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tion holds, as may be veri6ed by direct substitution of
(= i in the general equations.

ADDENDUM (Received 28 March 1951)

The authors have recently received from R. E. Stoner of the
Pennsylvania State College a shadowgram of the refraction of a

shock wave at an interface separating air and carbon dioxide in
a shock tube. With the kind permission of Professor Stoner, this
shadowgram is reproduced here (Fig. 9). The measured angles
produced by the interaction agree qualitatively with the theo-
retically predicted values. ~

'R. G. Stoner and M. H. Glauberman, Phys. Rev. 76, 882
(1949).
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The quantum theory of scattering is discussed from the point of view of a time independent formulation.
A detailed discussion of the replacement of the ordinary integral equation of scattering by two others is
given together with a discussion of the desirability of this procedure both from a physical and mathematical
point of view. Variational formulations of these equations are given and their accuracy is indicated by com-
parison with examples for which exact solutions are known.

An exactly soluble problem given by Blatt is treated from the standpoint of the present paper. A formal
solution of the general scattering problem is developed and illustrated with Blatt's example.

I. INTRDOUCTION

~ NE of the most important problems in physics is
the determination of the various matrix elements

of the so-called Heisenberg S-matrix. ' A variety of
approximation methods have been used in practical
calculations of these matrix elements. The types of
problems studied range from nonrelativistic nucleon-
nucleon scattering with static potentials to very com-
plex 6eld theoretical problems which are beset by di-
vergence difhculties. The general approach to all of
these problems has been a perturbation theoretic one
based on a succession of Born approximations. (The
nonrelativistic scattering of nucleons by a static po-
tential is the lone exception for which an exact solution
is feasible. ) Actually the Heitler theory of radiation
damping, which will. be discussed in detail later, is not
a perturbation method in that it does not yieM a power
series in an interaction parameter. Recently, variational
methods have been introduced for the treatment of
scattering problems' but as yet only a few simple prob-
lems have been studied with this method. Their chief
importance is that they provide at least in principle
a method for obtaining solutions which are not power
series expansions of the variety obtained by direct
iteration (successive Born approximations).

' J. A. Wheeler, Phys. Rev. 52, 1107 (1937); W. Heisenberg,
Z. Physik 120, 513, 673 (1943).

~ W. Heitler, Proc. Cambridge Phil. Soc. 37, 291 (1941);A. H.
Wilson, Proc. Cambridge Phil. Soc. 37, 301 (1941);S. T. Ma and
C. F. Hsuek, Proc. Cambridge Phil. Soc. 40, 167 (1944).' J. Schwinger, Jectures oe Nuclear Physics {Harvard Univer-
sity, Cambridge, 1947); W. Kohn, Phys. Rev. 74, 1763 (1948};
L. Hulthen, see Mott and Massey, The Theory of Atontic Colli-
siows (Oxford University Press, London, 1949), second edition,
p. 128,

The purpose of the present work is to discuss in
greater detail the results of a previous paper, 4 to give
examples of the use of the variational methods de-
veloped there, and 6nally to discuss the importance
of treating separately, in so far as it is possible, the
inductive and resistive parts of the held reactions. This
work was begun in connection with a study of the paper
by Pais and Jost' on the failure of the second Born
approximation as applied to non-relativistic nucleon-
nucleon scattering. The methods discussed below have
been applied to this problem and the results already
obtained are encouraging. This work is being continued
by Messrs. A. Kaufman and F. Solmitz and will be
reported soon. The problems to be treated in the present
paper are all concerned with applications to field
theories.

II. DERIVATION OF THE FORMULAS

A fairly complete derivation of the formulas to be
used in this paper was given in I but for ease of refer-
ence the principal results will. be restated here. In
addition it will be shown that the results given there
are true under much more general conditions than were
previously stated. We shall again follow the develop-
ment of Lippmann and Schwinger' with the previously
noted' changes in notation.

We wish to solve the Schroedinger equation,

(E—HD)%= Hg@', (2 &)

subject to certain boundary conditions. These are taken

4 M. L. Goldberger, Phys. Rev. 82, 757 (1951),referred to here-
after as I.' R. Jost and A. Pais, Phys. Rev. 83, 840 (1951).

s 3. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950}.



MARVI N L. GOLDBERGER

to be an incident "plane wave" (i.e., solution of the
problem with H)=0) plus either incoming or outgoing
scattered waves. We replace (2.1) by an integral equa-
tion which incorporates these boundary conditions:

which, using (2.7) to eliminate C, may be written as

%.&+& —4'.&'& —i)r Q V, o&i&(E.—E,)R,.

@ (+& —(y + H)@ (+)

E.~is—Ho
(2.2)

Hr f@ (+) )If o)
E,—Hp

i—n P 4 o)8(E.—E,)R, I (2.9)
where 4 is an eigenfunction of Ho corresponding to
the energy E and represents the initial state of the
system. The transition probability per unit time from
the state characterized by 4 to an initially unoccupied
state C g is given by

From (2.9) it follows that

4' &+&=+ &'&+in Q 0 &'&(&(E—E,)R,. (2.10)

id h h

where the matrix R is defined only for states of equal
energy. Its definition is

R&,.= —(C&„H)%',&+&) = —(4&, (—&, H,C.), (2.4)

with E =E~. %e shall later have use for the total rate
of transition from the state C which may be written as

P&,r(&&„——(2/h)ImR. . (2.5)

This is based on the unitarity of the 5-matrix which is
related to I via

Sb.——l&'&,.+2miR&,.b(E&,—E.). (2.6)

A variational formulation of (2.2) together with applica-
tions is given in reference 6. We now pass on to discuss
in detail the considerations given in I.

Instead of solving (2.1) in terms of scattered waves
as in (2.2) it is convenient to introduce a "standing
wave" solution which contains equal amounts of in-
coming and outgoing scattered waves. This is achieved
by noting that

1I 1
+

2 E,+i& Ho E. ie H—p E,——H p—

where P stands for the Cauchy principal .value. In
terms of this Green's function, an integral equation in-
corporating (2.1) and the desired boundary conditions
may be written as

P

P

has no eigenfunction corresponding to the eigenvalue
unity. Equation (2.10) is thus a suKcient condition
for the pair of Kqs. (2.7) and (2.10) to be equivalent
to (2.2). Our final step is the introduction of the re-
action matrix, 6, according to the definition

Gp. = —
(C)&, Hr+, ")). (2 11)

P—
G&&,= (4'&&&", H)%' &'&) —

}
H)%'&&&'&, H)%, &'&

}
I Ep —IIo ]

H&+p('),
P

H+ &'&

E.—Ho )

H,e.o&
}+} H)4')&&'&, '

E,—Ho E() H, —

G('+ (E&r —E.)—
X}e&»H( P

H,e.& & }. (2.12)
(E,—Ho) (E&r

—Ho)

%e shall pfove that Gp is not an hermitian matrix
provided, as implied by our notation, Ep/E =E. This
may be done by using (2.7) to eliminate C(&

Q o)=@+ HQ o)
E.—Ho

(2.7)
Dividing by Ep—E, and allowing Ep to approach E„
we derive

Ke now adopt the notational convention that sub-
scripts a, b, c will be used to designate states of the
same energy E,= E(,=E.=E, and subscripts n, P denote
states for which E, Ep/E. Forming the "radiation
held" 0" (+&—0' "}we have

Q (+)—+ (r)= H (+ (+)—+ o&)

E~ Ho

+irr P C,b(E, E,)R„, (2.8)—

BGp
'

BEp Ep=z~

Gp tG,
PP . — . (2.13)

(E,—E )' zp=s

This equation may be used for approximate evaluations
of Gp, in the neighborhood of the energy Ep=E by
using for G on the right hand side the Born approxima-
tion value, G&& Bp = —

(C)&, H&C ). —
Our fundamental equations are now obtained by

substituting (2.7) and (2.10) into (2.11) and (2.4) re-
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spectively. %e 6nd

Bp G,
Gs.= J3s. I' Q— , [Bf& = —(C», HbC, )j (2.14)

Rb.= Gb.+is Q,Gb.h(E —E,)R,. (2.15)

III. DISCUSSION OF THE FORMULATION

The above derivation of (2.14) and (2.15) is essen-
tially the same as that given in a lecture by Schwinger, '
and is also partly contained in reference 6. It has been
given in some detail because the emphasis is somewhat
different and to enable us to bring out a few important
points, notably the non-hermitian nature of G and the
concomitant relation (2.13). Furthermore it is im-
portant to understand clearly that the values of G oG
the energy shell are needed for its computation on the
energy shell; this is evident from (2.14). The derivation
of (2.15) given by Pauli' also makes this point clear;
Pauli's development suffers from the fact that G is
defined only by the iterated solution of (2.14). The re-
sulting series rarely converges whereas the solution may
very well exist, or at worst may exist after the now con-
ventional renormalization processes are carried out.

Equation (2.15) is generally known as the Heitler
integral equation' although the term is frequently
applied to the equation which results from replacing
G by 8 (or the first nonvanishing iteration approxima-
tion to G, in general). With this approximation, it has
been studied in detail by Heitler and his collabora, tors
and forms the basis of the Heitler theory of radiation

'%. Pauli, 3fesms Theory of Eudeur Forces (Interscience Pub-
lishers, New York, 1946},Chapter IV.

Before discussing these equations, we give the analogue
of (2.10) that deals with 4'b& &, namely,

+bt &=Nb&'& —i&r p + &"8(E—E )Rb,*. (2.16)

When this expression is substituted into (2.4) we obtain
an alternate version of (2.15):

Rb, = Gbo+is Q,Rb,8(E—E,)6„. (2.15')

This shows that R and 6 commute. This is a well
known result which is usually' given in the form of
remarking that if 6~, be written in the diagonal form

Gbs QAfbAGAfaA

Q.f.~*f(F- E.)f.A =—&~.~,

Rf, may be written as

Rbb= Z~fb~~~fb~*
with

Rg =Gg/(1 is Gg—)

In other words, the eigenvectors of G are simultane-
ously eigenvectors of R and consequently R and 6
commute.

damping. This theory has both defects and virtues
which will be discussed later.

One may well question the advisability of replacing
the single integral Eq. (2.2) by the pair of Eqs. (2.14)
and (2.15). There are several arguments in favor of the
procedure. First, the form of the equations enables one
to see quite clearly the difhculties associated with the
problem of the determination of interaction from scat-
tering experiments. For suppose R~ were known from
experiment for all states u, b for which E =E~=E;
then, in principle, (2.15) could be solved for Gb, . The
matrix 6 then determined is not however the matrix
G which is the one needed to enable one to solve (2.14)
for 8 in terms of G. 6 as determined from scattering
experiments has matrix elements only between states
of equal energies which leaves undetermined the "off
energy shell diagonal" matrix elements needed in
(2.14). Without some additional rules for the computa-
tion of the off diagonal elements of G it would seem in
general impossible to determine 8 uniquely from scat-
tering experiments. Second, a clean separation is made
into quantities on and off the energy shell. This is more
than an esthetic advantage; the types of process in-
volved are of an essentially different nature. Basically,
the Heitler equation gives an expression of the true
radiation damping processes in the classical sense of
reactions due to real processes (e.g. , the reaction of an
emitted photon on an accelerated electron). Equation
(2.14) on the other hand, since it is not restricted to the
energy shell, describes the virtual processes and is
closely connected with self energy problems. Generally
speaking, the divergence diKculties are isolated in the
equation for G; if G is 6nite, so is the resulting R,
Furthermore, if R be computed from (2.15) with any
6, the unitarity of S is maintained, which is certainly
very desirable. This is an argument in favor of even
the rather radical Heitler damping theory: One does not
obtain obviously nonsensical cross sections which in-
crease inde6nitely with energy, etc. %hat appears to
be even more important is that even with the crudest
G, namely 8, an R derived from solution of (2.15) does
contain some correct higher order effects.

There are of course many, perhaps equally signjt6-

cant, higher order corrections which are omitted by the
neglect of higher order terms in G and we are not ad-
vocating such a procedure; on the other hand, the
damping effects are real and would appear in an exact
solution of the problem. It would seem reasonable to
take them into account in so far as one is able by a
solution of (2.15).

There are cases where the neglect of higher order
terms in G is simply incorrect. The most prominent case
is in the problem of electron scattering taking into
account radiative corrections, which was treated by
Bethe and Oppenheimer. It has been shown by Sebe'
that the inclusion of virtual photons in G removes the

' H. A. Bethe and J.R. Oppcnheimer, Phys. Rev. 70, 451 (1946}.' T. Sebe, Prog. Theor. Phys. 3, 304 {1948}.
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discrepancy found in reference 9. Blatt' has shown that
for a few simple problems the neglect of the higher
order terms would appear to be numerically unjusti6ed
in that the neglected terms are larger than those re-
tained. The general situation in 6eld theories is, of
course, greatly complicated by the appearance of di-
vergences and it is dificult to draw dehnite conclusions
from formal manipulations. Setting the divergence
troubles aside for a moment, however, it would seem
that an approximation procedure based on approximate
solution of (2.14) together with an exact solution of
(2.15), if possible, might yield quite good answers.
For example, in problems involving the emission of
high energy quanta (photons, mesons, etc.) the real
damping effects may be expected to be large; a direct
iteration of (2.2), say, might easily diverge. On the
other hand the iteration procedure as applied to |",
because of the energy denominators might even be
convergent. The separation of the problem, which we
propose, would then be very advantageous. With
regard to divergences, we are certainly no worse off
than we usually are. Presumably the renormalization
program would be applied to 6 in much the same way
as it has been used for the 5-matrix. It has been pointed
out to the author by S. T. Ma that a similar proposal
has been put forth by Fukuda and Miyazima. "

The problem of obtaining exact solutions to (2.15)
is not a trivial one although it is a considerably simpler
integral equation than (2.2) or (2.14) in that all quan-
tities are restricted to the energy shell. It will be shown
below that an iteration procedure is very likely to be
only slowly convergent, if at all, and consequently
different methbds must be devised. What might be
termed a semi-variational procedure has been pro-
posed by Ma and Hsueh;" this will be discussed below.
Only a few applications were made by those authors
and the agreement with exact calculations was not too
satisfactory. For this reason, and because of the im-

portance of obtaining accurate solutions, we have in-
vestigated this problem and have found a more satis-
factory variational formulation. In addition, a varia-
tional formulation of (2.14) has been found. In the
next two sections the variational principles, brieRy
reported in I, will be discussed and examples of their
utility given.

IV. VARIATIONAL FORMULATION

Ke shall take up 6rst the variational formulation of
(2.15). It is convenient to introduce a notation for
matrix multiplication for operators dered only on the
energy shell, namely,

(MN) g.—=Q.Mg. b(E—E.)N... E.=Eg= E. (4.1)

We then assert that the matrix (on the energy shell),

'o J. M. Blatt, Phys. Rev. 72, 466 (1947)."N. Fukuda and T. Miyazima, Prog. Theor. Phys. 5, 849
(1950)."S.T. Ma and C. F. Hsueh, Phys. Rev. 67, 303 (1945).

3= GR= RG= (R—6)/ia. (4 4)

The above formulation suffers from the defect that
simply a change in normalization of the trial function
will yield different approximate values of R. A sta-
tionary formulation that meets this objection is pro-
vided by the expression

3a.'= (GR)b, (RG)g,[(RR)g,—is (RGR) g,l ' (4.5)

The verification of the stationary nature of (4.5) is
straightforward and will not be given. The stationary
value of 3' is again (R—6)/is.

It is worthwhile to point out the difference between
these variational expressions and that given by Ma and
Hsueh. " Their procedure is based on the observation
that

a=P.~(E—E.)[Rt(R—6—i~GR)j.. (4.6)

is stationary under arbitrary variations of Rt (but not
of R.). This is a sort of one sided variational principle.
The stationary value of M is evidently zero. The method
cannot be used for a direct computation of R; one must
put in a trial R with some independent parameters and
vary the parameters appearing in Rt. We shall com-
ment later on the accuracy of their method in connec-
tion with some examples.

It was stated in I that (4.2) and (4.5) were correct
only if G were real and symmetric; our present deriva-
tion shows that this assumption is unnecessary. The
fact that R and G commute had been overlooked. We
mention in passing that the quantity

N= RtG+GR+i~RtG —i~G R—~2RtG R—RR,

is stationary under arbitrary, independent variations
of R and Rt about the correct values. However, the
demand of vanishing variation yields the equation for
E. and E~ in iterated form, e.g. ,

R= 6+i~6(R+i~GR).
A normalization independent form of this variational
principle is easily derived. The stationary value ob-
tained is G', consequently this principle must be used
much as that of Ma and Hsueh. We shall make no
further use of this result.

A few remarks on the relative accuracy of (4.2) and
(4.5) are in order. For example, if one puts for a trial
function in (4.2) simply 6, the approximate value of R

3, with
= RG+ GR+is RGR —RR (4.2)

is stationary under arbitrary variations of R. Per-
forming such a variation, we obtain

Q = sR{6+ i~RG —R}+{6+ i~GR —R}&R. (4.3)

Reference to (2.15) and (2.15') shows that 8Q is indeed
zero fdr the correct R. Conversely if 3 is stationary,
the quantities within the brackets must vanish, which
yields (2.15) and (2.15'). The stationary value ob-
tained for the correct R is
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thus obtained is just equivalent to two iterations of
(2.15). This has the effect that approximate 5-matrix
computed from this approximate R is not necessarily
unitary. The same procedure as applied to (4.5) does
not sufIer from this difhculty. The solution thus ob-
tained is not an expansion in 6, and in general should
give a more accurate answer. We shall in fact see a case
where (4.5) gives the exact solution whereas (4.2)
gives, as it must, simply two iterations.

A similar development may be carried through for
Eq. (2.14) which de6nes G in terms of B. We assert
that the energy shell matrix J&, (i.e., Eo=EQ E)—
given by

G&.tG.. Gba BasGps
Jg. PP.—— +P g., pE E — (E E)(E E—p)—

Pg (G—g.tB,+By.G .)/(E E) (4.7—)

is stationary under arbitrary independent variations of
G and G~ about the correct values. We have

8Gg t BggsGp~
8 Jg.=P Q. G,+P Ps B. —

E

GastBs. hG..
+PQ IGg t+Pgp Bb—, (4.8)

E—Ep E—E

from which the stationary character of J is evident.
The stationary value obtained is

Jg = —Q Bg G o/(E —E ) = Gg —Bgo. (4.9)

It should be noted that if E,=E~=E,

Pp G~b 8,/(E E)=PQ B—g G,/(E E,). (4.1O)—

The normalization independent form is easily found
and is given by

Jb,' ———(GtB)g, (BG)g,DGtG) g,+ (GtBG)g,j-', (4.11)

with matrix multiplication de6ned by

(GtG)g, =P Q Gtg,G,/(E E), etc. (4—.12)

The stationary value of Jb,' is again given by (4.9). It
should be noted that (4.7) and (4.11) are stationary
expressions for 6, i.e., on the energy shell. , and cannot
be used for computation of G. This is, of course, no
difFiculty because it is 6 that is needed for insertion
into (2.15).

With the simplest trial function, G=B, (4.8) yields
the equivalent of two iterations of (2.14) or stated
otherwise the third Born approximation. The form
(4.11),however„does not yield a power series expansion
in 8 and may be expected to give a more reliable re-
sult, in general.

In applications, the above variational principles
appear to have some advantage over the related ones
given by Lippmann and Schwinger' in that instead
of having to guess wave functions as trial functions one

instead must guess essentially scattering amplitudes.
In the case of nucleon-nucleon scattering, say, it seems
much simpler to guess a reasonable scattering ampli-
tude than a three dimensional wave function which
must be especially accurate in the neighborhood of the
potential. (Actually the necessary trial functions are
not true scattering amplitudes in that behavior of the
energy shell must be assumed. )

Our variational formulations for G and R have some
features in common. They generally are neigher maxima
nor minima and, second, they both correspond, in their
nonhomogeneous form, to the same degree of approxi-
mation in an iteration solution. The homogeneous
forms take into account what amounts essentially to
the renormalization of the wave function familiar from
perturbation theory. The necessary renormalization
may be easily understood in the case of scattering by a
potential. The iteration procedure adds up the con-
tributions from single scattering scatterings, all with
the same initial amplitude, then the subsequent scatter-
ings of these scattered waves. The error made is essen-
tially in the single scattering contributions: Those re-
gions of potential farthest from the incident beam do
not feel the full strength of the beam for their first
scattering, it having been weakened by earlier scat-
tering s.

V. APPLICATIONS

We shall now discuss a number of applications of our
variational principles to speci6c examples. Most of our
attention will be conhned to (2.15) and the associated
variational expressions (4.2) and (4.5), because only in
rather pathological cases is it possible to solve (2.14)
exactly and thus have reliable comparisons with ap-
proximate solutions. There are, on the other hand, a
number of exact solutions of (2.15) available, at least
for the case where the 6rst nonvanishing approxima-
tion for 6 is used. In connection with the approximate

.solutions to be discussed, it is useful to bear in mind
the easily derived result that the condition for the
convergence of an iteration solution of (2.15) is

(5 1)

where Gg is the largest eigenvalue of G (see discussion
following (2.15'); this result is evident from the eigen-
function expansion given there).

1. Nonrelativistic Compton EBect"

We limit ourselves to a discussion of (2.15) with the
6rst nonvanishing approximation for G. A more com-
plete investigation is in progress. With this limitation
the matrix elements of 6 between states of a single
photon of momentum k, polarization a), electron at
rest (neglecting the frequency shift) are given by

(k)
~

G~ kV)= —(2ne'/mk)a), ~
"See %. Heitler, reference 2.
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This equation is readily solved with the "ansatz"

(kxiRikV)= U(k)e), eg

with the result

(k~[R[kg p)

= —(2pre'/zzzk)(1+i(2e'k/3zu)) 'p), s) p. (5.5)

We now apply (4.5), taking as trial function simply

(aX~ R,
~
k,).,)= e, .e~,. (5.6)

The stationary value of R is, with this trial function
precisely the value given by (5.5), the exact answer.
The variational method of Ma and Hsueh also gives
the exact result for this case. The condition for the
validity of the iteration solution is evidently e'k/zl(1
which is certainly true if our neglect of recoil and fre-
quency change are to be justi6ed.

2a. Meson-Nucleon Scattering, ~++ N—+~+'+ N'
(Positive Mesons by Neutrons)'4

We again take the Grst nonvanishing approximation
to G. %'ith this simpli6cation, the Heitler equation
may be solved exactly for all charged meson theories.
We take the pseudoscalar theory for purposes of
illustration and also to point out an algebraic error in
the results of Fukuda and Miyazima, and Ma and
Hsueh. The relevant matrix elements of G may be
written in the barycentric frame as

(here and from now on we use natural units lz= p= 1).
%'ith our normalization, the density of states per unit
energy interval is given by

p= k'dQ/(2zr)P,

and the Heit1.er equation becomes

(k)N.
~
R

i kpXp) = —(2zre'/zuk) p), eg,

k'
zzr Q—g )/dQ'(2zre'/mk)pg eg

(24r)P

X (k'X'i R
i
kpXp). (5.3)

those in g to pseudovector coupling. u2 is given in-
correctly in both references'4 but our results agree with
those of Ashkin et u/. "The Heitler equation is easily
solved. for this case because aside from the factors N

and Np G does not depend on angles. In terms of

it becomes

(pk~ R~ p,k,)= (1/2p, }u%u„

(Pk) G(P,k,)=(1/2pp)u$u„
(5.9)

1R(Pk; Ppkp) =$(Pk; Ppkp)

+(iq/32m'Wp) ~dQ'$(Pk; P'k')( iy—P'+M)

X%(P'k', Ppkp) (5 10)

Since $ does not depend on angles, R is proportional
to $ and the solution is simply

%=(1—zX) '$
where

X= (q/gzrW p) $(Epy4+ M)

(5.11)

(5.12)

with Ep the nucleon energy and M its mass. This may
be rewritten as

where

1+ZKy+Zfwi2+4 gy —gg 4

(1+zKg)'+Kpz Wp' —Mz
(5.13)

q Epa, —Ma& q Spa, —Ma,
Ky= ) K2= (5.14)

M' 8 N~o gp' —M

Sm K4'+ Kp'+ (Kp' Kg')'—
q 1+2(Kp+Kp )+(Kz Kp)—(5.16)

The differential cross section may be computed from
(5.13) but since we are not interested at this time in
the result we shall merely give the total cross section
which is most easily obtained from (2.5). This relation
becomes, for our problem

o = (1/qWp)-,' Im. trace%( —iy Pp+M) (5.15)

which is easily evaluated to yield

(Pk
~

G (Ppkp) =44(ag+azy4)up/2pp(WpP —M ), (5./) The criterion for the convergence of an iteration
solution may be expressed in terms of the largest eigen-
value of the operator P in (5.12), i.e., X'&1. These
eigenvalues are easily found and yield the result that
for pseudoscalar coupling we must have

where 8 and Np are the usual Dirac plane wave spinor
amplitudes corresponding to four-momenta p and pp
respectively (u=u*y4, u*u=1), k and kp are the final
and initial meson four-momenta, respectively, and in
our coordinate system, pp ———kp, p= —k, pp ——+(44'
+ 41') & with q the magnitude of the momentum of either
particle and p the meson mass. 8'p is the total energy
of nucleon plus meson.

a, =f'M, g'M(M'+3Wp')/u'

ap ——f'Wp, gPWp(Wp'+3')/44',

1 (f' ) ' q' ( Ep+M ) '

4 E47r j Wpz EWp+M)
(5.1/)

In this case the damping e6ect is dominated by the
size of the coupling constant as may be seen by con-

(5 g) sidering the extreme relativistic limit, in which case
the requirement is

where the terms in f refer to pseudoscalar coupling and

"S.Y. Ma and C. F. Hsueh, Proc. Cambridge Phil. Soc. 40,
167 (1944) and also reference 12.

—,'(f'/4~)'&1. (5.18)

"Ashkin, Simon, and Marshak, Prog. Theor. Phys. V, 634
(1950).
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The entire damping effect is much more important in
the pseudovector coupling case. We 6nd the con-
vergence requirement

1 ( g' y
' q'

p ED+M q
'

~ Wo —M y
'

4&4 3 W02EW, +M) E & )

from which we see that for very high energies the itera-
tion procedure will certainly fail.

We turn now to the variational treatment. Equation
(4.5) may of course be used as it stands, but it is more

convenient to write a stationary expression for %.
This is

do@(-i&P+M)% ~~
dn, '%( '&-P'+M)e

)

( t

E~ ) (~%—8 p q

is E32x Wo)
,

"dQ'%( iy—P'+M)%
J

~I dQ') dQ"%( i'y—P'+M)Q( iy —P"+M)%
32m'5'o"

(5.20)

If we take as a trial function 5=(Q we find be a linear combination of these. One finds

(iq/qxWo) 8(Eoy4+ M)8
%—8+

1—(iq/87rWg) 8(Eoy4+ M)

(1+2ix)ko k+ie k.&&ok

(k
~
R ( k, )= (g2/2p", )

1—zx+2X2
(5.21)

where

(5.24)

@,
1 i(q/8s W—o)$(Eg 4+M)

which is the exact answer. The same result may be
obtained using the inhomogeneous form (4.2) written
in terms of % and (8 with a trial function %=a+by4
where [a, y4)=fb, y4]=0 in order that t%, Sj=0, and
a and b independent of angles. It is essential to have
adjustable quantities available when using (4.2) in
order that the correct normalization be obtained. Ma
and Hsueh have also applied their method to this
problem and obtained poor results.

2b. Meson-Nucleon Scattering, ~—+N—&~—'+ N'

(Negative Mesons by Neutrons)

Even with the Heitler approximation for lQ, the
integral Eq. (2.15) cannot be solved exactly in the
relativistic case, as has been pointed out in reference
15. (Actually one may obtain the exact solution pro-
vided only that the product of v/c for meson and nucleon
is small compared with unity. ) We shall for simplicity
deal only with the non-relativistic case where in addi-
tion we neglect the nucleon recoil. We take pseudo-
scalar mesons with pseudovector coupling. The matrix
elements of 6 may be regarded as operators on the
spin variables of the neutron and are given by

(k~ G~ ko)= (g&/2p&go)~. k~. k

The Heitler equation becomes

(k ~
R

~
ko) = (g'/2p'e, )o koe k+i(g'ko/1&r'p'e )

X~fda" k ~ k(k ~a~k. ). (5.23)

The solution is easily found by noting that the only
scalars that can be constructed from ko, k and o are
ko k and e. (ko)&k). The solution must consequently

x= (g'/4nr) (ko'/3y'eo).

The cross section is easily found to be

da = (36/ko')cos'PdQ (5.26)

independent of g and showing the characteristic p
wave angular distribution of scattered mesons.

If one now attempts to solve (5.23) approximately
using the trial function R= 6 in (4.5), for example,
one obtains a rather complicated result which does
however yield the exact cross section plus correction
terms of order x'. The expression (4.2) with the same
trial function would yield only x' terms reliably, in-
dicating the superiority of (4.5) over (4.2). The trial
function

(k~ Rr/ko)=~ko k+pa kook

with parameters e and P determined using the sta-
tionary character of (4.2) yields the exact solution,
(5.24).

The purpose of these examples has been to show the
general reliability of the variational. principles. No
definite statement as to their accuracy can be made.
This is of course frequently the case and is the biggest
objection to variational techniques. It might be noted
that this uncertainty may work in one's favor as is
seen by the last example; statements about the errors
in the results of variationally computed quantities in
terms of alleged errors in trial functions are generally
meaningless.

)& [1+4x' cos'0]/[(1+2x')'+ xij (5 25)

If the damping is neglected (x=0) one finds the well
known result. It is interesting to note that for very
large x, the cross section is simply
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3 Blatt'8 Example"

It is instructive to study an example given by Blatt
in his discussion of the Heitler damping theory. The
problem is that of the scattering of a scalar meson by a
6xed, extended, source. The hamiltonian is

introduce in place of the matrix R the usual scattering
amplitude f(k kp)

' the two are related by

f(k, kp) = [E(kp)/2prj(k I
R

I kp). (5.31)

Similarly we introduce

&=- i' dx[~'(x)+v(x)(& '—~')p (x)3+s7p'
2~

s&=) dxq&(x)U(o).
f(1 1')g(1', kp)

g(1& kp)=f'(P ko)+ dP, , (5 33)
2&r' P"—kpPThis problem has also been treated by WentzeP6 in

another connection. These authors show that an exact
solution may be given in terms of normal coordinates
and in particular that the problem of meson scattering
reduces to a study of the equation

ikP t

f(» ko) =a(» ko)+—' dfl'&f(k, k')f(k' kp). (5 34)

[kpP —(—V')]«'(x) =X@U(x). (5.28)

g(1, «) =
I (E(P)E(v) I'/2~j(f I Gl «),

k(1&, «) = LI E(P)E(V) I'/2~j(1&l BI «),
(5.32)

(5 27) in terms of which (2.14) and (2.15) become, re-
spectively,

Our general equations may be written in terms of these
quantities identifying E„Hp, Hl+ with kp, —'P,
X4'U(x) respectively. The wave number of the scat-
tered meson will be called h, its magnitude being equal
to that of the incident meson, kp. The solution for the
scattering problem as given by Blatt (slightly re-
written to correspond to quantization in a box of unit
volume) is

%kp + = 4hp —A'&L'p + V(kp, x)

C&p=(2E) &e'"'*

gskol*—x'I

V(kp, x)=—
~ dx' U(x')

x—x'I

4'& p'+& = I dx«& p&+&U(x)
p&p& (5.29)=v( —kp) [1+XV(kp)$ '(2E)—

&

V(kp) =
) dx V(kp, x) U(x)

v(kp) = ~dxe-'"p *U(x)

E=+ (&p&'+ kpP) &.

b(1&, «)

= —(X/4r) tdx~t dx'e ' p*U(x') U(x')e' *p' (5.35)

= —(X/4n. )v(P) v(- P).

The solution of these equations is trivial by virtue of
the separability of b. We 6nd for g,

v(P) v( —kp)
a(1, ko)=g(P, kp)=-P/4 )

1+XW(kp)

r v(P)
W(kp)= il dp

(2&r)P& P' —kp'

1 t &. coskpl x—x'I
=—' dx ~i dx'U(x) U(x'). (5.36)

4&r& J
I
x- x'I

With this value for g we have immediately

X v(kp)
f(k, kp)= —— (5.37)

4&r 1+ X(W(k p)+ ik py(kp)/4pr)

That this is the same as Blatt's solution follows from
the fact that

The scattering amplitude may be obtained from the V(k ) . d W(k )+ (5 38)
1

I v(P) ikpv(ke)

asymptotic form of 0 kp&+& which is (2&r)'" P' kpP i p — — 4m.

%& p&+&(x)~(2E)-& e'"p *—

y(kp) =v( —kp) v(kp).

e'"p~*~ ) y(kp)

lxl 4~1+~V(k,)
(5.30)

We shall now shelve this problem in two steps ac-
cording to our general procedure. It is convenient to
"G. %'entzel, Helv. Phys. Acta XV, 111 (1942).

The usual damping theory prescription of taking the
first nonvanishing term in the iteration solution corre-
sponds to putting F equal to zero. Blatt's failure to
recognize the source function v(kp) in the damping
term, ikpy(kp)/4&r, of the exact solution was a result
of his con6guration space expansion of V(kp); the only
error in the usual Heitler method is the setting of 8
equal to zero. As pointed out by Blatt, the seriousness
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of this error depends essentially on numerical values.
For small values of kp, 8 (kp) is related to the source
radius, a, according to

W(kp) -', pra, (5.39)

so that the ratio of the damping to the inertial term in
(5.38) is approximately kpa which is by hypothesis very
small. Evidently then the neglect of 8 (kp) is unjustified.
On the other hand this dominant term in 8 (kp) is

definitely a nucleon self-energy term which should be
incorporated into the nucleon mass in the spirit of
modern renormalization. For this simple problem it
may also be regarded as a renormalization of the
coupling parameter ).To show this explicitly we write

1 1
W(kp) = +—' dx)I dx'U(x)

4~a 4m. ~

coskp~ x—x'
~

—1
X U(x'). (5.40)

f
x—x'i

Calling the second term in (5.40} Co(kp) we may rewrite
(5.36) as

g(P, kp) = ——(1+X/47ra) '
4x

o(P)o(- ko)
X (5.36')

1+X(1+7/4m a) 'ro(kp)

Making the obvious replacement 7 (1+X/4+a) '—+V, we
have

g(P ko) = 9 '/4~)o(P)o( kp)/(1+"'+(kp)) (5 36")

v(kp)
f(k, kp) = —P '/4 ) (5.37')

1+X'[e( pk)+ikpy(kp)/4s 1

The question of the legitimacy of neglecting to(kp) de-
pends still on numerical values. If for example one now
passes to the limit of a point interaction [o(kp)~1/u(kp)
is identically zero, and the Heitler prescription wouM
be exact. If the source is very small, but still finite, an
iteration solution for g would be feasible in an energy
range for which iteration for f would fail. For example
if we take a gaussian shape for U(x) and kpa((1, we find

1
$1 /

ur, (tl)Br ur *(a)G..
(6.5)

E,—E

Multiplication by ur*(P)/(E, —Ep) and summation over

P yields, using (6.2),

Almost identical discussions may be given for the
other examples treated by Blatt so there is little point
in presenting them.

VI. ADDITIONAL FORMAL CONSIDERATIONS

It was mentioned brieQy in Sec. II that one may
formally solve the Heitler Eq. (2.15) in terms of the
eigenfunctions of the operator G. It is useful also to
obtain a formal solution to (2.14) which we shall refer
to as the reaction equation. %e begin by studying the
eigenvalue problem dehned by

Z-Bp-«(~)/(E. E-—) =Br(E.)«(P) (61)
with the normalization condition

p.ur*(00)ur (n)/[E. —E.$= pbrr . (6.2)

(Principle values are implied in the above integrals
and in the subsequent ones. ) The desired eigenfunction
Ni- must be normalized in the unconventional manner
shown in (6.2) in order that (6.1) be an hermitian
eigenvalue problem. The quantity E is a base energy
which is conveniently chosen as the same energy ap-
pearing in (2.14) which we rewrite for ease of reference:

Gp, =Bp, QBp G—,/(E, E). —(6.3)

The quantity e, which is the value of the normalization
integral may be chosen as &1 if desired; the particular
sign is not a priori known. It follows from (6.1) and
(6.2) that

Bp = 0 ' Qrur(P)Brur*(o'), (6.4)

as may be verided by noting that multiplication of
(6.4) by ur (n)/E, —E and summation over n, together
with (6.2) yields (6.1). The analogous operation per-
formed on (6.1) shows the reality of the Br(E,).

In terms of the eigenfunctions ur(a) the solution of
the reaction equation is very simply obtained. Sub-
stituting (6.4) into (6.3) we have

1
Gp. ———Er ur (P)Br ur *(a)

i
4m W(kp)/kpy(kp) i 2kpa/0r(&1,

and the iteration solution for f fails if kpX&)1. For
kou&&1, on the other hand, or

ur*(P)Gp, ur*(P)Gp,
Ep = Brur*(a) Brgp—(6.6)

E jap E —Ep

(4n.u)(kp)/kpy~ e" * V /kpa))1,

in which case the iteration for g would not be permis-
sible (unless X/a)&1) whereas that for f would be con-
vergent. The general situation in a theory of point
particles is probably that damping terms are dominant,
after renormalization of the inductive terms, but this
question has not been thoroughly investigated as yet,

ur (P)Gp~ Brur (a)
P E,—Ep 1+Bi

Substituting (6.7) into (6.5) yields immediately

Gp. = 0 ' Prur(P)Gr(K)ur*(a),
with

Gr(E,)=Br(E,)/[1+Br(E,)].

(6.7)

(6.8)

(6.9)
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The dependence of Gr on E shows again the fact that
G is not an hermitian matrix [see (2.12)].An iteration
solution of the reaction equation evidently corresponds
to an expansion of the denominator of (6.9) from which
we obtain the convergence requirement

(6.10)

4or
I

N*(q)N(q)
dq =e.

(2or)o~ q' —koo
(6.19)

proportional to v(p). The proportionality factor is ob-
tained from the normalization condition (6.2) which
becomes simply

It is worth while noting that the expression

ur*(P)Bs.ur(u) ur*(n)ur(a)
Br= Q

a, s (E Es)(E— E) —a E E—(6.11)

In terms of the quantity 8 (ko) deined in (5.36) we have

B(ko') =XP(ko)
(6.20)

N(q) = (o/ —4orW(ko))'v(q)

is stationary under arbitrary variations of spaz and Np+.

There is a close connection between the eigenvalue
Gq and the G~ mentioned in Sec. II in that on the
energy shell the eigenfunctions Nr(a) (or more properly,
their energy shell projection) and the f,g both provide
a diagonalization of 6. The formal connection may be
written as follows. In terms of the f,~, the eigenvalue
problem of Sec. II is

QgGogi~(E

Ee)flag

= Ggfbp)

Q.fc~*b(E E)f.—«= 4~. .

In terms of the transformation coeKcient

(6.12)

o-' gr (I'/I")Gr (I"/A) =Gg(1'/A)

(I'/I") =Q,Nr*(c) h(E —E.)lr (c).
(6.15)

The solution of (6.15) then yields also the eigenvalues
Gg in terms of the Gr. The normalization condition of
(6.12) may be expressed in terms of the (I'/A) as

o ' Qr(A'/I')Gr(I'/A) = G~ 8~ ~. (6.16)

A very simple illustration of the formal procedure is
furnished by a treatment of Blatt's example. In terms
of the notation used in the earlier discussion of the
problem, (6.1) becomes

=Br(ko') oor(p). (6.17)

Inserting the explicit value of b(y, q), (5.35),

»(P) r v( —V)Nr(q)
I dq =Br(koo)lr(p). (6 18)

(2or)' q' —ko'

The structure of this equation shows that there is only
one eigenvalue and one eigenfunction which is simply

(I'/A) =P.Nr*(c) b(E E.)fc~, — (6 13)

we find, introducing (6.8) for Go„ that

fog= (oGg) ' Qrlr(b)Gr(I'/A), (6.14)

where (I'/A) is found from the solution of the set of
equations Pote added in proof.—An alternative variational formulation

of the problem of finding R may be given as follows. Introduce

Rp„&+&= —(4p, HI+~&+)}

(A-1)
Rp & &= —(+p& &, PIC )

which are equal if Ep=E . These quantities satisfy the equations

1
Rp~&+&=Bp~ —ZBp~ . R~~t+&

E —E~+ie
(A-2)

1
Rex =Biz ZRpy . Bye.

Ep—E~+ie
It can be verified by direct computation that the energy shell
matrix Fb, (i.e., Eo=Eb=E) defined by

B~R..(+& R~&-)B..
Fb.= ~

a E En+i& a E—Ea+i&
(A-3)

Rbp& &Bp~E'~, (+&

+ Rb~( &R~~&+)

a, p (E Ep+ic) (E Ecx+$6) a E—Ecz+iE'

is stationary under arbitrary independent variations of R&+) and
R& & about the correct values given by (A-2). The stationary value
1s

Rba Bbc= Rba Bho. (A-4)

A normalization independent formulation is easily given. Further-
more, the operator F of which (A-3) is the energy shell matrix
element, (4bh+, ) may be explicitly constructed, This result will

be discussed in a subsequent publication,

and from (6.8) and (6.9) we obtain our previous answer
for G(p, ko), namely, (5.36). The energy shell eigen-
function of G(k, ko) is simply (4n./ko)&. The transforma-
tion coeKcient (I'/A) is (4orko)~u (ko), and G& is given
in terms of Gp as follows

Gr(koo) =XW(ko)/[1+&W(ko)]

GA (ko/o)u(ko)Gru*(ko) (6.21)
= —(X/4r) koy(ko)/[I+ XW(ko) ].

Eigenfunction expansions of the above variety, while
useful theoretically, are useful in practice only if a few
eigenfunctions are needed. In many cases it is prefer-
able to have an approximate closed expression in place
of an exact solution in series form. A familiar example
is high energy nucleon nucleon scattering and the
clumsiness of a phase shift expansion. It is hoped that
the variational methods discussed earlier may provide
a practical solution in some cases.


