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The Effect of a Magnetic Field on Electrons in a Periodic Potential
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A theorem due to %'annier for treating the motion of electrons in a perturbed periodic field is generalized
to include the e6'ect of a slowly varying magnetic Geld. It is shown that the problem reduces to that of
solving an e8ective Schrodinger equation, which is known as soon as we have soIved the problem without
perturbing Gelds.

I. INTRODUCTION V(r) being the periodic potential. We will assume that
we can solve this unperturbed problem; that is, we can
obtain the energy as a function of the quasi-momentum
y'. Let this energy by Ep(p'), and let the corresponding
normalized Bloch function be iP~ (r), i.e.,

ECENTLV Slater' has revived interest in a
theorem due to Wannier'- which enables one to

study the behavior of electrons in a perturbed periodic
potential. This theorem may be stated as follows: Say
the energy for the unperturbed periodic potential as a
function of the quasi-momentum y' is known, and
is given by Ep(y'). Let the perturbing potential be
esp(r), where a(r) is a function which does not change
appreciably over one lattice spacing (for example, the
potential of an applied electric field). Then the allowed
energies E of the perturbed problem are given approxi-
mately by solving the equation

tEo(—i&V)+e p(r) I4(r) =Et(r). (1)
The operator Ep( —it'tV) is the same function of ivi 8/B pc, —
—ihB/By, ihB/Bz as—it was of p ', p„', p, '.

The question now arises as to what modifications of
(1) are necessary when an external magnetic field is
also imposed. This problem has been studied and to
some degree solved by Peierls, ' in connection with his
investigation of the diamagnetism of strongly bound
electrons in metals. Our results will be a simpli6cation
and generalization of those of Peierls.

The simplest modification of (1) consistent with the
requirements of gauge invariance4 would be obtained by
replacing i7iV by ihV —(e/c)A—, where A is the
vector potential of the magnetic Geld. It is by no means
clear that these are the only terms which arise, for one
could add to the resulting hamiltonian any terms which
depend on the magnetic 6eld only, and which would
therefore be automatically gauge invariant. It is the
purpose of this paper to show that in fact no such extra
terms occur, and, therefore, that the energy levels in
the presence of a magnetic 6eld are approximat
given by

~pl'(r) =Ep(u')4'(r).

Now let us construct the Wannier localized atomic
functions a(r —Qp), p where Qp is the vector to the )'pth

lattice point. These functions are de6ned as

iy'. Qp
ta(r—Qp) = 2 e~ — y„(r)

QS p'

where the summation on p' is extended over all S levels
of the band in question, X being the number of atoms
in the lattice. One may easily show' that these functions
are orthonormal,

(a(r —Qp), a(r —Qi)) =4i. (4)

We used the standard notation (Pi, fp) for the scalar
product of the functions i' and imp,

Further they have the property that they are localized'
about the point Qp.' they drop off rapidly as we move
away from Q&. It is these properties that make them so
useful in discussing the perturbed periodic lattice. In
the presence of a perturbing electric and magnetic
6eld the hamiltonian K takes the form

aC= (p eA/c)'/—2pip+ V(r)+ea(r),

I Epf ieV (e/c) Aj+—eyj iP=—EP.

II. EFFECT OF A SLOWLY VARYING
MAGNETIC FIELD

3CiP=ihBQ/Bt.

For the case of no magnetic field Slater (see reference 1)
shows that it is convenient to expand tP in terms of the
Wannier functions, that is to put

Let the hamiltonian of the electron in the unper-
turbed periodic lattice be given by 3Cp= p /2ra+V(r),

ely
A being the vector potential of the perturbing mag-
netic field. We want to solve the Schrodinger equation

1 J. C. Slater, Phys. Rev. 76, 1592 (1949).
ll G. H. Wannier, Phys. Rev. 52, 191 (1937).
g R. Peierls, Z. Physik 80, 763 (1933}.
4 The requirements of gauge invariance for velocity dependent

operators have been investigated by R. 6. Sachs and N. Austern,
Phys. Rev. 81, 705 (1951).

P=g„e(Q„)a(r—Q„)

%(Q ) being coefficients to be determined. Here the
' We shall follow most of the notation of Slater, see reference 1,

Appendix I.
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summation is extended over all the points in the lattice.
Such an expansion is always possible as long as we
assume that the electric and magnetic 6elds are weak
enough so that we may neglect contributions from diGer-
ent bands. According to well known calculations of
Zener' this is usually an excellent approximation, and we
shall assume it throughout this paper. A little consider-
ation shows, however, that the expansion (5) is no longer
quite suitable when a magnetic 6eld is present. This is
because of the perturbing term of the form A y in X.
This term contains a derivative operator, and the
method used by Slater is only directly applicable to
perturbing terms which are functions of the coordinates
alone. By suitably modifying the expansion (5), we
shall be able to use most of the apparatus of Slater's
proof. Let us replace (5) by

P=P 4'(Q ) exp{(ie/hc)G„}a(r Q)—, (6)

KQ=Q 4' exp{(ie/hc)G }

P 1

y+(e/c) Jt dXX(r—Q„)XH
0

-2

2m

We may now invoke (following Slater) the localization
of the a . This allows us to put r—Q in the operator
on a, as long as the electric and magnetic 6elds are
not too rapidly varying. ' %hen we do this we obtain
very simply

Kg=+„@„exp{(ie/hc)G„}[P'/2m+V+ey(Q„)]a„,
or,

Kig=g 4'„exp{(ie/kc)G }LKo+ey(Q )]u . (8)

where

~r
G„—= A(g)d(,

To complete the evaluation of the right-hand side of
(8) we must have Koa„. This is easily accomplished as
follows: Using (3),

the integral being taken along the straight line path
joining (}„to r. The exponential term has the effect
of approximately removing the troublesome A y term.
One may write 6 in another form, which is convenient
for calculation:

D,(r—Q„) A(Q.+x(r—Q.)).

Equation (7) is obtained simply by parametrizing the
line integral in the original de6nition of G .

We must now calculate Kf Using the n. otation

4'(Q„)=%'„, a(r —Q„)=a„,

we have

KP=-KQ„%'„exp{(ie/hc)G }a„

Eo(P') =Q.B.exp{ iy' Q—,/A}.

Using (10) in (9) we obtain

(10)

Koa =X &+~, ,Q„B.exp{iP'(Q~ Q,—Q—„/h}a~
Ql, sBs'l, m+s'l

or
Koom=gsBsom+s.

Kou =X 'Z" Ko exp{ iy' —Q„/h}P~.
=X «Q„Eo(y') exp{—iy' Q„/k}p .

Expressing P„ in terms of the a we have

p„=X-&Pt exp{iy' Q~/h}a~,

so that we have 6nally

Ko~ =& 'ZiE-„~o(y') exp{iy' (Qi Q)/—a}ai (9).

Now as is well known Eo(y') is a periodic function of y',
having the periodicity of the reciprocal lattice. Thus we
may expand

+ + L(y cA/c) /2™+V+c&3&{(oc/"c)G «o Substitution of (11) into (g) then yields

exp{(ie/hc)G„}

(Ly —(c/c)(A —&G-)j'
X{ +V+8+ }8

2m

It is a straightforward matter to compute WG (see
Appendix I) ~ One obtains

8(() is themagneticf eldat thepoint(, H(g) =VoXA(g).

C. Zener, Proc. Roy. Soc. (London} A145, 523 {1934).

Kf=P + exp{(ie/hc)G }[+,B,g~,+cy(Q )g j.
If we replace m+s by m' in the first term in the square
bracket, we obtain (on dropping the prime)

Kf=P a {-+,B,%'(Q —Q,) exp{(ie/hc)G, }
+ep(Q„)%(Q„)exp{(ie/hc)G„}j (12).

Equation (12) may be put in a more elegant form if we
make use of the well-known operator identity

+(Q-—Q.) =exp{—Q &-}+(Q-)
' Unfortunately it seems rather dificult within this formalism

to make an estimate of the error involved here, and therefore it is
impossible to say exactly what the conditions are under which the
theorem to be proved is valid. This is so even without the presence
of the magnetic Geld.
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where V is the gradient operation with respect to the The Schrodinger equation reads
position vector Q . Using this, (12) takes the form

Xg=ihBQ/Bl
Kg=+„u„L+,8, exp{(ie/hc)G„, } exp{—Q, .~„}

+coo(Q„) exp{ (ie/hc)G„}]%(Q„).

Now this equation may further be simplified by using
once again the localization of the a . This tells us that
in G „and in G we can put r—Q . We have

G„(r=Q )=0

G„,(r= Q„)= ) dXQ, A(Q„—(1—X)Q,.)
0

d) Q, A(Q —XQ,).
"0

Substituting, we obtain

KP=P u„+,13, exp (ie/hc)

X d&Q, A(Q —~Q,) exp{—Q. &-}
0

We now make use of the operator identity (for a proof,
see Appendix II)

exp (ic/hc) ~" dXQ, A(Q —XQ,) exp{—Q, v }
0

=i' u exp{(ie/hc)G„}4(Q )
—(c/c)Q„G„u %(Q„)=i' u 4(Q ),

on using once again the localization of the a . Using
(15), we obtain

Z„u„{EoLP„—(e/c)A(Q )]+co (Q ) }e'(Q„)
=ihg„u„4 (Q„)

Finally, taking the scalar product of both sides with c&,

and using the orthonormality of the uo, we obtain

{EoLP —(e/c)A(Q )]+ey(Q )}4(Q„)=ih+(Q ), (2')

The eigenvalue problem associated with Eq. (2') is
identical (apart from notation) with Eq. (2), so that
we have proven that for fields which vary slowly enough
approximate eigenvalues of the energy may be ob-
tained by solving (2).

III. THE MOTION OF WAVE PACKETS

Following Slater' we can also investigate the motion
of wave packets of electrons in the perturbed lattice.
If we construct our wave packets from the solutions
of (2), then we know (Ehrenfest's theorem) that the
center of gravity of such a wave packet moves according
to the classical canonical equations. In our case this
hamiltonian is

3'= Eo[p—(e/c) A]+ e u.

The equations of motion are therefore

dx/dt= o,= Ne/Bp. , etc. ,

=«p{ Q. L&—- (ic/hc—)A(Q-)]}
dp./dt = BX/Bx—, etc.

= exp —iQ, y„—(e/c)A h,
Let us use the notation

where jp =——ikV . Thus

3'4=2-u-Lr. *~.exp{—iQ. Lp- —(cic)A(Q-)]/h}
+co (Q-)]+(Q-). (»)

However, using (10) we see that the summation over s
is easily performed:

Then

P= y —(e/c)A.

o.= BX/Bp.= BEo(p)/Bp. = BEo(p)/BP. ,

v= Vs Eo(P). (16)

Z.&. exp{—iQ. Lp- —(c/c)A(Q-)]/h}
=EoLp- —( / )A(Q-)], (14)

where EoLP —(c/c)A(Q )] is the same function' of

p —(c/c)A(Q ) as Eo(y') is of p'. Using (14), we may
rewrite (13) as

~4'=Z u-{ELp- —(c/c)A(Q-)]+&a(Q-) }+(Q )
(15)

' Since A(0 ) does not commute with p, there may be some
ambiguity in the ordering of the factors in E0(p —(ejc)A(Q )).
In such cases the order is uniquely determined by returning to the
expansion (14).

The other canonical equation gives

dp~ 8= ——LEo(P)+co ]
dt Bx

Bu (BEo BP* BEo BPo BEo BP,)+ +
Bx EBP, Bx BP„Bx BP, Bx j

Boo e f' BA, BA„BA,)= —e—+-{ s,
Bx cE Bx Bx Bx j

From this we can construct the equation of motion
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for I', :

dI', dp, e dA,

dt dt c dt

However, integrating by parts gives

A (Q„+)I(r—Q„))dX= XA (Q +X(r—Q„))
0 0

1

d) X —A(Q„+X(r—Q ))
d)

dP e (BA, BA, BA, BA
+ &a+ &@+ &s

dt cE at ax ay az
1

=A(r) —
~I dX((r —Q„) v)A.

0

By 1 BA 1 ( (BA„BA)
+-{"{

a~ . «» c& "E a~ a&i
Inserting this in our original expression we obtain

(BA, BA, ) ) 1

VG„=A(r)+ " d~ X (r—Q ) XH(Q + &(r—Q )),

Using the de6ning equations for the electric and mag- which is the required result.
netic fields

we obtain

of finally,

K= —V y —(1/c) BA/Bt

H=vxA,

dP /dt=e[E, +(1/c)(vXH) ]

APPENDIX II

%e wish to establish the identity'

exp{ —Q (v —(ie/hc)A) )

1=exp (ie/hc) 'dXQ A(r —XQ) exp{ —Q vI.
1

dP/dt = c[E+(1/c)(vx H) ]. (17)

Equations (16) and (17) are actually well known, '
though the derivations previously given diGer consider-
ably from the one presented here.

In conclusion I should like to express my warmest
thanks to Professor R. G. Sachs and to Professor J.
Powell for many stimulating and helpful discussions.

To do this, let us define an operator F(q) as follows:

F(g)=exp (ie/hc) " dXQ A(r —XQ) exp{—rtQ VI.
0

Then

APPENDIX I

%e must construct the gradient of 6 .

vG =, dXv[(r —Q„) A(Q +X(r—Q ))]
~e

But

0

X [(ie/hc) Q A(r XQ)] exp—{—gQ. v I

+exp (ie/hc) f Q A(r —XQ)dX1
10

xe~{-&Q vI(-Q v).

~1

d&[(r—Q )X(vXA)+AX(vX(r —Q ))
C

y(A v)(r —Q„)+((r—Q„) v)A],

by a well-known expansion in vector analysis. Using

vxA[Q +x(r—Q„)]=xH[Q + x(r—Q )]
vXr=o, (A v)r=A,

vG„= 1 dr[a(r —Q„)xH+A+((r —Q„) v)A].

9 A. H. Wilson, Theory of Metals (Cambridge University Press,
London, 1935), p. 61 fF., and W. Shockley, Electrons end Boles in
Semi-Conductors {D.Van Nostrand Company, Inc. , New York,
1950), p. 424 fF. The form in which we have given these equations
is that of Shockley, who makes extensive application of them in
the theory of semiconductors. A discussion of the range of validity
of these equations is also to be found in Shockley's book.

(ie/hc)Q A(r gQ) ex—p{qQ v}
=exp{—gQ vI(ie/hc)Q A(r),

since exp{—gQ vI is just the displacement operator
for the displacement —qQ. Therefore, we obtain

dF/drt= F(7t)[ Qv+ (ie/h—c)Q A(r) ]
=F(~)[-Q (v-('/h )A)]

This is a differential equation for F(rt), and may be
integrated at once, giving

F(g) =exp{—gQ (v —(ie/hc)A) {

(the constant of integration being fixed by the condition
F(0)=1, which follows from the original definition of
F). If we set g= 1 in this expression we obtain the iden-
tity in question.

'o This identity is given in a slightly different form, and with an
entirely diferent proof in R. G. Sachs, Phys. Rev. 74, 433 (1948),
Sec. IV.


