PROPAGATION OF EXCITATION

photographic registration have been checked with
higher resolution and Geiger counter registration of
intensities. This structure is all so close to the edge as
to be affected by, if not governed entirely by, atomic
optical levels modified by heteropolar (HCl) and
homopolar (Cl,) binding. Extended structure solely
dependent upon electron scattering was not ob-
served.
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There is nq agreement between theory and experi-
ment in the case of Cl, for which the best chance of
checking theory and experiment is expected. This serves
to point up other discrepancies cited in the Introduction
and to indicate that the theory of the structure to be
found for absorption in molecular gases, within several
tens of volts immediately on the short wavelength side
of the main edge, is unsatisfactory.
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It is shown that, in insulators, overlapping of the electronic wave functions of near-by crystal constituents
is not necessary for effective transfer of excitation energy by the “exciton” mechanism. The electromagnetic
interaction of the ‘“virtual” dipoles of the transition is sufficient to give rise to such transfer characterized in
cubic crystals by a wave number k, and an anisotropic effective mass, given in order of magnitude by the
ratio electronic mass/oscillator strength of transition. Implications and limitations of the calculation are

discussed.

I. INTRODUCTION

URING the past year, a basic advance has been

made in the understanding of the processes of
migration of energy in ionic crystals,! through the ex-
perimental work of Apker and Taft. Although these
workers dealt with photoelectric emission, an ines-
capable conclusion from their results is that part of the
emitted electrons derive their energy only by some
intermediate transfer process from the energy of the
incident photons. Since the energy distribution of this
group of electrons (called the S-group by Apker and
Taft) does not display the characteristics one would
expect if the electrons were directly released by ab-
sorption of light, one is led to the hypothesis that, in an
intermediate stage, the energy is carried by what have
been called “excitons.” These entities were first intro-
duced as a theoretical concept by Frenkel,? and signify
a moving state of electronic excitation energy in the
lattice. That electronic states of this kind must in
general be characterized by a wave number, rather
than by a label corresponding to the atom on which
they reside, is a consequence of the strong coupling
between adjacent constituents of the lattice; in the
alkali halides the participating units may presumably
be considered to be the halide ions.

* A preliminary report of this work was given at the New York
meeting of the American Physical Society, February, 1951, Phys.
Rev. 82, 315 (1951).

t Supported by the ONR.

1L. Apker and E. Taft, Phys. Rev. 82, 814 (1951); 81, 698
(1951); 72, 964 (1950) ; M. Hebb, Phys. Rev. 81, 702 (1951).

2 J. Frenkel, Phys. Rev. 37, 17 (1931); 37, 1276 (1931) ; Physik.
Z. Sowjetunion 9, 158 (1936).

An important purpose of the present paper is to show
that the use of the term ‘“exciton’ (for electronic ex-
citation energy traveling in an insulating solid) is
appropriate to a situation in which there is ‘“‘strong
coupling” of any type between an excited atom and its
neighbors. In particular, appreciable overlapping of
their electronic wave functions is not necessary to
insure “strong coupling” of the crystal constituents.
It will be seen as a principal result, that energy transfer
by electromagnetic “near zone” interactions may take
place very quickly in certain crystals.? Thus, because of
this interaction alone, one must characterize the wave
functions of the excitation by a wave number (and
hence one is obliged to use the term exciton), rather
than view the excitation as well localized on single
atoms or molecules. This does not require the ap-
pearance of a new band in the spectrum of atoms when
they are placed into condensed systems. The structure
in absorption spectra due to the doublet levels charac-
teristic of the bromide and iodide ions, for example, is
observed also in the solid state. The work of the present
paper demonstrates that one has every reason to
believe that these levels become typical exciton levels
when the ions mentioned are made the anions of ionic
crystals.

Further discussion of the implications of our calcula-
tion will be given in later publications. The authors
wish to thank Professor Frederick Seitz for suggesting
that a suitably simplified model of an insulating crystal

3 This is analogous to the mechanism of “sensitized fluorescence”
in gases. G. Cario and J. Franck, Z. Physik 17, 202 (1923), and
many later papers.
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Fic. 1. Dependence of exciton energy on wave numbers for
(u, k)=90°, in a face-centered crystal. Ordinate: (Ex"—E ")/
| ul2n°=E. Abscissa: | k|d, where d=(2n0)~. I : Integral Approxi-
mation (same for all directions of £). 4 : k in 100 direction. B: k in
110 direction. C: k in 111 direction.

be chosen, with the problem of electromagnetic ‘“near
zone’’ exciton propagation in mind.

II. CALCULATIONS AND CONCLUSIONS

A suitable framework for this study was proposed
long ago by Frenkel? and Peierls,* but they do not ap-
pear to have emphasized the relative importance of the
electromagnetic coupling between atoms. This leads
to several important conclusions which are discussed
in the latter part of this section, and form the principal
content of the present work.

We consider a cubic crystal of effectively infinite size,
on the lattice sites of which are arranged identical one-
electron atoms, whose thermal vibration we shall leave
out of the computation. As a starting approximation,
we may take a determinant wave function of all the
atoms, which ignores spin effects and neglects the over-
lapping of the ground-state wave functions on different
atoms. This does not mean that exchange effects are to
be totally ignored, as we shall see, and hence does not
exclude the kind of band formation characteristic of a
quantum theoretical approach (although we do assume
that the effects of overlap, and hence exchange, on the
normalization, are secondary).

As a convenience we shall assume that the ground-
state atomic functions are S-type, and that the corre-
sponding excited state wave functions have P-character.
Since the lattice has cubic symmetry, we need not con-
cern ourselves with the orbital degeneracy of the ex-
cited state; (i.e., it is not lifted by the cubic symmetry),
this has an important corollary the fact the state may
in principle have an arbitrary direction of polarization.

Thus the ground-state wave function is®

‘//1"(}’1) ¢1°(_TN)
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4 R. Peierls, Ann. Physik 13, 905 (1932).

5 For a brief summary of Peierls’ and Frenkel’s work, see F.
Seitz, Modern Theory of Solids (McGraw-Hill Book Company,
Inc., New York, 1940), pp. 415-417.
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and a typical zero’th order excited state wave function
will be

'//1°('l‘1) ¢1°(.rzv)
g : ) ()
J —\/N! 24 '(1'1 124 .(I‘N .
‘r”NO..(rl) ¢~°kr~)

Here the superscript 7 refers to the nth excited atomic
state of energy e., the subscript labels the nucleus
involved, the vector argument refers to the electron in
question. The energy corresponding to ¥,, is found
to be:

E'=Nep—3d S f (e)5(es)
I1,J

1
X—Yr(r2)y s (r)dridre. (1)
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where the prime acts to exclude the case in which 7=,
Consistently with the assumption that no overlapping
of the ground-state wave function takes place, we have
neglected here the total coulomb interaction of neigh-
boring atoms. We have used the hamiltonian

H=Y Hi+>1,/H:s

— R P & &

V& Hp=3%'—=3—+2'—,
I
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where V2 refers to the ith electron, associated with the
Ith atom, and the small letters refer to the electrons,
the large to the nuclei.

The energy of the excited state wave function ¥ ;»
is computed to be

Ejrr=Neten—e—e* 3
Lo

1
X f Y s (1) Y 1 (1) —¢ s (1) ¥ s (re)dridrs

712

s f P (xs)

2 I=M
I=J
T=M

1
X—Yr(r)y¥a(r)drdrs.  (2)

712

Here ey=energy of the isolated atom in its ground state,
e, =energy of the isolated atom in its excited state, and
N=total number of atoms or electrons. The excited
state wave functions do not diagonalize the hamil-
tonian, and, of course, are degenerate. The off-diagonal
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matrix elements are typified by E;z,

EJL=f s f‘I’J"H‘I’L"dTp cedry.

i=1, - N

These reduce to

EjL=¢ f 'PJ"(rl)‘h"(rz)—\lu“(rl)h"(rz)dndrz

‘“‘coulomb”
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712 ‘“‘exchange”

In order to obtain a correct zero’th order wave function
from the degenerate set ¥ ;" the following linear com-
bination is chosen

=1/A/NY_; exp(2wik-r;)¥ ;m.

It may be verified that the off-diagonal matrix elements
of two wave functions with quantum numbers k and kK’
do indeed vanish, if one uses the é-function relation:

ZJ exp[Zm(k—k’) . l’J:]"—‘ 51;._1", 0.
The new diagonal energy is found to be
Eyn= EJJ"+Z JEjL exp[21rik- (I‘J— IL)]. (4)

The prime signifies that J>~ L, and the sum is to be
taken over all lattice points.

It is at this stage of the calculation, we wish to stress,
that previous treatments diverge in emphasis, as well
as in the physical conclusions drawn. In order to
evaluate the lattice sum in Eq. (4), it is expedient to
examine the terms in the expression (3) for E;;, as
functions of lattice parameter. For convenience we
proceed in reverse order; i.e., we shall first consider
the “exchange’” term. This will depend exponentially
on lattice parameter, somewhat in the fashion (¢?/R)
Xexp(—2R/a) where a=equivalent Bohr radius of the
excitation; R=nearest neighbor distance. Hence, only
the nearest neighbors, if we consider the important
lower excited states, will contribute to the lattice sum.
Furthermore, even this contribution will be small,
because of the exponential dependence, at a density
characteristic of many ionic and molecular crystals.
Further discussion will be given this term later. The
other term in E;., the coulomb part, is nothing more
than an expression for the interaction of two charge
clouds, each with density equal to the product of the
excited and ground-state wave functions of an isolated
atom. Such an integral can be expanded in the lattice
parameter, or, more conveniently, in the distance
between the atoms R. One obtains

Qle' (QlR‘vz QzR-yl)
R \ R R

Y1 Y2 (u1-R)(u2-R)
( B (-R-s— )

EXCITATION

IN A CRYSTAL 811

Here

Q1=f'//J"(f1)‘/’J°(fl)d71, Q2=ftl/L”(t2)lPL°(rz)de
wm= ef‘PJ"(l'l)[l'l— 1y Y, (r)dry,

2= ef‘PL"(rz)[l'z— r JWLo(ra)drs.

Thus the first two terms cancel, and we are left with
the third term. Because we have neglected thermal
effects, the vectors u;, us have the same direction and
magnitude for all atoms, and hence the final expression
for the lattice sum of the coulomb parts of the original
off diagonal matrix element is

3 cos?(u, ry—rr)—1
Z'EJL=“‘[L1|2Z'( )
L L

[rr—1s]3
Xexp[Zrik- (I‘J— IL)].

Note that the contributions of distant neighbors,
especially for |k| =0, cannot be neglected, as previous
treatments have done.?4°

It remains to consider the relative magnitude of the
coulomb and exchange terms. A rough idea may be
obtained by considering the excitation of the lowest
level (exciton level) in an alkali halide. The excitation
may be regarded as characteristic of the halide ion lattice,
and thus R may be chosen to be the nearest like neighbor
distance, for purposes of comparison. When this is done,
and an oscillator strength of order unity is assigned to
the dipole transition represented by |u|, one sees that
the relative order of magnitude is about

exp(—2R/a)/R exp[—(2)(3.14)v2/(1.5)]
a?/R? ((1.5)/(3.14)v2)?

a number of the order of 1/10. A more precise compari-
son will certainly not invert the relative importance of
the two terms.5 It is seen that the dipole-dipole term is

L L N L 2 L L
“5/8  c1/2 ~3/8 /4 /8 o /8 1/4 3/8 172 5/8

Fic. 2. Dependence of exciton energy on wave number for
(u, k) 0° in a face-centered crystal. The symbols have the same
meaning as in Fi ig. 1.

6 The writers are indebted to Dr. D. Dexter for making available
to us his results on the “spread” of exciton wave functions in NaCl.
See Phys. Rev. 83, 435 (1951). It is shown there that most of
the charge density of the excited state is concentrated on the CI~
ion (not on the Nat ions as is commonly supposed),
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the important one. The sum, when carried out for
|k| =0 (i.e., |k|RK1) is nothing more than the inter-
action energy of a lattice of static dipoles of magnitude
|u|. If we neglect the contribution of outer surface
(depolarization) terms, and replace the summation by
an integral, both of these operations being permissible
when |k|~0 (i.e., of order 1/A,,) we obtain

Ey"=E;;"+87/3P; (cos(u, k))no| | *{ jo(e)— j2(p)},

where P, is the Legendre polynomial of order two, 7,
the density of atoms and j, and j, are spherical bessel
functions” of argument p=2n|k|R,, where R, is de-
termined by the condition that (47/3)R*=1/n,.

It should be specifically mentioned that the summa-
tion method used breaks down when |k| precisely
equals zero, because then the outer surface terms are
just as important as contributions from nearest neigh-
bors. In practice, however, |k| never exactly equals
zero (except possibly when, under the influence of lattice
polarization, the exciton may become trapped. Our
treatment is not appropriate for such situations). This
result applies to any centro-symmetric cubic lattice,
but the integral is a good approximation only for |k|
small, but not zero. It is to be noted that if |k|—0,
(», k)=90°, we obtain a factor 4w/3 which bears a
strong resemblance to the Lorentz-Lorenz polarization
contribution. The relevance of this fact for a considera-
tion of the problem of “local fields” is discussed in a
paper by Heller and Dexter.® Figures 1 and 2 illustrate
the goodness of approximation of the integral to the
sum for the particular directions relative to the cubic
axes (in a face-centered crystal) which are indicated.
It is to be stressed that the angle (u, k) is completely
arbitrary, and thus that anisotropy of exciton motion
may be expected even in a cubic lattice. Although
only the state (@, k) =90° will be excited by light waves
if the simultaneous creation of phonons is neglected,
others may arise through interaction with lattice modes,
and during creation of excitons by a-particles or
B-rays.

The sums were carried out by use of an extension of
Ewald’s method of theta-functions given by Born and
Bradburn.? The method is very elegant (although it
would have to be revised for |k| =0 in our problem in
which case, fortunately, the answer is known). Con-
venient numerical tables are given in the articles of
Born and Misra.!

The significance of the qualitative results presented is
seen most strikingly if we find the reciprocal effective
mass of the exciton near (but not at) the base of the
energy curve, by the usual method, taking a second de-

7 P. M. Morse, Vibration and Sound (McGraw-Hill Book Com-
pany, Inc., New York, 1948), second edition, p. 316.

8W. R. Heller and D. L. Dexter (to be published).

9 M. Born and M. Bradburn, Proc. Cambridge Phil. Soc. 39,
104 (1943).

0 R. D. Misra, Proc. Cambridge Phil. Soc. 36, 173 (1940); M.
Born and R. D. Misra, Proc. Cambridge Phil. Soc.¥36, 466 (1940).
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rivative. This gives

( 1 ) 1 62E)
Mett Iklzo— 72 Ok? / |x|=~0

2

8 |9 ‘ NN
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Changing to the oscillator strength fno by use of the
relation:
(er—eo)malul®

S =

one has
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In other words, the effective mass will be positive or
negative depending upon the relative orientation of u
and k (and, incidentally, the effective mass can become
infinite for certain relative orientations), but, in general
we may say that Mexciton™ (Melectron/ fno) (Ro/@), and is
positive when the exciton is created by light (since
P (cos90°)=—%). Thus the smaller the oscillator
strength, the slower is the propagation of excitation,
for a given kinetic energy of the exciton.

These findings should be compared with Foerster’s!!
result that the speed of migration of excitation from one
molecule to another in a dilute solution of dye molecules
varies as the inverse sixth power of the mean separation.
Our picture of exciton migration deals with a different
limiting case, that in which the density is so high that
the stationary states cannot be well approximated by
imagining only one atom excited at a time. Thus,
throughout the region of high concentration, the ap-
propriate model is much more like that of the electron
wave packets in metals, in which collisions (changing
k and, in general, u) will take place during the lifetime
of the excitation. This approach suggests that a typical

“maximum diffusion distance” of an exciton wave
packet will be given by d, where

a< (<7)zthermal>7'thermal7'opt)*
~ (104X 107X 10~#8)}=10~* cm,

although the total path length covered may be of the
order of centimeters. Of course a competing process,
such as creation of F-centers, may rob the exciton of its
energy long before the optical lifetime is up.

1T, Foerster, Ann. Physik 2, 55 (1948), and references to
earlier work there given.
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It is interesting to realize that the lattice sum which
leads to the main conclusions is a very sensitive func-
tion (for |k| ~0) of the distant configuration of atoms.
This implies that if the crystal has dimensions of the
order of the diffusion distance or smaller, one may
notice peculiar effects (due to the consequent aniso-
tropy and increase in magnitude of the effective mass)
in fluorescence or other phenomena associated with
energy transfer by this mechanism. It was pointed out
to the authors®? that Vavilov® has observed unusually
well developed luminescence phenomena in very fine
capillaries, using dye solutions which do not display
such effects in bulk. The fact that the atoms in solution
are not arranged in a cubic lattice should not change the
qualitative prediction.

One may emphasize that all our conclusions follow
from the premise that there is only a small amount of
actual overlapping of the excited state wave functions
of the electrons. While this premise will not hold in
some cases (obviously not in the case of strong valence
bonds between the crystal constituents) it should be
qualitatively appropriate in certain ionic and molecular
crystals in which the electronic wave functions are large
at the sites of relatively widely spaced crystal consti-
tuents and small in between them. Qualitatively similar
conclusions should hold for pure liquids and solutions
in both the solid and liquid states, since the only differ-
ence will lie in the random arrangement of the excited
atoms or molecules in these systems.

An important point to be settled before the present re-
sults can be applied to actual crystals is that of the ef-
fect of lattice vibrations on the calculations. Reasoning
from an argument based on the use of the custom-
ary plots of total energy versus nuclear configura-
tion coordinate, one might expect that “resonant trans-
fer” of electromagnetic energy must await a favorably
similar disposition of the configuration coordinates of a
neighboring atom. But, as was stressed in Peierls’
fundamental paper,* such curves are appropriate only
when the energy levels of the electronic system are very
widely spaced relative to the interaction energy with the
important lattice vibrations. Otherwise, (as is the case
for strong coupling) the adiabatic approximation on
which the use of the energy curves is based, must break
down, and, in fact, one should solve the problem of the
states generated by the “mixture” of the two quasi-
continuous spectra of the excitons and of the phonons.

Difficult as this is, one sees that such a mixture will
allow the resonant interaction to have its effect without
waiting, so to speak, because the nuclear displacement
coordinates no longer correspond to precise points on
the curve of total energy. We may thus see that the
resonant near-zone interaction should make possible
a well-developed band structure with its quantum-

2In private conversation with Mr. E. Jacobs and Professor
E. Rabinowitch.
18 S. Vavilov, Doklady Akad. Nauk. S.S.S.R. 67, 811 (1949).
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mechanical implications as regards the nonlocalization
of energy, even when the lattice vibrations are taken into
account. A criterion, then, which allows us to reason as
in this paper, without taking specific account of the
lattice vibrations, is simply that the band widths due to
electromagnetic coupling be large (and hence that the
spacing between levels be small) compared to the lattice
vibration energies which are relevant for the particular
electronic transitions. In ionic lattices this criterion
should be satisfied, if fa.o is not much less than 1, at
practically all temperatures. In molecular crystals
however, especially for small oscillator strengths and at
low temperatures the argument based on energy curves
may apply; the excitation mass will then be limited to
values effectively of the order of nuclear masses, i.e.,
propagation will be relatively slow.

SUMMARY

It is shown that overlapping of electronic wave func-
tions on nearby atoms or molecules in crystals is not
necessary for effective transfer of excitation energy by
the exciton mechanism. This is due to the fact that the
principal interaction, varying as 1/R?, is characteristic
of electromagnetic oscillators in their quasi-static zone.
For an idealized cubic crystal, the results are obtained
that anisotropy exists, in general, in the motion of
excitons, and that the effective mass of an exciton
corresponding to a dipole transition is given in order
of magnitude by

Megs~(mer/ fro) (Ro/a),

where mq=mass of electron, fno=oscillator strength
of corresponding isolated atomic transition, a=equiva-
lent Bohr radius of internal exciton orbit in crystal
Ro= (37n0)}, and no=atomic density.

The qualitative conclusion is pointed out that for
sample dimensions small relative to the “diffusion dis-
tance” of an exciton, one should observe characteristic
changes in the effective mass. Also, the whole discussion
should have qualitative value for energy transfer in
liquids or concentrated solutions, under suitable re-
strictions, although the atomic arrangement here has
no long range order. A discussion is given of the effect
on the results of accounting for lattice vibrations.
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