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The Boltzmann equation for the multiple scattering of charged particles is solved for a semi-infinite me-
dium by means of the Laplace transformation. The sources are isotropic and distributed throughout the
medium, corresponding to a thick layer of electron emitting atoms. The solution is obtained as a series in
spherical harmonics and is carried as far as the P, coefficient. In order to obtain a solution it is necessary to
assume that the transport mean free path X is not a function of energy. As a particular evaluation of the
solution the flux on the surface is examined and modified to correct for the energy dependence of X by com-
paring with the corresponding solution of the age diffusion equation. The resulting spectrum is compared
with an experimental case of 301.3-kev photoelectrons produced in a thick thorium converter. Using the
experimental spectrometer resolution of 1.5 percent the theoretical spectrum is integrated over the window
curve and a shift of the peak from the edge of the primary spectrum of 4.3 kev is obtained. Considering the
errors involved this compares favorably with the experimental peak shift of 3.5 kev for a converter thickness

of 25 mg/cm?.

I. INTRODUCTION

N the study of multiple scattering of charged par-
ticles much has been done within the limits of the
small angle approximation, that is, by exploiting the
fact that the scattering is predominantly forward.
However, little has been done to include the effect of the
wide angle scattering in the transport process and it is
precisely this effect that must be considered if any
knowledge of backscattering is to be obtained.

Goudsmit and Saunderson! have developed the theory
for the angular distribution without the small angle
limitation but this does not include the spatial distribu-
tion. Snyder and Scott? studied the integro-differential
Boltzmann equation but again the small angle approxi-
mation was made. Lewis® studied the Boltzmann
equation in an infinite medium and obtained the Goud-
smit and Saunderson angular distribution. In addition
he developed a method for obtaining the moments of
the spatial distribution.

The purpose of this paper is to study the solution of
the Boltzmann equation in the presence of boundaries
and thereby to gain some information on the back-
scattering. In particular, the multiple scattering in a
semi-infinite medium is examined. The method, depend-
ing on an expansion in spherical harmonics, is not well
suited for such situations as incident beams but con-
verges rapidly for spherically symmetric sources. The
main difficulty with the method is that the scattering
cross section is not allowed to vary as a function of the
velocity. Within this limitation the energy loss is
treated by considering the energy as a function of the
residual range of the particle.

The general method for solution of the Boltzmann
equation in a semi-infinite medium is outlined in Sec-
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tion II. In Sections IIT and IV the problem is solved for
a uniform distribution of spherically symmetric sources
and the flux at the surface is calculated. In Section V
an estimation is made of the correction due to the varia-
tion of the cross section with velocity. This corrected
flux is applied in Section VI to an experimental example
of the energy spectrum of a thick source of electron
emitters.

II. GENERAL METHOD
A. Transport Equation

We consider the distribution function f(x, s, v) in the
semi-infinite medium, where x is the perpendicular
distance in from the surface, s the distance the particle
has traveled, and v a unit vector designating the direc-
tion of motion. This function satisfies the transport
equation

af/ds+udf/dx= Nfr_f(x, 5, v)
—f(x, 5, v)Jo(v-v)av', (1)

where N is the number of scattering centers per unit
volume, %= cosf relative to the x axis, and ¢(v) is the
differential scattering cross section. The source is
treated as an “initial” condition.

The procedure followed to solve the transport equa-
tion is to expand f(x,s,v) in Legendre polynomials
and to solve the resulting system of equations by means
of the Laplace transformation. Since the angular de-
pendence of f is only through cosf we can let

f(x: S, V) =Zl(2l+ l)fl(x7 S)Pl(u)'
Putting this into (1) and operating with /2" Pudu we
get

of afy o
2 s f PouPudu
as i ox -1

=N T @S, L pr(u)
X[Pi(w")— Py(w)]a(v-v')dv'du.
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Using the recurrence relation for #Py in the second term
we obtain, for this term

! U+1 14
PuMPzd'lt: 2 51, 1l+1+
2041 241

(2i+1)

—1

Onv_1;-

For the right-hand side expand the cross section

o(u)=3".2n+1)c Pn(n),

with
1

=13 f P,odu,
1

so this term becomes, using the addition theorem for
P(u),

1

2ENE S (2 1) 2 1) fic f f Pulu)

X[Pu(w')— Py(1) JPo(u) P (1) dudw'

= SWNle(Cz'—Go).
If we define

ki(s) =27 f o)1= Pi(u) du,
then Eq. (1) becomes

a
(21+1) (5;‘*‘ Ki(s) )fz(x, 5)

0
+5_[(l+ 1) fupa(x, )iz, $)1=0.  (2)
x

In this problem the explicit form of the «; is deter-
mined by the fact that we use the scattering cross sec-
tion for the screened coulomb potential V= (Ze/r)e "/,
that is

o(u)=C/(1—u+2¢), ®)

where C=(Z%")/(m*") and Yy =Fh?/(2amv)?, v being the
velocity of the scattered particle. For the cases we
consider here ¥ is small, so for moderate values of / we
have*

1=0, k=0

1 1
1540, mercz(z+1)[1n;+1~2 zl; —]. 4)

m=1 m
We will first assume that ¢ is not a function of energy,
then later study the modification due to energy de-
pendence.

4 See reference 3, p. 528.

IN A SEMI-INFINITE MEDIUM
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B. Solution by Laplace Transformation

To solve the system of differential Eq. (2) we make
the Laplace transformations

Iy, £)= f f filx, s)e~=ve*tdxds.
o Yo

Thus integrating (2) over x and s we get the system of
equations (x; are now constants)

(2l+ 1)(t+ Kl)hl(y) t)+y[(l+ l)hH-l(yy t)+lhl—1(y’ t):]
=+ D01+ (O+ 2IH-1)vu(y), (5)

where the transform of the distribution function at the
boundary and at the “initial time” are given by

()= f 10, )eds, vily)= f fi(a, 0)e-=vdx. (6)

The method of solution of the system (5) was sug-
gested by a procedure applied to neutron diffusion® as
well as a similar treatment of Chandrasekhar® on solar
radiation. To simplify the equations we take s and x
in units of the transport mean free path 1/«,. Utilizing
the relation (4) for the k; we make the approximation

ki/ k1= 3H(I+1).
Then Eq. (5) becomes

lyhi_1(y, )+ a)ly, )+ (D yhia(y, )
= I+ DO+ ina(O+ QIHDvily), (7)

where a;(f)= (2l41)[#+3(+1)]. The approximation
used is to assume that the expansion in Legendre poly-
nominals converges rapidly enough so that the series
may be cut off after the nth polynomial (this is called
the P, approximation). For the problem worked out
here this assumption seems to be quite good, as will be
seen below.

The determinant of the system (7) in the P, approxi-
mation is:

a vy 0 O 0
y 3] 2y 0 0
0 2y ar 3y 0
SN K
0O 0 0 0 -+ aa

If we define D; as the determinant D with the Ith
column replaced by the inhomogeneous terms in (7),
then

hl(y’ t)=Dl(yr t)/D()’, t)'

We will first consider the inverse transformation in
the variable y. If I;(x, {) is the function obtained in this

5 See R. E. Marshak, Revs. Modern Phys. 19, 222 (1947).
8 S. Chandrasekhar, Astrophys. J. 99, 180 (1944).
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transformation, then

Lz, )= (1/2i) f Iy, evdy, ®
c

where C is the usual Laplace contour [parallel to the
imaginary axis and to the right of the singularities of
hu(y)]. This integration is easily carried out since %,(y)
contains only simple poles. The only poles that might
occur in the numerator Di(y) are due to the functions
vi(y) in the inhomogeneous terms. If the x dependence
of the source is restricted to §(x) or to a constant (i.e.,
surface or thick sources) then the v,(y) will have at
most a simple pole at y=0. Such terms can be separated
out by breaking up the inhomogeneous terms in the
following manner. Let

a(y, )= U+ D)+ () + (24 1)7:(y)
=¥()+b/y. (9)

Then D, can be broken up also, D;=D¥+D;® where

only D;* contains any poles that are in D,. The only

term in D;? for which &,/y has no factor v, and therefore
the only term retaining the pole, is the diagonal product

Qoo -az_x(bz/y)az+1~ a7

Since D(0)=apa;- - - aq, the residue of this term in %,
contributes b;/a; to the integral. The remaining contri-
butions come from the roots y; of D(y). Therefore we
can write

Di(y:)e=v b

+—.

DG/ (y=y)Ju=wil o
Since D(y) can be written in the form

D(y)=a—by*Hcy*— - - (=)*dy*, k=n+1ifnodd
=nif n even,

Ii(x, )=23;

the roots of D(y) occur in pairs y;=
can write

+y,. Therefore we

£/2 y?
Diy)=all (1— ), a= ooy * * Oy,
r=1 yrz

The denominator then becomes

D(y) 2a yr
o= 05)

V=Yi Vr sr yf

with the (+) sign if y.=—y, and the (—) sign if
¥:=+7y,. Therefore the y integration gives

Il(xa t)':’%z
' 2¢ I 1————)

sr

b
X {= Di(+y:)ev+ Dy~ yr)e—er} F—.

233

(10)

JOHN W. WEYMOUTH

The final inverse transformation then yields the solution

filx, 5)=(1/2m5) f Ii(x, t)evds. 11)
C

C. Boundary Conditions

In order to perform the integration in Eq. (11) it is
necessary to determine the #;(f). This is done by im-
posing boundary conditions at x=0 and x—. The
conditions used are

fmsn=o {7 @, )
u>0
f(x, s, u) bounded as x— .
From the first condition it follows that
1
f Pi(u)f(x=0, s, u)du=0, alll. (13)
0

In the P, approximation this condition is applied to all
! up to some value m<n determined by restrictions
discussed below. This is equivalent to saying each
moment of # up to %™ vanishes for #>0. Since
f=2"#(2k+1) P} this condition becomes,

1
at .’XJ=0, fz+2fk(2k+1)f PLPde=O,
k=l 0

1=0,1, -+, m. (14)

Performing the Laplace transformation in s (Eq. (6)) this
condition becomes
1

P 1P kdu =0.

0

m(t)-l-lcz,;l m(8) 2k+1) (15)

These conditions give m+1 linear relations among the
m. The number of these relations that can be used are
restricted by (1) the conditions imposed at infinity and
(2) an additional condition that exists among the 7,
when the number of differential equations used is odd
(n even).

(1) Restrictions Imposed at Infinity

We will now show that the conditions at infinity
give as many relations among the #; as there are pairs of
roots of D(y). The condition at infinity requires that
fi(x, s) be bounded. Therefore the transform of f; in «,
Ii(y, 1), must be bounded. Looking at Eq. (10) we see
that this means

Di(+)=0, 1=0,1, -

r__

Tty My
. ,z(n—i—l) for n odd

= 1, - 3n for »n even.

(16)

Each equation in (16) gives a relation among the 7,,
but we must determine how many are independent.
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For a given root ¥, consider the equation D;=0 as a
set of #»+1 homogeneous equations in the terms ¢; as
defined in (9). For instance, the first equation of this
set is:

Co yr 0 e 0
66 o ar 2y, -+ O
Ca 2y,- a2 oo 0
Dy=|- . . . |=0. (17)
cn 0 0 cr Qg

It can be seen that the coefficient of ¢; in this equation
is the cofactor of the corresponding term in D(y,). Since
interchanging the rows and columns of D leaves it un-
changed, we see that the determinant of the coefficients
of the ¢;, which we will call A(y,), is formed by replacing
each element of D(y,) by its cofactor; that is A is the
adjoint of D, or A=D'. Now if M is a minor of D of
dimensions m and M’ the corresponding minor of D',
then?

M'=(D)™1X (algebraic complement of M).

Since D(y,)=0 then any minor, M’, equals zero unless
m=1. Therefore the rank of A is one. Thus there is one
independent relation among the ¢;. The same argument
holds for all the roots y,. Therefore there are as many
relations among the ¢;, and consequently among the »;,
as there are pairs of roots® y,. In the P, approximation
this number is 3(n+1) if # is odd and 1# if # is even.

(2) Restriction Imposed for n Even

In the P, approximation the first and the last differen-
tial equation of the set each contain only one x derivi-
tive. Thus when the number of equations used is odd
(n even) the last equation can be combined with all the
preceding equations for which / is even so as to eliminate
all the x derivatives in the sub-set. This means that in
the x, ¢ space there exists one algebraic relation among
the I,(x, ¢) where / is even. At x=0 this gives one rela-
tion among the 7;. This can be seen in the P, approxima-
tion carried out below.

From this and the discussion above it follows that
the number of relations (15) that must be used is
(n+1)—3(m+1)=3i(n+1) if » is odd and (n+1)

—in—1=%nif n is even.

III. P, APPROXIMATION
A. Solution of Equations

We now proceed to study a specific problem in the P,
approximation. This is to find the distribution function
for a thick layer of beta-emitting sources. We therefore
treat this as a semi-infinite medium with the initial

7 M. Bocher, Introduction to Higher Algebra (Macmillan Com-
pany, New York, 1947), p. 31.
8 Assuming that there are no accidental relations y,=y,.
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condition
f(x3 s) u) = 0’

=A,

x<0
at s=0.
x>0

(18)

This represents a spherically symmetric emission of 4
electrons per unit volume, per unit solid angle through-
out the medium.

The system (2), in this approximation, becomes

dfo/ds+0f1/dx=0,

3(0/3s-1) 0o/ d2=0, (19)
From Eq. (6) the initial condition (18) becomes
v1=(A4/)dw. (20)
Therefore the transformed system (7) is
thet-yhi=m+A4/y, yhot onkr=mns, (21)
where a;=3(t+1). The determinant
D(y)=tay—y* (22)
has roots y=--y, where
y1=(tar)t. (23)

From Eq. (10) and the condition at x—x (Eq. 16) the
transforms in s are

1 a4 A
Io(x, t)= '—(al"ll_ '—+y1ﬂo)e_””‘+—y
2y1 Y1 14
(29)

1
Ii(x, £) =—(no+yim—A)e=v.
2y1

From the previous discussion it is apparent that only
one of the conditions (15) between the #; can be used.
The one chosen is for /=1, that is

n1+3m0=0.

This is the relation resulting from the condition that the
net incoming current vanishes. Using this relation to
eliminate 5, and using relation (16) for x—c, we get

Do(y)= a1r(A4/y1— 310) — noy1=0.
no=—2m=24/2t+ ).

Substituting these into (24), the solutions become

A4 ;30417
falty )= A [ ]
27 c t

Then

g xyrtst

dt,
2 3 1Tt
t+[3t(t+1)] (25)

_A e—zy1+at
ftws)=—— [ ————a
278 Jo 24+[3(+1) ]

It will be noticed that the solutions give a more gen-
eral initial situation than was imposed. That is, since
y1—tV3 for large ¢, the contours must be closed to the
right if vV3x>s and the integrals contribute nothing.
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Fic. 1. Theoretical electron flux f1(0,s) at surface of semi-
infinite medium in P, and P, approximations. The P, approxima-
tion gives the lower curve for small values of s.

Thus the initial condition is for s<V3x rather than just
for s=0. This is what should be expected since the ini-
tial distribution is unaffected until s is large enough for
the particle to reach the surface. The same condition
holds in the P, approximation as will be seen below.
However, in higher approximations, there will be a
series of such integrals each arising from an additional
root y, and each contributing when s is greater than
some value of ¥ determined by the value of y, for large .

B. Current at the Boundary

For a specific evaluation of these solutions we con-
sider the net flux at the boundary, that is

A e*ldt
[0, )=—— | ———.
2w Je 26, [3@+1) ]

A cut is placed between the branch points =0 and
t=—1, and the contour is closed to the left about these
points. The integrand may be rationalized and written

as follows C 3
A4 2t—[3t(1+1)
fl(o) S)=—~—-— ————e*dt,

2w Je t(t—3)
Since =3 is a root of the numerator it is not a pole and
thus the first term contributes nothing. The second term
can be written as two integrals along the cut and com-
bined to give (for convenience we replace ¢ by —1)

A pir3(—=n7t e
50.9=== [ [ ] & @
™ Yo ¢ (t+3)
This is evaluated in the appendix and plotted in Fig. 1.

(26)

IV. P, APPROXIMATION

A. Solution of Equations
We now carry the same problem to the next approxi-
mation. The system (2) of equations is now
3fo/ds+9f1/dx=0,
3(0/8s+1) fit+dfo/ 9x+20 o/ dx=0, (28)
5(8/9s4-3) f24-20f1/8x=0,

WEYMOUTH

The transformed system, with the same initial condi-
tions as above, is

tho+yh=m+A4/y,
yho+ a1h1+ 2yh2= 7]0+ 27]2; (29)
29+ achy= 27,

The roots y= ==y, of the determinant of this system are
y1= [talag/(4t+ 112):'%. (30)

The transforms in s are (using conditions (16))

ay(no—A/t+295) ym A
ru, =4 F |t
4t+ a2 ¢ t
t(no—A/t+2
LG, t)=%[m+a2 =4/ "”]rzw, (31)
14+ as)
= [
4+ oy a?

For the relations among the #; there is first the rela-
tion (16) due to the condition at x— . This is

(4H" a2)y1711— Olzt(‘ﬂo— A/H‘ 2’72) =0.

The relation due to the use of an odd number of equa-
tions as discussed above can be seen by considering the
first and third of the Egs. (28) in the x, ¢ space:

lIo+611/8x=A, a212+2611/6x=0
Therefore at x=0, we have
zt'r]o—' a2Me= 2A

The third relation to be used is one of the conditions
(15) and as before the condition for /=1 is chosen.
This is

4no+8n1+S59:=0.
Solving for the »; from these three equations gives

n0() = A (4ast35y1)/W,
m(t)=—24a/W,
na(t) = — 44y, /W,

where W=2ayy1+{(4as+5y1). Putting these into (31)
gives

24 azyle‘”h‘“
Solx, s)=A—— f ——d},
21!'1: e} tW

24 age"”“”’“"

fl, s)=—— ) ——d, (32)
2mi Yo w
4A yle—zyl+st

Sfo(x, s)=—— —dt.
2mide W
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B. Current at the Boundary

As before we evaluate this solution for a special case,
that is the flux at the boundary

age"dt

C 2a2y1+t(4a2+ Syl)

For large s the integral can be evaluated for #—0. This
gives

24
fl(oy S)= -

27

(33)

110, == [ " e
y S)=—— t=— )
' 2mi Jo (30)3 (ms)}

which is the same result that is obtained in the P, ap-
proximation [see (26) or compare with the leading term
in (A1)].

For small s the integral is treated as follows. The
integrand is rationalized [using v, given by (30)] giving

(4t+ az) *[(talag) 5(2(12‘*-50 - 4&2‘(4t+ ag) *]8”
1L or(2ats+50)2— 16aat (dt+as) ] ’

fl(oa 5)2_—

A SEMI-INFINITE MEDIUM 771
t-PLANE
c
-3 5/3 - —j

Fi1G. 2. Contour in ¢-plane for P, approximation.

The denominator can be rewritten, expanding the a;
and collecting terms in ¢, to give

15¢(— 384 2+120t4-180).
The roots of this polynomial are

fh=—1.6305, fy=—5.1633, f,=7.1271. (34)

All of these as well as =0 are roots of the numerator,
therefore there are no poles. Expanding the numerator,
we get

2mi\ 15

with the contour as shown in Fig. 2. The second term
contributes nothing so we can write

24(15)}
1 07 )=
£i0, s f

27

2L+ (E+3)(¢+5/3) 1

estdt.  (35)
B(t—1) (t—1t2) (t—t3)
Integrating along the cuts gives
A(15)}
J1(0, 5)= [P(9)+Q()]; (36)
T

where
P(s)=—i f“ 2 @+1)(¢+-3)(¢+5/3) ] ;
s)=—1 es!
0 1(t—11) (t—12) (t—13)
3 (2)[ (1) (E+3)(¢+5/3)
$)=—1 et'ds.
0w=-i | TS VA S

)

—5/3

These are evaluated in the appendix and plotted in
Fig. 1.

Figure 1 illustrates the behaviour of the convergence
of the polynomial expansion. For large s the main con-
tribution in the ¢ integral comes from the singularities
near the origin and, as was seen above, this brings the
higher approximation into agreement with the lower
one. However for s small the singularities away from
the origin contribute. These arise in the higher ap-
proximation because more terms «; are involved in the
roots of D(y). This is to be expected since the P; ap-

1 (ZA) f 15(t+2)[45t(t+1)(t+3)(3t+5)]*—60t(t+3)(3t—i—5)mdt
o Hi— 1) (t— t:) (t— 1) )

)

proximation gives the diffusion approximation (see next
section) and therefore should give good results when s
is sufficiently far from the source. The next approxi-
mation, involving the next spherical harmonic, is then
the improvement on this and one should expect P, to
deviate most from P; for small s, that is before the
diffusion region is reached.

From an elementary calculation (see appendix) it can
be shown that f; should approach the value 14 as s
approaches zero. It can be seen from Fig. 1 that P,
improves on P; in this respect deviating from the cor-
rect end point by only about 3 percent.

V. ENERGY DEPENDENCE

The s dependence of the distribution function can be
related to the energy through the empirical range-
energy relation and thus the energy dependence may be
obtained. However our treatment of the Boltzmann
equation did not include the energy dependence of the
cross section and therefore of the variation in the mean
free path. No satisfactory way was found to take
account of this in the solution of the Boltzmann equa-
tion. However a rough estimate of this effect on the
spectrum at the surface may be obtained by use of the
age equation employed in neutron diffusion.?® Solutions
for this for constant and for variable cross section are
compared with the previous solution and an estimate is
then made of the necessary correction.

We now consider the cross section as a function of s.
Starting with the system of Egs. (19) of the P, approxi-
mation the additional approximation is made that
df1/3s is small (that is, that the fractional change of f;

9 See R. E. Marshak, Revs. Modern Phys. 19, 212 (1947).
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along s in a transport mean free path is small). This is
a good approximation when far enough away from the
source, as will be seen. In fact, since f, has already been
neglected, for large s this may be more consistent than
the previous procedure near discontinuities in x since
the variation in s might be less than the neglected higher
harmonics. The system then becomes

dfo/ 0s+0f1/0x=0,

37
3K1(S)f1+ 6f0/8x=0. ( )
Eliminating f; and defining the age variable
w0)= [ s/,
0
we get the age diffusion equation
6f0/67= %62f0/6x2. (38)

The boundary condition can be obtained by utilizing
the relation existing between f, and f; in the P; ap-
proximation as a condition for no returning current,

that is
Jo=—2/x.
Combining with the second of (37) gives

dfo/dx=—3xi(s)fo, at x=0. (39)
The initial condition is given by
fo=4, at 7=0.

To solve this problem with this boundary condition
is difficult. However, since «i(s) is slowly varying in s
under certain conditions (e.g., large Z of the scatterer,
not too large s) we make the approximation that in the
boundary condition «; is constant, that is x;=«;(0).
This then is the heat problem of a constant initial
temperature and radiation at the surface into zero
temperature.!® The solution is

sl )]
ol (e ()] o

The current at x=0 is given by

1 73fo A
—_ = — ei7(®) erfl %T @41
3K1(S)(0x ),___0 2k1(s) erfc(37(s)). (41)

VI. COMPARISON WITH EXPERIMENT

fi=-

The experimental situation with which the above
results could best be compared would be the energy
spectrum of an internal conversion line produced in a
thick layer of fairly heavy material and measured with
an instrument of known resolving power. Such data

10 See Carslaw and Jaeger, Conduction of Heat in Solids, (Oxford
University Press, London, 1946), p. 51.
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were not found. We shall, therefore, compare results
with the data of Hornyak, Lauritsen, and Rasmussen
on the photoelectron spectrum of the 411-kev gamma-
radiation of Au'®® converted in thorium (301.3-kev
maximum electron energy).

To make the comparison for this case it is first
necessary to estimate the energy-dependence correction
to the derived spectrum as discussed in section V above.
Then the corrected spectrum in s must be transformed
to a function of energy. The resulting spectrum is then
integrated with the known window curve of the spec-
trometer to get the spectrum as it appears experi-
mentally.

A. Correction for Energy Dependence

We now evaluate f1(0, s) in Eq. (41). Over the range
of s considered here the transport mean free path
1/k1(s)=A(s) does not vary much in s so we can write

As)=X0)] 1 L (P& 42
%)= “[ +;75(;§$)E=Em;]' ®)

For d\/dE we use the relativistic form of (4)

27N Z%* [ 1 ]
¢ b

K=
ey =y
where
y=n/[4em¢(y—1)], y=(1—2*/)t
For this case, the kinetic energy is 301.3 kev, 4 =232,
and Z=90. Then A(0)=11.63 mg/cm? and d\/dE

=0.0602 mg/cm? kev). For the factor dE/ds we will
use the energy loss relation:

dE 2aNZet

dx me(y—y)

(mc?)? 2 1 1
X[ln +In(y2—1)(y—1)— (——-——) In2+—].
22

T v
DIFFUSION SOLUTION
//AGE SOLUTION
K x\/‘n' APPROXIMATION
N >
> N

3

-f(0,9/A )

(o)

[¢] ; 2 3

S (IN UNITS OF A0))
Fic. 3. Theoretical primary spectrum f1(0,s) corrected for

energy dependence for case of 301.3-kev photoelectrons produced

in thorium.

1 Hornyak, Lauritsen, and Rasmussen, Phys. Rev. 76, 731
(1949).
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For the average ionization potential I/Z we will use
the value of 9.6 ev determined for uranium by Segré
and Bakker.? This gives, at 301.3 kev

dE/dx= —1.145 kev/(mg/cm?). (43)

Since s is measured in units of A(0), Eq. (42) becomes
A(s)/A(0)=1—0.0688s. (44)

Using this, the age solution (41) is calculated and
plotted in Fig. 3. From this solution the correction to
the P, solution is then extrapolated to the correct end
point.

B. Integration over Window Curve

In order to obtain the resultant spectrum we inte-
grate the primary spectrum over the window curve
which we take to be gaussian. The resulting distribu-
tion is

Y@= [ -

Xexp[—(E'—E)*/(aE')"JdE', (45)

where f is the primary spectrum with maximum energy
E,. and a is determined by the resolution of the spec-
trometer. In this calculation we use for the resolution a
width of 1.5 percent at half-maximum.® This gives
a=9.0X1073,

To facilitate the integration we notice that the main
contribution comes from the region E'=E to E'—E
=¢E' and since a is small, we have

(E'—E)/EK1.
The denominator in the exponential can then be written
(eE" = (eE)[1—-2(E'—E)/E].

Placing this into (45) and expanding the exponential
due to the last term we get

Em
N(B)= f f(En—E) exp[— (E'— B/ (aE)*]

X[1+2(E'— E)/a?EYJdE . (46)

Over the range of integration a linear approxima-
tion for the primary spectrum can be used, so that

f(En—E)=f(E,)—(df/dE)En(En—E).
In terms of s we have

df dfds 1 dfds

dE dsdE M\0)ds dE

2 E. Segré and C. J. Bakker, Phys. Rev. 81, 489 (1951).
13 Hornyak et al., see reference 11, p. 732.
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F1G. 4. Theoretical spectrum of 411-kev radiation from Au!%®
converted in thick Th foil (301.3-kev maximum energy of photo-
electron). 1.5 percent resolution of spectrometer.

where df/ds is determined by the extrapolated curve in
Fig. 3, and dE/dx is given by (43). Thus we can write
(taking df/ds=0.0470)

f(En—E)=A—B(E,—E) 47
with 4=0.250 and B=0.00353. Integrating (46) gives

N(E)=aE{3(4— By)r[1+erf(y/eE)]
—al(4—By)(1+[y/aED)
+3EB] exp[— (y/aE)"]},

where y= E,,— E. This is plotted in Fig. 4.

(48)

C. Discussion of Results

Perhaps the most interesting result of the calcula-
tions in the previous section is the peak shift, that is
the shift in the maximum of the spectrum from that of
the primary spectrum. The above theoretical calcula-
tion gives a value of about 4.3 kev. Hornyak, ef al. give,
for a converter thickness of 0.0005 inch (16 mg/cm?),
a value of 3.2 kev. For thicker converters their data
indicates the results in Table I. The value for 0.001
inches is taken from a plotted spectrum in their article
and has the most uncertainty. They also make a theo-
retical estimation of the upper limit, i.e., for an infinitely
thick converter.

One of the largest sources of error in our calculations
is the estimation for the energy dependence correction.
An error in the slope df/ds of 10 percent results in an
error in the peak shift of about 5 percent. Another
source of difference is that the photoelectrons are not
produced isotropically, although there will be some
averaging out due to the angular distribution of the
incident gamma-rays. With this in mind, we see that
the peak shift comparison, although not conclusive,
seems to give fairly good agreement.
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TaBLE I. Experimental and theoretical peak shifts for spectra of
301.3-kev photoelectrons produced in thorium.

Converter thickness Peak shift

0.0005 in. (16 mg/cm?) 3.2 kev

Exp. 0.001 in. (25 mg/cm?) 3.5 kev
0.003 in. (78 mg/cm?) 3.8 kev

Theor. upper limit, Hornyak et al. 4.3 kev
infinite, our calculation 4.3 kev

One interesting point is that Hornyak et al. perform
an ‘“unfolding” of their experimental spectrum to ob-
tain the primary spectrum. They obtain a curve with a
marked peak at the maximum energy in sharp contrast
to our results. They remark that the unfolding opera-
tion is quite sensitive to the experimental position of
the maximum energy and that a shift of the order of the
probable error results in a much smoother curve—a
curve which would be in much better agreement with
our results.

One more remark can be made and that concerns the
effect of a finite width source. It was noticed in the
solutions in Secs. IIT and IV that, for a given depth =,
the initial solution is undisturbed until s=V3x. (As was
pointed out in Sec. IIT this is only true in the P,
and P, approximations and is an oversimplification.)
Therefore, for a finite thickness, the spectrum will be
unaltered until s=V3I, where / is the width of the
slab. To estimate the value of ! below which the
peak will be changed from its limiting position, we note
that the window curve has a half-width of about 4.5
kev. Adding this to the limiting peak shift, we get
8.8 kev. If the primary spectrum is altered below this
value then the peak will be changed. This corresponds
to a value of / of about 4.4 mg/cm?. Hornyak, e al., note
that the peak position is changed most when going
from a converter of 7 mg/cm? to one of 16 mg/cm? and
thereafter the change is small. Thus our results give a
value of the right order of magnitude.
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TaBLE II. Coordinates and weights for Gauss quadrature of the
integral /2,!(1—2?)"4P(x)dx for n=3 and m=>5.

2= —0.8660 a,=1.0472
x3= 0 a,=1.0472
xX3= +08660 az= 1.0472

14 The solution of the problem for a finite slab in the P; ap-
proximation can be obtained as a series containing the semi-
infinite solution plus integrals that are nonvanishing when
s>V3l, s>2V3l, s>3V3l, etc.

JOHN W. WEYMOUTH

VII. APPENDIX
A. Evaluation of f,(0,s) in P, Approximation

From Eq. (27) we had
_ A m 3(1=0)] e
510 9=- S [ : ](t+3)dt'

For large s the main contribution comes from near {=0 so the
coefficient of ¢~ in the integrand can be expanded in powers of ¢
and the integral evaluated term by term. This gives

1
B a6/2,9), @D

where y(z, s) is the incomplete gamma-function.
For small s the integrand is rewritten by the substitution
t=_1+4u)/2

10, 9)=

A [l 51
A0, s =—73 57 S)—g;;‘v(%, )+

—38/2 — —su/2
AV3e fx (1—u)e S (A2)

- (=)t
The integral is written in this form in order to facilitate numerical
integration by Gauss’ method.!s

We will briefly examine the Gauss method. For an integral of
the form

j;b P(x)w(x)dx

where w(x) is some known function and P(x) is a polynomial of
degree m in x, it is possible to construct a quadrature formula
using # values of P(x) at points x; with weights ¢; so that the
integral is given exactly by

(A3)

f i P(x)w(x)dx= é a;P(x:) (A4)
@ i=1

with n=4(m+1). For the integral (A2) it is convenient to take
w(u)=(1—u2)"h

If the a; and the w; are determined for »=3, the error involved
can be estimated by examining the expansion of e=¢**)/2 up to and
including (su).5 The error at the extremes of the interval will be
small if s8/6!<1 or s~3. Thus the error of the quadrature will be
small for values of s somewhat over s=3. We therefore take n=3
and m=35. The points and weights determined for this case are
given in Table II. Using these values the integral (A2) is evaluated
and plotted in Fig. 1.

B. Evaluation of f,(0,s) in P, Approximation

For the evaluation of the integrals (36) we will use the same
procedure as before for small s. For the integral P(s) we make the
transformation ¢=(x—1)/2. Then

Pls) =i fl (+3) (1) [(e4-5) (ut-7/3) Pevs2 |

-1 =) u—wy) —ur) (—1z)

where #;=—2.2610, u,=—9.3266, u3=15.2542. This method,

with weights and divisions for a polynomial of fifth degree, still

gives good results for this integral. The worst factor in the inte-

grand, (#+42.2610)7!, approximated by a polynomial of second

degree only has an error of 8.5 percent at the end points #===1.
For the evaluation of Q(s) let £=(2v—7)/3. Then

e Qo= D)1= ) (2—a)hewels
0= [ T s

where v;=1.0542, v,=—4.2449, »3=14.191. To assume that the
coefficient of (1—%?)~% in this case approximates a fifth-order
polynomial seems questionable because of the factor (v—1.0542)~!
near the limits v=+1. However, (a) the main contribution to the

16 See S. Chandrasekhar, Radiative Transfer (Oxford University
Press, London, 1950), p. 57.
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integral comes from the central part of the interval because of the
factor (1—1?), (b) the factor e~"/3 rapidly reduces the contribu-
tion of Q to fi for larger s, and (c) even for s=0 the contribution of
Q to f1is only about 4 percent. Therefore it seems justified to use
this more convenient method in this case also. Integral (36) is
plotted in Fig. 1.

C. End-Point Calculation

In this section we calculate the value of fi(s, x) at the boundary
#=0 when s—0 by simply considering the distribution f(s, x, %)
before many collisions have occurred. The density and the current
for a given distance s, integrated over unit volume, are given by

D= [ (s, %, wae=2r [ fou
J=fufd9=21r f_‘lufdu.
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Since

f=t [ Pifiu

D=A4nrfy, J=4rf:.

The number of particles that go a distance s without a collision
is given by the kernel e*/(4xs?). If we consider a distance s suffi-
ciently small so that the initial, spherically symmetric distribution
with density D=4w4 is undisturbed, then the current is given by

we have

e_l
J=— [ ftna cosdsdn
(negative since current is out). At x=0 this is
J=—2rde [ udu=—rde.

In the limit as s—0, J=—A= and therefore fy=—1}4.

PHYSICAL REVIEW VOLUME 84, NUMBER 4

Total Cross Section of Nitrogen for Fast Neutrons*
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The total neutron cross section of nitrogen has been measured for neutron energies from 0.15 to 1.45 Mev.
Resonances in the total cross section are observed at 0.433, 0.640, 1.00, 1.12, 1.35, and 1.45 Mev. The second,
third, and last of these resonances correspond in energy to resonances observed in the disintegration of
nitrogen. Application of the nuclear dispersion theory indicates that the resonances at 0.64 and 1.00 Mev
are caused by neutrons of zero orbital angular momentum forming compound states of spin % and , re-
spectively. An experiment is proposed which would, in conjunction with these measurements, determine the
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relative parity of C* and NU,

I. PROCEDURE AND RESULTS

OR the interpretation of previously published re-
sults on the disintegration of nitrogen by fast
neutrons,! a knowledge of the total neutron cross sec-
tion of nitrogen is desirable. A preliminary measure-
ment? of this cross section in which NaN; was used as
the scattering material showed a resonance at 440 kev,
the same energy at which a prominent resonance occurs
in oxygen. It was, therefore, suspected that the NaNj;
might have contained some water. Furthermore, it was
desirable to use nitrogen combined with elements
having no resonances in the range of neutron energies
considered.

In the present measurements aminotetrazole (N;CH3)
was used. It had been purified by recrystallization, and
the water of crystallization was driven off quantita-
tively by heating.? Sufficient carbon was added to give
a mixture with the empirical formula N;o(CH,)s. The

* Work supported by the AEC and the Wisconsin Alumni
Research Foundation.

t Now at Oak Ridge National Laboratory.

§ Now at National Bureau of Standards.
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effect of the nitrogen was observed by comparing the
neutron attenuation produced by the mixture with
that of a polythene sample having the same number of
carbon and hydrogen atoms as the mixture. The cross
section of nitrogen was determined in a simple trans-
mission experiment,? assuming exponential attenuation
of the neutron flux by nitrogen. Corrections were
applied for the background of neutrons scattered from
the walls and the floor and for scattering by nitrogen
into the detector.

In the lower portion of Fig. 1 the observed total
cross section of nitrogen is shown as a function of
neutron energy. Points were taken at intervals less
than the neutron energy spread except in the energy
range from 0.7 to 0.9 Mev where the NaN; data had
shown no resonances. Cross sections given in Fig. 1
agree with those previously obtained using NaN;. The
results also agree with the observations of Frisch® for
neutron energies below 0.4 Mev, but not for neutron
energies from 0.5 to 0.8 Mev.

In the upper part of Fig. 1 is plotted the sum of the
N(#, p) and N(n, a) cross sections previously reported.!

4 Adair, Barschall, Bockelman, and Sala, Phys. Rev. 75, 1124

(1949).
5 R. K. Adair, Revs. Modern Phys. 22, 249 (1950).



