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The interaction of an electron and a lattice oscillator is studied for an in.teraction energy of a special type
linear in the oscillator coordinates and momenta. The energy values and eigenfunctions for arbitrary
coupling strength are found by solving a three-term recurrence relation. A plot of energy es total momentum
of electron plus oscillator reveals the role of degeneracies of states involving different numbers of quanta
in the oscillator. As the frequency of the oscillator tends to zero, one Gnds the bandlike spectrum charac-
teristic of an electron moving in a periodic potential. Nith increasing total momentum the electron makes
Bragg reflections, transferring quanta of energy and momentum to the oscillator, and remaining bounded
in velocity. For strong coupling the state of minimum energy is one of nonzero total momentum. For suf-
Gciently strong coupling, regions of small eRective electron mass cease to exist.

I. INTRODUCTION
' "N recent months increased attention has been directed
~ ~ to the interaction of electrons with the lattice vibra-
tions of crystals. ' ' In many cases as, for example,
the motion of electrons in polar lattices the electron
lattice interaction is so strong that ordinary perturba-
tion methods are inadequate. The present note is con-
cerned with the exact treatment of a very simple

system: An electron interacting with a single lattice
oscillator for a special form of interaction. The lattice
oscillator is characterized by an angular frequency u
and a propagation vector h, i.e., is a traveling wave.
As the Grst of several main points we shall Gnd the
energy values and eigenfunctions of the system of
electron plus oscillator and study the lowest state in
detail. The energy is a function of three parameters:
the total momentum of the system, the strength of
interaction, and the ratio (kk)'/mk&o. By studying the
energy values and eigenfunctions as a function of total
momentum and interaction strength one can see the
role of states in which many quanta are present in the
oscillator and the efkct on the effective mass of the
electron. Second, the exact probability of scattering can
be computed and compared with the results given by
time-dependent perturbation theory. Third, we shall

study the limit of zero frequency when the phase ve-

locity (co/k) of the wave tends to zero. The traveling
wave then becomes stationary and, provided one can
neglect the recoil motion of the oscillator, one has
exactly the problem of an electron in a periodic potential
with its characteristic band-energy spectrum. If a small
electric Geld acts, continually imparting momentum to
the electron, Bragg rejections occur in which momentum
is transferred to the system providing the periodic po-
tential, and the electron remains bounded in velocity
and energy. For the case treated here it is interesting to
understand in detail the momentum transfer process.
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We adopt the notation used by Frohlich in the dis-
cussion of the motion of electrons in a polar lattice. A
system consisting of one electron interacting with a
set of oscillators in a polar crystal is governed by the
approximate hamiltonian
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II. MOMENTUM INTEGRAL AND VIVE FUNCTION
COEFFICIENTS

We now study the interaction of an electron with a
radiation oscillator the direction of propagation of
which coincides with that of the electron and with a
hamiltonian

3C=p'/2m+gi(Xi sinkq+(Yi/mes) coskq)
+-', (M(v'Xg'+ Fg'/M). (1)
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Here p„p„, p, are the canonical momenta and q„q„,
q, the canonical coordinates of the electron, X~ and
Y~ are canonical coordinates and momenta of a lattice
oscillator with propagation vector k and frequency
~(k). M depends on the mass of the ions giving rise to
the lattice vibration. The sum over k goes over all
lattice vibrations and has a natural cutoG for wave-
lengths of the order of the lattice spacing. The coupling
constant for the case of a polar crystal is approximately
g~=4ze/k. The form of interaction used here differs
from that occurring in metals, being characteristic of
the long-range coulomb forces due to the ionic nature
of the constituents of a polar lattice, but is general in
that it is linear in the oscillator coordinates and
momenta. We are not concerned with the accuracy with
which the above hamiltonian describes the actual situ-
ation in a polar crystal, but merely take advantage of
the fact that the type of interaction term allows one to
make an exact treatment of the interaction of an elec-
tron with one oscillator.
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Since this is a system of two degrees of freedom, one
additional integral of motion will sufhce to determine
the motion. I.et us consider the operator

A =p+ ~~ (k/ce) (MaPXI, '+ Yg'/M),

which is the total momentum of the system. %'e form
the Poisson bracket LA, BCj and with the help of the
relations LP, f(q)]= ihaf—/aq, Lq, f(P)]I=+ihaf/aP,
which hold for any pair of canonical variables, we verify
that Lk., Kj=o, so that the total momentum A is an
integral of motion. As a result the eigenfunctions of X
must simultaneously be eigenfunctions of A. Let the
eigenvalues of A. be ), and the eigenfunctions be
g(Xq, q). Now h. is highly degenerate in the sense that
a given value ) of total momentum has an eigenfunction
which is an arbitrary linear combination of states cor-
responding to distribution of the given momentum in
diferent ways on the electron and phonons. The coef-
ficients in the A eigenfunctions must be so chosen that
the ItO„'s are simultaneously eigenfunctions of BC.

The eigenfunctions of A are determined from
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Since A. is the sum of operators for each of the degrees
of freedom we may look for separable solutions, and it
may be veri6ed that the most general eigenfunction of
A belonging to a total momentum ) is

i( hk)
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FIG. f.. Energy vs momentum for a= i. The quantities cx and
y are de6ned by the equations )Acacia={M}'/2m and $k~y=go{A/2' ay}&.

are oscillator wave functions
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%'e adopt periodic boundary conditions and normalize
the wave function over a box of unit length so that

Q a„*'a„" 1

tlat

For a given P there are states where the electron has a
negative momentum and many quanta are excited. .
Our treatment places no restrictions on X so that it may
range quasi-continuously from —~ to +~. The a„"
are found by satisfying the Schrodinger equation
BCPL EP&,. Operating on Pq with the interaction part
of the hamiltonian we 6nd
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where the coefficient a &" ——0. The result of satisfying
the Schrodinger equation 3CQ&=BI& is, therefore,

00 (II.——,
' hk —nhk) '

(n+ ,')hco —E+- g X

h q&
+g, I I Ia.+p(n+1)&+a„pn~I e-'-~~y„(x,)=o.

&2M(o I

Multiplying both sides by e'"~&&„and integrating over
q and X~ one obtains the recurrence relation
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where n=0, 1, 2, and a ~"=0.
For the case of zero interaction we set g~ ——0, and 6nd

E z' ——(n+ ')hco+(X -'hk nh—k)—'/2m—, or a„"=0. (7)

The energy levels are speci6ed by two quantum
numbers: n which is discrete and X which is continuous.
The spectrum consists of continua which overlap over
a portion of their ranges. When n=0 we have E= ~leo
+ (X -', hk)'/2m a—nd IP),

'= ap" exp/i/h(X hk/2) q]~—(Xp)
while for n=i we have E=3h~/2+(X 3hk/2)'/2nr, —



E. P. GROSS

n. o

20

0

-IO

FIG. 2. Energy es momentum for e=.10.

and g'=expLi(X —3hk/2)q]aggq(Xq). The chief fea-
tures of the energy spectrum for zero interaction may
be illustrated by plotting E vs X—kk/2, one curve for
each n value. This is done in Figs. 1 and 2 for difI'erent

values of the ratio (hk)'/mk~, using reduced units Lsee
Eq. (8)].Each curve is a parabola symmetric about the
value nkk and has its minimum at that value. Two
curves intersect at some value of I, so that for larger
values of i the curve for the lower n value lies higher
while for smaller f values it lies lower. It will be seen
that the introduction of interaction removes the inter-
section of the curves in a way analogous to the removal
of intersections of potential curves in the theory of
molecules. The lowest curve to the right of the inter-
section point has a wave function similar to that of the
higher curve before interaction was introduced. For
suKciently strong interaction even portions of the
lowest curve near the minimum have several quantum
terms in their wave functions. (Near the intersection
points the effective ms, ss of the electron is altered. )

III. ENERGY SPECTRUM AND SCATTERING
PROBABILITY

%'e note that to deal with the case of 6nite interaction
in the present method one must study the three-term
recurrence relation Eq. (6). The energy values are the
roots of an in6nite determinant. After these have been
determined one may find the corresponding ratios of
the coeScients c„". The use of continued-fraction
methods will permit us to 6nd numerically the spectrum
and the wave functions to any desired accuracy.

To study the recurrence relations we will put

(kk)'/2m =-,'n'hco, gg(k/2N u)) &= ,'yk(o (8)-
and express all energies in units of k&o/2. Then with
vP= X'/(2mb(o/2) and f'= g —a/2

{(2m+ 1) E+ (f' e—a)') a„"—
+yLa.~P(n+1)&+a„gn&]=0. (9)

I.et us put so= aq/ao, v& = am/uq. s,=a,+q/a„. Noting

that vosq =a2/ao, we have for the n= 1 equation

so'= ~/I:{3 E—+(i ~)'I+»i~~]
%e find for the general term

v, P= —yr&/{ (2r+1)—E+(i —rn)'+»P(r+1)&]. (11)

This last equation can be used to 6nd no~ in terms of
some v„with r very large as a continued fraction. In-
spection of Eq. (11) shows tha, t there is a solution of
the recurrence relation for which e,—4 as r~~. An
expression for the energy spectrum is found by obtaining
an independent equation for vo" and comparing with
Eq. (10). One hnds, using the r=0 equation of the
recurrence relation,

~~"=—(1—E+V)A (12)

Hence the energy spectrum can be computed from
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where we use the notation

1 1 1

Equation (13) has infinitely many roots representing
the eigenvalues of ground and excited states for a given
value of ) . %e thus see that we should actually write
Eq„and Pq„ for the eigenvalues and eigenfunctions. To
find the root which goes continuously to the zero
interaction solution for a given quantum number n as
y~o, it may be convenient to invert the continued
fraction n times. In Sec. IV we discuss the results of
the numerical study of Eqs. (13) and (11) for several
cases and compare them with the results of perturbation
theory and other methods of dealing with the hamil-
tonian, Eq. (1).

The eigenfunctions Eq. (3) form a complete, ortho-
normal set if one takes all the functions with
—00 &X&+~, p, =o, 1, 2 - . ~ and may be used to
study the following type of scattering problem: If at
t=o the electron has a momentum po and there are n
quanta excited, we are to find the probability that at a
later time t there are m quanta and an electron of
momentum p&. The problem may be solved by finding
a linear combination of eigenfunctions satisfying the
initial condition that at t=o the wave function is
exp{i(po/h)q]p„(X~) Asimple . calculation shows that

I' p," '
~

Q„a„*"u„" exp{ —(1/k)E),„t]~', (14)

where X is fixed by specifying the initial state and po
and p& are linked by the law of conservation of momen-
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turn X=p,+nhh =pq+rnhh. In Figs. 1 and 2 this means
that only vertical transitions are permitted.

IV. DISCUSSION OF CASES

(1) Case of Infinite Wavelength, a=0
As a first example, let us treat the limiting case 0.=0,

where it is possible to find exact expressions for the
energy levels and wave functions for arbitrary strength
of interaction. The main result is that all the energy
levels are shifted by the same amount, which depends
on the strength of interaction, while the wave
functions are multiplied by a phase factor. Since the
shapes of the energy-es-momentum curves are unal-
tered, the effective mass and average velocity' remain
that of a free electron. These results occur because one
is dealing with the case 5k=0, or zero phonon recoil
momentum. %ith the help of the exact wave functions
the probabilities of occurrence of scattering processes
are evaluated and compared with the time-dependent
perturbation theory. For small values of the coupling
constant the latter gives accurate results, but for
stronger coupling it overestimates the scattering prob-
ability.

a. Exact Energy Values and Eigenfunctions

I.et us take the l.imit k—+0, assuming that g~ remains
finite. The hamiltonian becomes

BC=p'/2m+ gI.(FI/Mo&)+ ','(Mco'XP-+ Fp'/M). (15)
The eigenfunctions and energy values of the system are

( i gq ) /Me) &
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E.),= h'9/2m+ (n+ ,') h(a gg'/2-Mco' — (l7).
In units of ha/2 the expression is E q= E &P

—y'/2, the
interaction causing a constant depression of energy.

In order to interpret these wave functions, we expand
in terms of the complete set of wave functions without
interaction

f.),=P. g (nXlaln'X')y„expL —i(X'/h)q].
%'e find
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+o0 ~+00
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a

l
'X'n) = @„»exp(iX'q/h) f„gdqdXI,

Inserting f„&, from Eq. (16) there results

p+" gp Ma)
(n~l &In'~') =4~ ~! exp —i—Xa—
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where b~),. is the Kronecker delta. The u„„may be
evaluated by using the generating function for the
Hermite polynomials. One 6nds for the lowest coef-
Gcients

a&0 ex——p( p—'/8), ue~= ~iy exp( —y'/8),

a02 ———(p'/4%2) exp( —y'/8);
a„=(4—y')/4 exp( —y'/8),

ao3= (ip'/8vS) exp( —y'/8),

ou ——Li(v' —»)/8~1 exp( —~'/8)

goo = (y'/32q5) exp( —y'/8),

+ l (7'—127')/16&53 e p(—&'/8)

It is to be noted, in addition, that the relation u „=g„
is valid.

b. Tine Depende-nt Processes

The preceding formulas for the energy values and
eigenfunctions may be also derived from stationary-
state perturbation theory, if the perturbation theory is
carried out to arbitrarily high accuracy. The factor
exp( —y'/8) will enter if one takes care to normalize the
perturbed wave functions. However, the time-dependent
perturbation theory becomes very unwieldy in the
higher ap'proximations.

Using Eqs. (14) and (17) we compute

P P= lE ltto""l'e-""l'

Inserting the values of ao"& given in Eq. (19), we find

+'2 +4 ~6~—3icut +8~—4ico(

Ox —1+ e
—ka I+ e—2ira I+ +

4 32 48 8 6 64 16

Xexp( —y'/2). (21)

If &(&2 we can keep only terms up to p'. Then

Poq'" 1——',y'(1 —coscot). (22)

Now I'z, '~ is the probability that a system which has
been observed to have zero quanta at time t=0 will
have zero quanta at time t. This probability is less than
unity and oscillates about the average value 1—y'/2.
If p becomes of the order unity, the probability becomes
small. The erst approximation in time-dependent per-
turbation theory gives the same result as the exact
probability expanded to order y'.

With the help of Eq. (21) we may find the probability
I'g, '" to order y'. The result is

(M&o/m h) &

XH H dXI, =gg), a„„, (18) (v' v'~
(2"n!2"'n")& + I

——
l cosset+ —cos2~t (»)

6%ith the help of methods used in the theory of electron
(2 4~ 16

motion in a periodic potential one may show that the mean
electron velocity is given by 7=BE/aX. %e thus see that the nonQuctuating part of Eg, " has
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been increased to (1—-', y'+rosy'). In general, the non-
Quctuating part is

(~'i) 2 (~4) s

exp( —v'/2) |1+
I
—

I + I
—

I&4)

pS )2 ( p8 )2
+I {+I I+".

iS 4g) i6 16 64)

For y'=4 we flnd e-'{1+1+(-',)'+(-',)'+ I 0.28.

(2) Case of Intermediate a, a=1
In Fig. 1 we have plotted, for several strengths of

interaction, the energy curves obtained by solving Eq.
(13). For weak interaction (y= —„0) it is seen that the
energy remains very close to the zero-quantum curve,
giving an effective mass close to the free electron mass.
Near the 6rst intersection point, anomalies in average
velocity and effective mass occur. The electron velocity
decreases rapidly, and the electron has a negative and
very small e6'ective mass in this region. Beyond this
region, as the total momentum increases, the velocity
increases again since the electron must follow the one-
quantum curve. The coeKcients in the wave function
are plotted in Figs. 3 and 4, where one sees the gradual
increase of coefFicients representing the many-quanta
terms.

The inoderate interaction curve (y=1) starts at
i'=0 with a small curvature, i.e., a large eifective mass.
As X increases the curvature approaches zero and the
electron velocity remains constant indicating practically
in6nite electron mass. We note that the region of small
effective mass is no longer present. The momentum de-
livered'to the electron is continuously transferred to the
oscillators as shown by the increasing values of the
higher coefFicients, so that the electron velocity cannot

r
~& lv, {,2'*1

h(. l, 7*a

Fro. 3. Wave functions for a=1.

increase. One sees from the wave-function curves that
at 1 =0 there is a greater contribution from ai coeflicient
than for the weak interaction case. The curves rise
slowly showing that at any given value of 1 many of the
coeKcients are appreciable. As the interaction becomes
stronger (y=3) another feature comes into play. The
absolute minimum, i.e., the most stable state of the
system occurs, at a nonzero value of ) . On either side the
effective mass is very large.

The foregoing discussion is concerned with the station-
ary states. If, however, a sizable electric 6eld is applied so
that X increases steadily and rapidly, there is an appre-
ciable probability that an electron will jump to an
excited-state curve. ' If a transition takes place, the
velocity does not experience anomalies and the electron
continues to behave as a free particle. For weak inter-
action the probability of a transition is high.

Let us now compare the foregoing results with those
obtained by applying second-order perturbation theory.
If one is far from an intersection point, one expects to
obtain accurate results for weak interaction. Consider
the region between f=0 and the first intersection point
where the lowest energy curve is close to the zero-
quantum curve. Second-order perturbation theory gives
for the energy

Eo=1+f' v'/(2 —2f +—')

We 6nd for &=0, o, =1
(24)

7=1
7=3,
7=5

I HEI =-', , as compared to -', for the exact theory;

I &El =3, as compared to 2.6;

I HEI =8.3, as compared to 6.2.

We thus see that, for increasing interaction, perturba-
tion theory predicts a shift proportional to y', whereas,
in reality, a saturation sets in. The accuracy depends,
however, on the values of l' and a. The perturbation
expression is valid for strong interactions if n &)1.

As t' increases we come near the intersection point,
the perturbation treatment breaks down, and one must
6rst remove the degeneracy of the zero and one-quan-
tum curves. Beyond the intersection point perturbation
theory applied to the one-quantum curve gives sensible
results for weak interactions.

Frohlich, Pelzer, and Zienau, in their discussion of
the lowest levels of an electron interacting with the
optical modes of a polar lattice, use a variational
method to obtain results considerably more accurate
than the perturbation theory. They take a trial wave-
function involving the 6rst two terms of our series Eq.
(3) and choose the ratio ai/aq so as to obtain the lowest
value possible. It is clear from our results that this
choice is adequate to handle the anomalies occurring
near the intersection point. This method is, in fact, just
the procedure which would be employed to remove the
degeneracy. From Fig. 3 we see, however, for strong

~ This probability can be computed using methods developed
by %. V. Houston, Phys. Rev. 57, 184 (1940).
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interaction (y=3), the coefficient um is large even at
f=o, so that this method will then give inaccurate
results. A technique similar to that employed by
Frohlich, Pelzer, and Zienau could be used to handle the
degeneracies at higher values of g.

(3) Case of the Transition to Periodic Potential,

Let us now pass to the limit A~O, keeping kk
finite. We also let the mass of the particles giving rise
to the oscillation tend to infinity in such a way that
ga(k/2M&v)» remains finite. The recurrence relation Eq.
(6) becomes

Vl

C

CJ

Cl

V
0
c I0
O

I I I I I I I I 1 1 I I I

0 2 4 6 8 10 12 14 16 I 8 20 22 24 26 28

Fro. 4. Wave functions for a=10.

This three-term recurrence form is similar to that arising
in the solution of Mathieu's equation and gives the
same band-type spectrum. The quantity k takes the
place of 2v/u where a is the lattice spacing in the
periodic potential problem. The difference is that here
values of ) diBering by Ak do have physical significance,
corresponding to different values for the total momen-
tum of the system. For the case where Are is small but
not zero, the energy oscillates but slowly rises as the
total momentum increases. If a weak electric field is
applied, imparting momentum to the electron, one can
say that a Bragg reQection occurs each time the total
momentum passes a maximum. The electron transfers
momentum and energy to the oscillators. These rela-
tions may be seen from Fig. 2. For small Lr the curves
for zero interaction representing dNerent numbers of
quanta in the oscillators have very nearly the same
minimum values of energy. Interaction removes the
crossing of curves and we find our bandlike spectrum.

As noted in case (2) perturbation theory is valid here
unless one goes to extremely strong interactions
(measured in units of Sar/2). That is, if one considers
two oscillators of the same ro, the one of short wave-
length satisfies perturbation theory for stronger inter-
actions.

V. RESUME

The lattice oscillator is characterized by an angular
frequency co and a propagation vector k. In the limit
of zero frequency and 6nite k the phase velocity M/k
tends'to zero and one obtains the solution of the problem
of an electron moving in a periodic potential. For zero
interaction between electron and oscillator the total
energy is 8= (n+$)kryo+ p'/2m Here n is the .number of
quanta in the oscillator and p in the momentum of the
electron. Introducing the total momentum X of the

system, we have p=X—(n+ —',)5k and

E=(n+g)l»a)+ {X—(n+-', )kk}'/2m.

The energy thus depends on two quantum numbers, X

which is continuous, and n which is discrete. One plots
E vs X with one curve for each value of n (See .Figs. 1
and 2.) Although the plots differ, depending on the
values of k aqd co, a general feature is the intersection
of curves. For values of 'A less than that at the point
of intersection, the curve representing e quanta lies
lower than the curve for n+1, while beyond the inter-
section point the reverse is true. Thus the lowest energy
state becomes that in which successively more quanta
occupy the oscillator. Introduction of interaction re-
moves the degeneracy and results in continuous curves
but the same qualitative features remain. For moderate
interactions the lowest energy curve has the shape of
the asymptote of the zero energy curves. This means
that the energy does not rise as rapidly as the zero
quantum curve and results in a high eRective electron
mass.

If one examines the curves of Fig. 3, which are for
the low frequency case, one sees that removal of de-

generacy leads to a bandlike spectrum with energy
slowly rising as the total momentum increases. The
physical interpretation is that the electron makes Bragg
reQections giving up a quantum of energy and mo-
mentum to the oscillator so that, as the total momentum
increases, the electron velocity remains bounded, but
more and more momentum and energy are present in
the oscillator.
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