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bismuth, small amounts of nonferromagnetic impurities
do not appreciably e6ect the 6eld dependence.

In Fig. 1 hx is plotted against the component of the
magnetic Geld strength in the direction of the hexagonal
axis for the Gve temperatures investigated. It is seen
that the Geld dependence persists up to at least 85'K.
The variation of y3 with GeM strength in the region
investigated is of order 0.01)&10 ' while it is of order
0.05&10 ' at 20'K and 0.25X10 ' at O'K. At 85'K
y3 is of order 0.20&10 ' and hy is of order 0.05&10 '.
Thus at 85'K the variation is x3 in about 5 percent
while the variation in hx is about 20 percent. As
previous work at this temperature was done using the
body force method, which gives a direct measurement
of x3, it is not surprising that GeM dependence was not
observed.

It would be desirable to have more data at higher
Geld strengths to see if y3 performs the oscillations
characteristic of the de Haas-van Alphen eGect. Note
that, in contrast to the efI'ect at hydrogen and helium
temperatures, the maxima and minima do not occur at
the same Geld strengths for different temperatures. It
would also be desirable to have more data between 85'K
and 300'K in order to determine the point at which the
Geld dependence disappears.

At helium temperatures gs oscillates about the value
which it approaches for low Geld strengths. Table I lists
the average values of x3 found by other investigators
and the low fLeld (2.7 ltilogauss) values found in the
present work. It is seen that the low Geld value of y3 is

approximately constant up to at least 63'K.
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The purpose of the present note is to show, with the aid of an elementary example, that the commutation
rules, which are usually given the rule of postulates in quantum mechanics, are in fact not arbitrary, pro-
vided that a more stringent de6nition of the Hilbert space and a strict expansion theorem are adopted.

L INTRODUCTIOH
' 'N this note the following problem, which has been
~- recently treated by signer, ' is considered again.
In the formulation of quantum mechanics, one often
wonders whether it is possible to reverse the ordinary
procedure, in which the commutation relations are
erst postulated as a generalization of the classical
poisson bracket and then the equations of motion are
deduced. The problem is whether one can derive the
commutation rules from the equation of motion taken
over from the classical theory, together with the postu-
late that the energy is a time displacement operator, i.e.,

f=D&j' (~)

where f is any dynamical variable of a given system
and II the total hamiltonian. By way of illustration,
we shall consider the case of an harmonic oscillator
where B=—', (x'+x') with @=co=i. Here one notices
that II is itself a function of x and i, where i is deGned

by x=Lx, Pj. Thus a relation of the type (1), with

f=f(x, x), is a complicated relation between the com-

mutators. The conclusion which signer arrived at in

this example is negative; i.e., the correct solution

[x, x]= 1 does not follow uniquely. lt will be shown in

the present note that by properly formulating the

' K. P. %igner, Phys. Rev. 77, 711 {1950).

conditions, including a more stringent definition of
Hilbert space and a strict expansion theorem, the
commutation rule will follow uniquely, though with
less stringent deGnitions other solutions cannot be
excluded. .

It must be stressed that whether or not a state is
physically permissible, cannot be seen clearly without
referring to a special representation. Hence, it is the
suitable boundary conditions in a special representa-
tion, laid down on physical grounds and in general
being diferent for di6erent systems, that serves to re-
strict wave functions to a certain special type, to in-
clude at the same time all permissible ones, and thereby
to mark precisely the complete Hilbert space in which
the state of the system is depicted and its operators
apply.

For the oscillator one requires that the eigenvalues
of x and i form continuous spectra and extend from
—00 to +~, and that H be positive de6nite. ' These
restrictions do not suKce to mark completely the
appropriate Hilbert space. For this purpose one has to
impose restrictions on the energy eigenfunctions P„(x).
Here we have, as is obvious on physical grounds, a
natural boundary condition, i.e., P„(x)—4 as x~& ~
for all e.

g It is then st.cient to deduce that H is discrete I see {10)j.



QUANTUM RULE OF HARMONIC OSCILLATOR 789

We summarize the conditions for the deduction of
the commutation rule in the case of the harmonic
oscillator.

(a) Hamiltonian H =q(x'+i')
(b) Equation of motion i+x=0
(c) The complete Hilbert space for the system de-

fined by the complete set of energy eigenfunctions f„(x)
satisfying the boundary condition that P (x)—4 as
x-+~ca (—oo (x(+ ao)

(d) Superposition principle in the Hilbert space de-
fined in (c). By (c) and (d) we require that any physi-
cally admissible state represented by a wave function
satisfying the boundary condition in (c) shall be ex-
pansible in terms of the set of energy eigenfunctions.
Here we need the stringent delnition of the expansion
theorem; for an arbitrary admissible wave function
f(x), we require that the expansion

2 a-II-(x)
0

converges absolutely and uniformly to f(x) If a le.ss
stringent de6nition is adopted, namely,

converges to f(x) only in the mean

Rfx)= I
—x). (6)

From this representation of 5, one obtains the explicit
operational form of i;

d c(x)i= i +—g(—x)+i R,
dx 2x

where g(x) is real. It can be shown that the term g(x)
can be removed by properly choosing the phase factor
in the x-representation. Using a star to denote the
operator in the new representation, one has

Jd)* d d dy
=e '~—e'fI= —i—

L. dx) dx dx dx

R*=e '~Re'fl=e "&-R

where y is a real function of x, and y is the odd part
of y. If for y one chooses y= J'g(x)dx, (7) becomes

( d
~

* c'(x)i = i
I

—
I
+i —R*, c'(x) =c(x)c"&-.

Edx) 2x

hermitian property of S requires that c(x')=c*(—x').
Hence in the x-representation one can write

S=c(x)R,

where R is the reQection operator defined by

+GO

lim If(x)—P a„P„(x)I'dx= 0,x~J 0
Dropping the stars and the dash, and with the help
of (2), one can show that c(x) is a numerical constant,

~ ~

then we cannot rule out other possibilities than [x, i]
=i. These conclusions, however, cannot be reached zc
without referring to the x-representation where a i= —i—+—R
natural boundary condition can be laid down. dx 2x

II. DEDUCTION OF THE COMMUTATION RULE

From (I) and (a) with f=x, it follows that

i = [x, —,'i')=-', (i[ xi3+[x, iQ).
Introducing S= [x, ij—I, one has

The next step is to set up the symbolic energy eigen-
states by using the variables iI = (i+ix)jVX and iI*= (i
—ix)/VZ. ' Following a similar argument to that usually
used in the treatment of the harmonic oscillator, it can
be shown that starting from the lowest state

I 0) char-
acterized by

{S,i}=0, (2) &*Io&=0
where the curly bracket is the anti-commutator. From
(I) and (b), one has similarly

IS, x}=0.
From (2) and (3), it can easily be shown that

L» )=[»*j=o Ls IIj=o

(3)

which shows that 5 is a constant of motion, and that
P is a real numerical constant.

In the x-representation, (2) becomes (x'+ x")
X(x'ISIx")=0.Hence it follows that

(*'ISI*")=.(x')S(x'+x") (&)

where c(x') is an arbitrary function of x', and the

one can obtain the excited states by successively
multiplying on the left of Io), the energy difference of
two neighboring states being always 1. The scheme of
energy eigenstates and their corresponding eigenvalues
are

I o&, ~ I o&, e'I o&

—,'(I+cRp), -', (3+cRO), —,'(5+cRO), . ~ .

where c is a real constant so far undetermined and Ro
is the eigenvalue of R in the ground state, being either
1 or —i. The condition that H is positive dednite

'See P. A. M. Dirac, The Principles of Quantum Mechunics
{C1arendon Press, Oxford, 1947), 3rd edition.
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requires that
cEO& —1.

By using the result of (8) and (9), it is possible to
investigate the ground state of the oscillator. For

rpo do not meet our requirement (d) is obvious, when
one considers the expansion of a permissible wave
function that is finite at the origin, such as exp( —x'/2).

~ ~

~

1 i ( d c
x —(x-~x) o = x-I —+—z-x

I
o

42 vT & dx 2x

or, writing &0(x) =(x{0)

(12)

where

exp( —x'/2)=P u &'&P &'&

f g ) tl

I y &,&b

EV2)

{~ (D+2r/x) D(D+2r/x) D }
exp( —x'dx),j n factors

CE(1——{j

v=0

6 +8 s ~ ~

~ ~ ~

(14)

The wave function of the eth excited state for any v

follows from (8) and (10)

0»"(*)=&*I~"
I 0)

(g) "( d c
=I —

I I

——+x+—8
I lP &'(x)X &' (15)

(v2) ( dx 2x 3

where X„('~ is a normalizing factor

.V„&'= {(1+2r)2(3+2r)4. .}
—1.

v
e factors

Substituting (13) in (15) one obtains

) a

f„i'(x)=
I

—
I
1 "b,x'e**"

LvZ)

y { (D+ 2r/x)D(D+2r/x)D}~". (16)
s factors

It becomes clear that for even e the lowest power in
x in the expression (16) is always x', and for odd r& it is
x~', irrespective of the value of r The set P„&'&(x.) with
rpo will vanish at x=0 for all m. That these sets with

Here the condition (c) is used. It follows that the
admissible solutions can be written in the form

&0&'&(x) =b x' exp( —x'/2) (13)

where r= (—1)"c/2 and b, = (2~'/1. 3 5 (2r—1)l~)l
is a normalizing constant. It should be noted that (12)
is an eigenvalue problem; there exist solutions of (12)
only for certain values of c. The spectrum of c and the
corresponding ones of cRO and r allowed by (11) are

8 t ~ ~

which is zero when (&i+r) is odd, and finite when (n+ r)
is even. The expansion in (17), therefore, ceases to
hold at x=0, though they can be shown to converge
in the mean. We have seen now that only the set f "'
meets all four requirements and that S must be a null
operator.

III. DISCUSSION

It is seen that the deduction of the commutation
rule in the case of the harmonic oscillator requires in
particular "a suitable boundary condition to mark the
appropriate Hilbert space" and "the strict expansion
theorem. " It is dificult to say that such a stringent
expansion theorem should be rigidly fo11owed in quan-
tum mechanics. But once this is adopted, it has been
found that this formulation of the quantum rule seems
to hold for any nonrelativistic particle with a reason-
able potential function expressible as a power series in
x. A possible application of the present formulation is
its connection with the second quantization of Bose
particles. If the lagrangian of the field contains deriva-
tives of the field variables higher than the second, it
is no longer possible to derive the hamiltonian from the
lagrangian as an explicit function of pairs of conjugate
variables, but the former can only be brought into the
form P„P„*F(D',D)g„where P„are the field variables,
D and D' operate on P„and f„*, respectively, such
that ~„=&t „and f„*D'=&t„*, and F is an arbitrary
function of D' and D. The definition P„=[/„,P] to-
gether with the equation of motion derived from the
lagrangian is all that is needed to obtain quantization;
any guess of the commutation rules among the Geld

variables and their derivatives is redundant and may
be quite wrong.
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