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experiment. (3) M= &1 involves a linear combination of several
matrix elements, i.e., J'PeX x and jPe in the tensor interaction,
and J'x and fe in the vector interaction. Any real value for the
ratio of the nuclear matrix elements, kiz or k2p, cannot yield the
required shape of RaE (see Fig. 3).
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FIG. 3. The first-forbidden correction factors in the tensor interaction,
to be applied to the beta-spectrum of RaE. The curves a, I, and II represent
the correction factors corresponding to Bpi, J'pCF Xr, and 1(J'p+Xr)+
XJ'PC+c.c.J, respectively.

RaE: In 1941,Konopinski and Uhlenbeck" explained the devia-
tion of the spectrum of RaE from the allowed form by using mix-

tures of the matrix elements involved in the Fermi theory with
vector or tensor interactions. The present analysis, however,
leads to a criticism of their viewpoint, for the following two rea-
sons: (1) According to Konopinski and 'Uhlenbeck, the beta-decay
of RaE is classified as a second-forbidden transition. Since the
decay of s3RaE"0 to the ground state of s4PP" is, on the current
version of the shell model (g9/2 or i22/2, h9/2) —+(even, even) and
therefore involves a parity change, one would expect that the
transition is first-forbidden. (2) The conventional ft value of
R@Eis, according to the table of Feingold, s 1.1&10s.On the other
hand, the recent analysis of the second-forbidden beta-decay of
CP6 ' Tc'9, Sb'2', ' and Cs"'g" by means of a linear combination
of the matrix elements involved in the tensor or vector interactions,
indicates that the conventional ft values for these beta-decays are
10~~10I3. When the ft values~ are corrected by the forbidden
f-functions, they do not change very drastically. This speaks
strongly in favor of the classification of RaE as first-forbidden,
not second-forbidden. In fact, for the beta-decays which have an
"a" type spectrum and obey the selection rule hJ =&2, parity
change yes, Taketani" and Davidson' found 10'=10' for the ft
values, with little Z dependence. Although Konopinski and
Uhlenbeck had obtained negative results, we reinvestigated,
therefore, the erst-forbidden cases for RaE, since the exact ex-

pansion of the coulomb correction in the same way as that of
Tm"0 may introduce some alterations.

It is shown that among the transitions involving parity change,

(1) bJ=~2 is excluded. As is shown in Fig. 3, the correction
factor of "a" type is uniquely determined and the predicted shape
is evidently at variance with experiment. (2) AJ=O is also re-

jected. Since the ground state of Po2'0 is presumably spin 0 and

even, the nuclear matrix element allowed in the transition is de-

termined to be J'pe r. The correction factor corresponding to
J'Pe ~ x is almost energy-independent, which cannot be fitted to

'HE n' corrections to the Lamb shift have been partly calcu-
lated, using a decomposition of terms due to Feynman. The

one-photon part of the Lamb shift corresponds to the diagrams of
Fig. 1, and can be written, according to Feynman's standard
methods, '

~= e'fifo(2) y&E+~(2, 1)y„d p(1)S+(su')doxy'xpd(4 —eg)

—AeefPp(1) d p(1)doxy

By going to momentum space, and making an algebraic rearrange-
ment of terms, this can be decomposed in the following way:

hE = (e'/7e) feP—o(pe) (Ve)„(Pp, Pp+ sp ie)E+—
X(ZO —~; y2+S2 —k, yi+ Si—a)

X(Ve}&(th'2+F2—k, p2) &(pi) k~d'kpd'pid'y2d'sid's2

+(e'/xi) f4o(pp) (2ppe —ye r)8(pp —~) (2pge —iso)A(py)

X{jp—2/2. $) (gp-2p2 y) Ip~d ppd3y]d3yg

(/ ie)f—xA(pp)8(pp pi)(2p~—e ve r)(2p—ie &ve)A—(p~)

X (A2 —2p2 k)~k~d44d'pid'p2

+(e'/ i)fle(p)(2P„y„ f)y„ooo(p)(k—'—2P )1)-'k~d4iosd'p

&exf4o—(p) do(p) d'p

We are using the following notations: a represents a 3-vector,
a represents a 4-vector, and a represents Z„a„y„.+(p) is the
normalized momentum wave function of the level under study,
whose unperturbed energy is Eo. k is the 4-vector (co, h). p, p2, p2
are the 4-vectors (Eo, p), (Eo, pi), (Eo, p2). s2, s2 are the 4-vectors

(0, 82), (0, s2). 6(q} is the Fourier transform of the potential
energy times yt,

8(q) = (2e) 'f8(x) exp( —ig x)d'x.

K+~(E; pi, p2) is the Fourier transform of the propagation kernel

E+"(8; pq, pp) = (2x) 'fE+~(2, 1) exp/ i(pp xp pq—.xq)—
+zE(t2—ti) jd x2d x&d(t2-t2).

(Ve)„(pf—0, pi) is the "modified potential" for emission of a
photon of polarization p, ,

(~~)' @f ~ Pi) =~(pf pi)(2P' ~vp)(+ 2p "~)

(2pf jd f/')8(pf —p;) {ks—2pf 'k)
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and makes transitions from momentum P; to momentum PJ —k,
P; and Py having the same time component Eg. (Va)„(PJ,P;—0) is
the modified potential for absorption

(«)p(Py, P —&) = —~(ny —u )(2p'p —vp &)(&'—2P' &) '

+(2pj'„—y„ f)@(py—y,)(k' —2pI ) '

and makes transitions from P;—k to PJ.

Frc. 1. Feynman diagrams for the one-photon part of the Lamb shift.

The last 4 terms in 38 are identical with the "first-order Lamb
shift, "evaluated by several authors, 2 except for the fact that the
momenta are not free, pi', pg~, p'/m~, and &@0/m@0. This fact,
when taken into account, introduces a term proportional to the
square of the potential, and therefore not gauge-invariant. It has
been shown by Bethe that this term is compensated by an equal
and opposite one coming from the first term in AE, or "second-
order Lamb shift, "

After subtraction of this nongauge-invariant part, the second-
order Lamb shift has been calculated by taking a comparison
operator

R„=(mes} '7'„V for @=1, 2, 3

and writing: Second-order Lamb shift=((Vu)„, (Ve)„), the inter-
mediary state being a relativistic free state, and with electron
at rest initially and finally; —(R„*,R„), the intermediary state
being a nonrelativistic free state, electron at rest initially and
finally; +(R„*,R„),all states being nonrelativistic bound states.
It has been found that this is a sufficient approximation if only
terms of order u' are desired. The last part is nothing but Bethe's
Lamb shift'

(2+/&~~')'&.
I (e I nl A) I'(~ —@)0 (~/2I & —~o I)+5/63.

The first two parts we have now calculated; they give a correc-
tion of

(1+11//128 —ln2/2) n4 Ry =6.894 megacycles

to the 2s state of hydrogen.
This brings the total Lamb shift' to 1058.3 Mc, when vacuum

polarization terms are included. The best experimental value is
1061~2 Mc.~

The cP corrections to the first-order Lamb shift have not yet
been investigated. However, in the summer of 1950 Kroll thought
that there coul'd be none, the highest corrections being of order
o.'lna. There are several other a' corrections, coming from the
vacuum polarization term, and from the two-photon term, but
they are probably rather small.

This problem was suggested by Professors H. A. Bethe and
R. P, Feynman, and the author is greatly indebted to them for
continued guidance throughout the work.
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