutral helium atom; this su%ciently
illustrates the essential points. If we write again, as
before,

(EL o/Eo) =
)"Pzi, ofzod&, (5 5)

though close to one, is no longer equal to one. If this
difference between uzi, o and Po is kept in mind, then a
direct transfer of the previously used methods to the
two-electron problem would lead to a change in the
scattering cross section by the factor (Ei/Eo)'. This can
immediately be verified by following through the previ-
ous calculations leading to A ~ if we sum over all inter-
mediate states of negative energy but let—erroneously—the second electron always occupy the ground state
of the He+ ion. Correctly, what should be done is a
summation over all possible intermediate states, which
include excited states of positive energy of the second
electron. Written in detail, Mgl takes on the form

MAr = (Eo l 0l o) (Ei/Eo) —(Ei l Ol o) (E2/Ec)
+(E lo}Eo)(E / )—(E lolEo)(E/ ) (5.6)

with a similar expression for M'. Dropping now small
terms of the form (Eil0}Eo)(Eo/o) and summing first
over e, we find

Q, MM'/D
=-2 I( o/, )(E,/Eo)(EolOI o)(olO'lE, )

+(Eo/Eo)(Eo/Eo)(Ei}ol o)(olo'lEi)}/
[El+E2+ ko (Eo+ o)7,

or

Q MM'/D= j (Eo/Eo)(Eo/Eo)(Eil 00'l Ei)
+(Eo/E )(E /Eo)(E 100'I E ) }/ & (5 g)

(Ei+Eo+ko).

where, in the sum over e we have set Eo+ ~—0. Now, the

in a suitable approximation again assume that the eigen-
functions for the two-electron system are separable into
products of eigenfunctions referring to one electron
alone. We thus obtain for the eigenfunction of the
ground state the expression

o~[4zi(*i)4 zo(») —4 zi(»)4 zo(») 7. (5.5)

Here, Pzi, zo stands for the coulombian eigenfunctions
of opposite spin for the ground state corresponding to
an effective nuclear charge Z—s. It is well known from
the study of light elements that such an eigenfunction
is a good approximation of the actual conditions if
s—0.3.

Similarly, we write for a representative eigenfunction
of an intermediate state

+r= o'/2[4'zo(&i)p (»)—Pzo(&o)4' (»)7 (5 4)

Here, ik, stands for the coulombian eigenfunction of a
free electron of negative energy e under the influence
of a nuclear charge Z—1, while Pzo represents the
coulombian eigenfunction of a bound electron with a
nuclear charge Z. Attention is now called to the fact
that the integral
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sum over the matrix elements

2«)o (Eo/R)(R/Eo)
=Qzo)o (Eo/Eo)(Eo/Eo) —1 (5.9)

up to terms of the order 0.', as we have already utilized
before in IV. The calculation from here on follows
exactly the scheme indicated by Wailer and will lead
again, after putting the energy denominator Ei+E2
+kp—2 and adding the emission-absorption terms, to

Ay=(eo'e) tfEg IPEge io rd-V

f+J' fzo*Pzoe 'o'd V-. (5.10)

This expression (5.10) constitutes a generalization of the
%aller formula for the two-electron case.

It is obvious that in the case of scheme II the various
excited states of positive energy have similarly to be
taken into account. But a straightforward procedure on
this basis does not seem to be practical. Consider, for
example, the case of the Li+ ion, where all intermediate
states contain three electrons of positive energy. The
various excited states do not permit any longer a de-
scription utilizing one and the same potential energy;
one has to take into expj.icit account the interaction
energy between the electrons and is, therefore, unable
to give simple, complete expressions for the matrix
elements which describe the transitions to the inter-
mediate states. We have, for example, carried out calcu-
lations with an approximate potential constructed in

analogy with the Heisenberg potential used in the
calculation of excited He terms. W'e refrain from repro-
ducing these calculations here in any detail, since they
clearly show that residual diGerentia1, effects depending
upon the form of the potential for the excited states will

be obtained. Since the method developed in VI shows
that these diGerential effects between scheme I and
scheme II are„ for small values of hv, not existant, we
refrain from a reproduction of these approximate calcu-
lations. The whole discussion is here only presented to
illustrate the incompleteness of a method which is based
on the use of a one-electron model in a constant average
potential held.

The difFiculties become even more obvious, and in
our opinion insoluble, for the simple model-theory if
one attempts to study inelastic scattering processes, e.g. ,
the scattering accompanying the transition of a hydro-
genic electron from the ground state to some excited
state. There does not exist any intermediate state in
which th hydrogen nucleus would be capable of binding
two electrons, one of them excited, and therefore, no
one-electron model procedure is feasible in scheme II.
Cases of this type, which require the consideration of
all possible states of a two-electron system, can only
be calculated with the use of a general method of the
kind presented in the following paragraph.

A g+=A2+ (6 1)

and so want to study 6rst the expression for A & which
takes on the form

Ag
———Q +Em-Abs.

«p Ep+kp
(6.2)

Since we include inelastic scattering, the 6nal state may
now in general differ from the initial state. We expand
the energy denominator

1 1 1
t

o+2 E~, —
I

1+ -+
i

«.5)
D Eo+ko o2+ko (— 2+ko

under the assumption that
~

o+ 2 —Eo
I
((1.The summa-

tion over ~&0 can now be extended over a complete
set of hydrogenic states by adding and subtracting the
summation over e)0. In this way, the absorption-
emission part of A i takes on the form

]1+
~&o D o&o 2+ko E 2 )

(6.4)

J
fo*O

( H+2 Eo)—
Xi 1+ IO'Pgd V,~. (6.5)

2

+—Z i
1+

~o2+kI 2 i
We have here replaced e by the Hamiltonian in the
second part of (6.3). It is, furthermore, clear that we

had to place the operator II after the first operator 0,
making it act on P, so as to obtain the proper factor in

(6.4). In (6.5) the terms which have to be summed over
E&0 are, as shown before, small of second order due
to the properties of the Dirac matrices contained in

them; it is, therefore, only consistent to neglect kp in

the denominator, and, equally, to put 8+2—Ep equal
to 2. We now add the emission-absorption terms which

VI. A GENERAL METHOD FOR THE TREATMENT OF
THE SCATTERING OF MODERATELY LARGE

QUANTA

The case of coherent or incoherent scattering of
quanta with he&&wc' will now be treated for both
schemes with a general method that makes it possible
to overcome the various difhculties discussed in the
preceding paragraphs. We shall primarily limit the
explicit discussion to the scattering by hydrogen; the
method permits extension to many-electron problems,
but no explicit presentation is given in this paper for
reasons of economy of space and also because the general-
ization, carried out by us, follows well-marked lines.

Obviously, we have again
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1

E~+&o—Er1 t» ( H+2 Eq-ui= 'PgOI 1+ }O'/id V
i

1 ( 2+Eg Er—
I

1+ + } (6 12)—2+kp E 2 i1 p ( H+2 —Ei)
+ i} 40*0'I 1+ }0@idV

are to be treated similarly, remembering that Eo+ko energy denominator as follows
=Ei+k, and thus finally obtain

l PO~Opzd V)tgz*O'fidV
z&o

(6 6)

+ )~go*0'Pzd V) fz*OfidV I

O'= IIO' —O'II,

we obtain by elementary matrix algebra

(6.7)

0[1+-,'(H+2 —Eci)70' = 200' —-', CO' (6.8)

The later comparison with A. makes it advisable to
rewrite the first two terms in (6.6). Introducing a
commutator

The summation over intermediate states in (6.11) is
meant to extend over all states in which two electrons
occupy states of positive energy, while all other elec-
trons occupy states of negative energy. If we now extend
the summation over a complete set of 0'», we have added
to the allowed intermediate states those in which one
electron has a positive energy and all others a negative
energy, as well as all those states in which more than
two electrons have positive energy. The second addition
is insigni6cant because the matrix elements are all of
smaller order of magnitude. The erst addition, on the
other hand, must be corrected for, because it refers
apart from the energy denominator, to intermediate
states which are already taken into account in A+&, 2.
We can, therefore, write the absorption-emission part
of A2 in the following form:

and, similarly

0'[1+-', (H+ 2 —E,)]0= 20'0+ —,'O'C (6 9) A, l D

1
kg*0—2+k, ~ J

so that the expression for AI may now be put into the
form

Ai —(2+ko) ' Po*(200'—-', CO')P, d V

2+Eg H)—
XI 1+ }0'e,dV, dV,

MgrM ip
2+ko

(6.13)

+ (2—k,)
—' tgo*(20'0+-', O'C)/id V

(6.1O) 2+E~ Erq—
xI 1+

In calculating

M,g»M» p
+Em-Abs.A2

———Q
~ r E~+ko Er—

Pz» I MzozM—'zz&+M'zozMzz, } .

(6.11)

In P' the prime indicates that the summation is to be
extended over all excited states of positive energy,
leaving all states of negative energy fully occupied.

In the last sum, Ez= e+E, so that we have E~ Er-
=Eo—E.This is small and may, therefore, be neglected,
since, as before, the expressions for M and M' are smal1.
%'e thus arrive at the following expression for

with an analogous method, we have to observe several
differences from scheme I which have their origin in the
fact that we now deal with a two-electron problem. The
essential advantage of the method consists, of course, as
will be seen, in the fact that we do not require an ex-
plicit knowledge of Nr. We can again limit ourselves as
far as antisymmetrization is concerned to the consider-
ation of two electrons. %'e shall assume that the initial
energy E~ as well as the expression E»—2 shall both be
small of the second order. This assumption is not quite
as obvious as an analogous assumption made in scheme I
and will be discussed below. We can then expand the

MM' 1
Z

~

+~*0
D —2+4, .~ ~

2+Eg H)—
y I

1+ }0'4'pdVidV2
2

E&o

Apart from the difference in sign, we observe that the
sum over E)0 is the same as in (6.5) of scheme I.

The assumption leading to (6.12) will now be dis-



SCATTERING OF RA 0 IATION 8 Y ELECTRONS 1005

C1 B1O1 O1 +1
%'e can thus write for

(6.18)

cussed more closely. It is, strictly speaking, not justified
to assume that E~ and El—2 are both small of second
order in the transitions considered. So, for example, the
assumption turns out to be wrong if the electron in the
negative energy states has originally an energy the
absolute value of which is very large compared to mc'.
Since we have to sum over all negative energy states,
we will encounter an infinity of such electrons. A similar
remark could be made with respect to El—2.

Nevertheless, for small quanta the assumption still
seems to be quite justified. Transitions in which such
electrons with exceptionally large energies are involved
contribute only to the modified nuclear terms which are
assumed to be very small. We can, therefore, be sure
that the error introduced is of no significance.

We obtain the complete expression for A2 by adding,
as before, the similarly treated emission-absorption
terms. Before doing this, however, we proceed as
follows:

To compare A1 and A2, we must evaluate the spur
in (6.14). We can write

(EF H)0'=O—'H Ho'. — (6.15)

Now the Hamiltonian H can be written in the form

H =K+Hp+ Vn (6.16)

Here the interaction with the nuclear field is contained
in H1 and B2, while V12 refers to the electronic inter-
action. The symmetrical part played by all the electrons
clearly shows that

O'H —Ho'= 2(og'Hg —Hyoid')
(6.17)= —2C1',

where C&' is de6ned similarly as in (6.7) by the relation

in the negative energy state

4 g= p&2[gp(xj) U, (xp) —Pp(xp) U, (x&)], (6.22)

p ——pv2[gg(xg) U~(xp) —Pg(xp) U~(xg)]. (6.23)

Here fp and P~ are hydrogenic functions for the initial
and final states, respectively, while U, is an appropri-
ately screened eigenfunction of negative energy. One
then obtains

)I %~*02Pi'4'pdVgd Vp

=(Eo IOP'
I
E,)+(E,/E, )(. I

oP' I,)
(6.24)

+(Eo IP'IE )(p I
o I.)+(Ep I

o IE,)(p IP'I.)
'

'

—(Ep IOP'l. )(p/Ez) (Ep/p)(p IOP IEg)

—«p IP'I p)(p Io IE~) —(Eo IO I p)(p IP'IE ).
Of the eight terms appearing on the right side of (6.24),
only three are found to be significant for the coherent
case E1——Ep. The second term here corresponds to the
nuclear terms discussed in IV and is again neglected for
moderate hv. In the incoherent case, this term vanishes
on account of the orthogonality (Ep/E~) =0. The third
and fourth terms are exchange terms which vanish in
the coherent case on account of the property of the
Dirac matrices in stationary states, while in the in-
elastic case, one term vanishes and the other becomes
small of the fourth order. The fifth and sixth terms are
also small of at least fourth order due to the approxi-
mate orthogonality of U, and Pp, &, combined with the
properties of the Dirac matrix e/ements connecting
states of opposite sign of energy. This can perhaps be
illustrated by looking at the largest term in OI" for
parallel polarization, which will be of the order one,
Thus the fifth term becomes of the order

1 t@*0
—2+kp»

(2+Ep—R)%'—Ci'
~ 2 01'+

(Ep/p) (p/Ep, ~) 4th order.

In this way, one eventually finds

(6 I()) 0'~*02Pg'VFdV&dV~(Ep loP'IE&)
+p

(6.25)

and introduce the abbreviation

+Q 3''
E&0

—(Eo IP'I p)(p I
o IE~)—(Ep IOI p)(p IP'IE~) (6 26)

To sum (6.26) over all screened states U„p(0, we

extend the sum over a complete set including all ~&0
and subtract the (small) part for p) 0.

Pg' ——Og'+-', [(2+Ep—Eg)og' —Cg'j.

Recalling that

(6.20)
Qx ~%'x*02Pz'+sdVidV~ (Ep I

P'0
I
Es)—

Og' ——(O.g
e)e'"'& (6.21)

we note that I'1' contains 0', i.e., one Dirac matrix in

each term.
We now introduce explicit expressions for 0 ~ and 4p.

It is assumed that the wave function is separable in the
coordinates of the atomic electron and of the electron

+QE)pI (Ep I

P'
I E)(E IO IE&)

+(Eo Io IE)(EIP'IEi) I s. (6.27)

In (6.27), the subscript S indicates that the wave func-
tions Us differ from those of energy E in (6.6) by virtue
of the screening.
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Now Pz&p in (6.27) can be simplihed. Since all terms
in this sum are already small of second order on account
of the properties of the Dirac matrices, we may neglect
in the expression P' appearing in them the term Ep —E&
and simply put

P' = 20' —C'/2

instead of (6.20). Now, since

(Eo I
C'I Ei) = (I/p)(Eo I

0'I Ei)
= (Ep —Ei) (Ep I

O'I Ei)

(6.28)

(6.29)

(6.30)

Px) "4~*02&i'+pd Vid Vp= —(Eo I
&'0

I Ei)

+2P z»(MzpzM'zz, +M'z, zMzz, )&.
'

(6.32)

To complete the comparison of A~ and A, , we now
have to examine the term

(Eo I
r'0

I Ei) (6.33)

Here, the second-order terms in E' must be retained. It
is now possible to write out the complete expression for
Ap combining (6.11), (6.19) and (6.32) and including
both sequences of emission and absorption processes

Ap-—(2+kp)-' l fp*(200' ,'Co')f,dV——

+ (2—kp) ' fo'(20'0+ ', O'C)/id V 'p. -(6.34)

++z)p(MzpzM'zzi+M'zpzMzzi)

2Q z»(M—zpzM'zzi+M'z pzMzz, )s

The results (6.6) and (6.34) for Ai- and Ao appear to
differ in the terms gz&p, but these terms are already
small of the second order and their difference is only
due to di6'erences in the screening of the wq, ve functions
which makes it appear that A ~ and A2 mill difkr only
by terms that are smaller than o.' or kp' from each other.

VII. THE SCATTERING OF HARD QUANTA
ACCORDING TO SCHEME II

The theoretical treatment according to scheme II of
the scattering of quanta hv&&wc' encounters various
difhculties by which we were forced to limit ourselves
in this paper to the discussion of some important special
cases and of some qualitative differences between
schemes I and II.

No scheme analogous to the procedure in VI could be

it is clear that all these terms will be not larger than of
fourth order and may be dropped. Furthermore, we have

(EpII" IE)(EIOIEi)=2(EoI o'IE)(EIoIEi)
(6.31)—2M'zpEMzz&

and so obtain

where

~AI~I A

Ap=—ZZ +Em-Abs,
r E„+kp—Eg

(7.3)

Ez=Eo+o, Er=Eo+E.

Introducing the explicit expressions M, M' for the
operators (4.3), we now find for Mgr the following

expression

M-=(E.IoIE.)(/E)+( IoIE)
—(Ep I

o
I E)(./E, )—(.I

o
I Eo) (Ep/E), (7.4)

which consists of four terms. The 6rst of these terms
is obviously zero.

Constructing a similar expression for Mqg' and carry-
in'g out the multiplication, we arrive at the following

expression for MAP

MM' —(oloIE)(EIo'I o)

+ (Eo/E)'(Eo
I

O'
I o) (o I

0
I Eo)

—(E,
I
o'I.)(.I

o IE)(EIE.)
—(Ep/E)(EIO'I o)(plolEo)
+(E,lolE)[(Elo'I ) (7.5)
—(E/Eo) (Eo I

O'
I o)3(o/Ep)

+(Eo/ )[( IoIE)
-( lola)(a/E)3(EIO'IE )
+(a/ )(/E.)(E.IoIE)(EIo'IE).

devised for the scattering of very hard quanta; this is
due to the fact that simpli6ed expressions for the energy
denominator like those used in (6.12) are no longer vahd
in the case of large quanta. One cannot, therefore, use
the general methods of summing over complete sets
which form the basis of the procedure in VI.

We proceed, therefore, with the treatment on the
basis of a model, keeping well in mind the unsatisfactory
features of such an attempt which have been discussed
before. We treat here, for purposes of illustration, the
scattering by a hydrogen atom. The antisymmetriza-
tion, as discussed in IV, has then again to be extended
to two electrons only; there is, furthermore, no diBer-
ence in the calculation of A~+ and A2+ as given in II.

The eigenfunctions for the initial and intermediate
states which have to be used for the purpose of calcu-
lating A2 can then be written

e,—=—,'V2[yz, (~,) U, (x,)—Pz.(x,) tr, (x,)j, (7.1)

er——,'v2+zp(xi) Uz(xp) —Pzp(xo) Uz(x&)]. (7.2)

In (7.1, 2), the symbol Pzp denotes the coulombian
eigenfunction of the electron in its ground state. V, and
UE form together a complete orthogonal system of eigen-
functions of negative and positive energy, respectively,
originating from some suitable potential which takes
into account the e8ect of the nucleus as well as that of
the electron in the ground state.

For A2 we then write in complete analogy to earlier
discussions in II and IV.
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MM' consists of nine terms, which will now be discussed
for two special cases.

position of the amplitudes arising from the modified
nuclear term and that given in II.

a. Scattering into SuEciently Small Angles

The first term in (7.5) represents the well-known modi-
fied nuclear scattering. In the case of very large quanta,
the differential scattering cross section due to it alone
becomes rather large in the forward direction and can
no longer be neglected compared with the ordinary elec-
tron scattering.

The following three terms all carry factors of the form
(Eo/E). These Fourier coefficients of the eigenfunction
describing the ground state, expanded into eigenfunc-
tions which are very similar to plane waves have a
sizeable value only for values of E with a momentum
which is comparable to mme. One can now show easily
that for su6iciently small angles which will soon be
defined more quantitatively these three terms are of the
same order of magnitude and are all complete analogs
of the generalized Wailer terms discussed in II. We
illustrate this statement by a simple discussion of the
second of these three terms. The same discussion can
be almost literally transposed to the other two terms
mentioned.

Since (E/Eo) is of the order one only if pip is of the
order a, we have thereby a defined range for E; the
same argument, therefore, leads to a range for e which
lies in momentum space in the range of —4+0(n).
&ut the remaining factor in this term, (plOl E), will be
of order one also only if the range of pg overlaps through
action of the operator 0 with the range of 0(ho+pa).
This requires, therefore, that

ys ko+ p, kp —k 0(a). (7.6)

If we study the scattering into angles satisfying the
condition

l
ko —~l —koe~~a, the matrix element here

discussed will have its maximum value and take on the
form of the generalized Wailer matrix element given in

II; summation over all values of e, E makes this term

equal to

—(Eo lO'l p)(p lOlE)(E/Ep)

e+kp —E
—(Eolo'lp)(plOIEo) ' (7 7)

a&0 ~+&o—&

—=(Eo IO'0lEo)

As mentioned before, the same argument hoMs true for
the other terms containing the factor (E/Ep). We have
thus rederived the scattering formula presented in II.

Obviously, for this small angle scattering, the remain-

ing five terms in (7.5) are small, since all of them carry
a very small factor (Ep/p) One can, t.herefore, summar-
ize that for sufBciently small angles the scattering
amplitude A2 of hard quanta is composed by a super-

b. Scattering into Large Angles

In this second case, no quantitative discussion is at-
tempted. We know from II that for large angles the
form factor of the scattering according to scheme I be-
comes proportional to a high power of n/Iop. ft, there-
fore, is no longer permissible to neglect terms which are
perhaps of the order 0.' in the general formula, since the
end result is obtained only by a large size cancellation
of the various contributions. One can similarly see quite
easily that the three terms carrying factors (E,/E)
which were the leading terms in the case of small angle
scattering are no longer equal to each other. The re-
maining ffve terms in the expression (7.5) can be calcu-
lated only with difficulty, and cannot a priori be con-
sidered to be small compared to those terms retained in
the case of small angle scattering. One must, therefore,
be prepared to find as a result of a calculation left to
later endeavors that the wide angle scattering of hard
radiation differs considerably from the result suggested
by II and may not in generaI be representable as a
simple superposition of generalized Wailer terms and
modified nuclear terms.

VIG. GENERAL DISCUSSION

We may now perhaps summarize the main results of
this investigation. It was proved that up to orders of
n', kp' the cross section for elastic and inelastic scatter-
ing of small quanta is the same in both schemes. The
problem of the scattering of hard quanta is in a much
less satisfactory state. While it was comparatively easy
to extend the treatment for the case of scheme I, we had
to limit ourselves to the not quite satisfactory method of
a model for scheme II and were unable to transpose the
general method used for small quanta. Furthermore, the
appearance of modified nuclear terms aGects the results
appreciably and does not allow us to make, in the
present state of the theory, a reliable prediction of the
scattering under suKciently large angles.

There are several points of contact between the paper'
of Furry's and the present analysis. As to the formalism
applied, Furry used recently-developed methods which
guarantee the avoidance of divergence difhculties. Vile

did not find it necessary to do so, since in the approxi-
mation used we encountered only one divergence,
namely the 8 function in IV, which obviously has to be
put equal to zero.

In contrast to the present paper Furry has treated
the transitions of the electron from the negative to the
positive intermediate state and back as a one-electron
problem under the inQuence of a constant potential
somewhat analogous to the procedure in IVb. We believe
to have proved that such a treatment is not satisfactory
and is incomplete. The example of inelastic scattering
by the H atom shows without calculation how necessary
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it is to abandon the simplified concepts and use a gen-
eral method as introduced by us in VI. %e are not
certain if Furry wants his results to apply to the scatter-
ing of very hard quanta; if this is the case then there
exist basic di8erences with the content of VII.

We want to express the hope that later investigations

of a deeper-reaching mathematical nature will lead not
only to a formulation as given here, but also to a com-
putation of the di8erences in the two schemes and
thereby present opportunities for an experimental deci-
sion between the two forms of the theory, which in our
opinion will doubtless show the validity of scheme II.
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The aim of this paper is to re-establish the reversibility of classical electrodynamics in terms of the
"expectation values" given by quantum electrodynamics. The reversibility requirement combined with
the charge conjugation necessitates that charged 6elds should obey certain types of statistics. However, the
reversibility requirement as such does not determine the statistics, showing that it is the requirement of
charge-invariance that has the power to determine the statistics of charged fields. A new interpretation will
be given to the old problem concerning the conflict of electromagnetic reversibility versus "retarded"
potential. Four diferent kinds of tensors, four difkrent kinds of spinors {pseudospinors), bi-spinors {eight-
component spinors) and bi-tensors are introduced as useful representation vectors of the entire congruent
group including spatial and temporal inversions.

I. INTRODUCTION
' 'N connection with the proof that phenomenological
~ - irreversibility originates essentially from the process
of observation, it seemed to the present author to be
of importance to ascertain the complete time-reversi-
bility of quantum mechanics. In an earlier paper, ' re-
versibility of the Dirac equation was demonstrated in
its one-particle interpretation, and the behavior of the
spin, electric moment and magnetic moment of the
electron in the "reversed" motion was examined in
detail. Then, the reversibility of quantum electrody-
namics was proved in the frame-work of Dirac's many-
time theory. ' It was thereafter noticed that the same
method can be applied to the theory in which the elec-
tron field also is quantized if a correct treatment of
charge conjugation is introduced. In all these consider-
ations, it was observed that commutation relations of
the field quantities, under certain assumptions, played
important roles in the proof of reversibility.

Now that many authors are interested in the problem
of necessary general forms of commutation relations, it
may be of some interest to publish a summary of the
results hitherto obtained by the author, clarifying the
relationship between reversibility and commutation re-
lations. In the meantime, Schwinger is reported to have
used in his lectures a similar consideration to deduce
the commutation relations from the requirement of

' S. %'atanabe, Le Deuxieme Theoreme de la Thernsodynam~ue
et la Mdcaniqle Oedllatoire {Hermann et Cie, Paris, 1935).

~ S. Natanabe, Sci. Pap. Inst. Phys. Chem. Research (Tokyo)
31, 109 (1937).' Unpublished.

reversibility. However, since his method as well as his
conclusion seems to be at variance with those of the
present author, perhaps they may justifiably be pre-
sented here.

Against a formal requirement of reversibility objec-
tions are often raised to the eGect that we can never
reverse the direction of time in our actual experience.
However, we can formulate the "reversibility" in such
a manner that it does not involve any hypothetical in-
version of time.

The reversibility of classical point mechanics can be
expressed in the following way. Let us call two states
of a mechanical system mutually reversed states if
particles have the same positions and the opposite
velocities. Then the reversibility of mechanics means
that, if a mechanical system, which was in the state S1
at the initial instant (t=0), 6nds itself in the state S2
at the 6nal instant (t=ti), then the fundamental laws
allow for another solution representing the similar sys-
tem which was in the reversed state of S2 at the initial
instant (t =0) and which 6nds itself in the reversed state
nf 5& at the final instant (t= ti).

To extend this notion of reversibility to electrody-
namics, we need only to add to the definition of reversed
states the condition that the electric field has the same
value and the magnetic field has the same absolute
value but opposite sign. Then the above statement of
reversibility holds again in the Maxwellian theory.

It is to be noted that this concept of reversibility does
not invoke any fictional time-reversal. Also, as far as

'Lectures by J. Schwinger, notes taken by M. L. Goldberger.


