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A Canonical Transfok~ation in the Theory of Particles of Arbitrary Spin

%. A. HEPNER
Department of Mathematics, Imperial College of Science, London, England

(Received July 26, 1951)

Canonical transformation between the P-operators and certain components of the spin-tensor yields
explicit expressions for the latter. The transformation is used to deduce general consequences that simplify
the derivation of commutation relations. It can also be applied with advantage to construct free particle
solutions of the wave equation.

HABHA'S theories of the equations of particles of
arbitrary spin" all rest on a basic assumption
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~

~

about the explicit expression for the relativistic skew-
symmetric spin-tensor t„,. A possible set of "five-
dimensional" theories is based on the assumption that
t„„=p„p„p,p„—In t. he following paper details of a
di6erent approach' are presented. It is shown that a
certain symmetry in the equations expressing the rela-
tivistic covariance of the linear first-order wave equation
suggests the existence of a canonical. transformation
between three components i„.and three Pk. An almost
obvious specialization of this canonical transformation
leads to the above expression for t„, as a result. Con-
versely it can be shown that within the frame work of
Shabha's "five-dimensional" theories the canonical
transformation always exists; it simply corresponds to
a rotation through the angle 4r/2 in the (xk, x„) plane.
Leaving aside the problem of other possible transfor-
mations leading to different expressions for t„, (which
may yield the equations of Dirac, Fierz, and Pauli for
higher spins, or the symmetric equation of the meson
suggested by Kliezer' and considered by Bhabha'), the
implications and applications of this particular transfor-
mation, and others related to it by covariance, are
studied. Hitherto awkwardly derived results, such as
the equality of the characteristic equations of the spin
operators oI, and the P)„or the imitation by two or
three ok of the algebraic relations of the Pk, are here
deduced as almost immediate consequences. Further-
more, by way of illustration, the equations of the Dirac
electron and the DufBn-Kemmer meson are derived in
but a few lines. Finally, taking the case of a particle of
spin —,

' as an example, it is shown that the canonical
transformation also provides an elegant method for
obtaining free particle solutions of the wave equation.

A. THE CANONICAL TRANSFORMATION

The condition that the linear first-order wave equa-
tion be covariant under Lorentz transformations re-
quires that the components of the skew-symmetric
tensor t&„ formed by the generators of the Lorentz
group satisfy the commutation relation

LP. tk ]=~k.p ~"Pk, (~, k, ~=1, 4), (1)
' H. J. Bhabha, Revs. Modern Phys. 17, 200 (1945).
2 H. J. Bhabha, Revs. Modern Phys. 21, 451 (1949).'%. A. Hepner, Phys. Rev. 81, 290 (1951);82, 447 (1951).' C, J. Eliezer, Nature 159, 60 (1947}.

where [A, B]=AB —BA. —Qn the other hand, the
generators of the Lorentz group satisfy the commuta-
tion relation

[4 ~ n~]= In ~4 (2)
Defining

ok it4„—, y——k —— it4k, —(I4, i, 444=1, 2, 3 cyclic), (3)

(1) and (2) give the following two sets of equations:

(a) LPk, ok]=o, (d) [Pk, Vl]=o,

(b) LPk «]=ip (e) LPk 'rk]=ip4 (4)

(c) [P„o,]=O, (f) [P„~„]=—iP„,
and

(a) hk, ok]=o, (b) [vk, ol]=iv-,

(c) [yk, yi]=io, (d) [ok, o(]=io .
(5)

and that
n4V k+ Vkn4= 0,

'$40'a = O'I g4.

(7a)

(7b)

Now in addition to this similarity between Eqs. (6a)
and (7a), it is remarkable that Eqs. (5a) and (5b), too,
differ from (4a) and (4b) merely by having pk and &
in place of Pk and P . This suggests the possibility of a
canonical transformation

where
VI =g~gI~ ',

501,= fTIc5,

(8)

(9a)

and where g is an ordinary constant. In addition
assume that S commutes with P4.

SP4= P4S'

Substituting (8) in (4d) gives

S 'ykSSP4S '—SP(S 'S 'ykS=O,

(9b)

Furthermore, if the wave equation is to be covariant
under reQections, there exist four operators g„such that

q„p„+p„q„=O, (4 Wv), ~ p.= p.n. , (6)

i.e., in particular,

'g4Pk+ Pk'94= 0, 's4P4 =P4$4 (6a)

It is noteworthy that from Kqs. (4) it can be derived
(see Appendix I) that the three operators yk, too,
satisfy
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whence, multiplying by 5—' on the left and by S on
the right,

an operator T such that

TIMNT —1 a Ma N jKL 1)MN (16)

Adding

one obtains

(S ')'yks'P1 —P1(s ')'ykS'=0.

ykP1 —P175=0, (4d)

Now consider the particular transformation repre-
senting a rotation through the angle 4r/2 in the (x4, xk)
plane:

p1L(s ')'Vks'+7k] —[(S ')'yks'+yk]p1=0. (10a)

Similarly, using (8) and (9b), one obtains from (4e)

Pk[(s "Vks'+Vk] [(S—')'Vks'+Vk]Pk=0 (1.ob)

Finally, multiplying (4f) by {S ')' on the left and by
S' on the right, and adding (4f), one obtains

P4[(S ')'yks'+yk] —[(S ')'yks'+yk]P4
i[(s—')'pkP— +pk] (10.c)

It can now easily be seen that a consistent solution
is obtained assuming

For Eqs. (10) then merely say that the operators
(S ')'yks'+yk commute with all four p„, and hence
with all the elements of the group or algebra composed
of the P„and their products. The operators (S ')'ykS'
+yj, must therefore be multiples of the unit operator.
Since, from (Sb),

i.e.,
a~'= a '= a33= 1, a4' ———a~4= 1.

Equation (16) now gives

TP'T '=gTP T '=a 'a 'I~~=a'a 'I'4=y

TI45T 1gTP—P' 1 —g 4g—51XL—
45 445 5I54 —

gP

and

2'1142' 1—2'y T——1 —g 1g 4$XL —
45 145 4I15—

gP

Tg yT = 0'y)

and similarly for Pk, Pk, », pk„and o&, 05. Hence T is
identical with the S-transformation specified by (8),
(9), and (11).

It can also be shown that, if the expressions (15) are
to hold, then the transformation specified by (8) and
(11) is the only one such that S commutes with P4. For
from (4f) one obtains by canonical transformation,
using (8) and (9b),

spur(s ')'ykS'=spuryk=0, (12) iyk —g' P4——S Pk( S ')' g'S'P—k(S ')'P4

one obtains

1.e.)

(S ')'VkS'+Vk=0,

&VI+Va& =o,

which, according to (8), is in agreement with the
assumption (11). From (11) and (9b) it can therefore
be deduced that a consistent solution is obtained if S'
is a numerical multiple of the operator q4 defined in (6a).

Applying the transformation (8) and (9) to (4f) and
(Sc), one now obtains

ig'(pkpk pkp4) 0' = ig'(pkp1 p1pk) (15a)

i.e.,
4.=g'(P.P PPk)— (15b)

This expression for t„„ forms the starting point of
Bhabha's theory of particles of arbitrary spin; here it
is obtained as a result of the canonical transformation
(8), (9).

Conversely, it can be shown that within the frame-
work of Bhabha's theory the 5-transformation satis-
fying (8), (9), (11) always exists. For in Bhabha's
theory Eqs. (15) together with Eqs. (1) and (2)
are interpreted as the commutation relations of the
components of an angular momentum tensor I~~ in
five dimensions (E, 1.=1, ~ 5), with gPk=Ikk. This
means that to every Lorentz transformation in 6ve
dimensions speci&ed by xz'=az~xl, there corresponds

Hence, if (15) is to hold, then

ig (p,p, —p.p,) =ig—k[p~p, (s ) sp, (-s )—p,], -
i.e.,

P4[S'Pk(s ')'+Pk]=[S'Pk(S ')'+Pk]P4

Similarly, by canonical transformation of (10a) and
(10b) one obtains, respectively,

SP1S '[S'Pk(S ')'+Pk]=[S'Pk(S ')'+Pk]SP1S ',

SPA '[S'Pk(s ')'+Pk]=[S'Pk(S ')'+Pk]SPkS ''

(17a)S4= exp(24rigP4),

These equations show that the operators S'Pk(S ')'+Pk
commute with P4 and with the three y1. But since, in
virtue of (4f ), P1 can be expressed in terms of P4 and y1,
it follows that S'Pk(s ')'+Pk is a constant multiple of
the unit operator. Since spurPk ——0, it follows that the
constant is zero, i.e., (11) must hold.

Assuming, as is compatible with Eqs. (8), (9), and
(11), that S depends on P4 only, an expression for S
can easily be given. Since S' anticommutes with the
three Pk and commutes with P4, S' can be represented
by the unit operator. Now it is shown below that the
characteristic values of gP4 and ~k must be the same,
ns. , either the integers —n, ~ . 0, ~ .+n, for integral
spin, or the half-integers —n, ——'„+-'„+n, for
half-integral spin. It is therefore possible to represent
5' by
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this operator being equal to +1 for integral spin and
to —j. for half-integral spin. Hence 5 and 5 ' can be
represented by

5=exp(qixgp4), S '=exp( —s'imgp4), (17b)

showing that S is unitary if P4 is hermitian. It is clear
that 5 can be expanded into a polynomial of degree 2n
in gP4, the 2n+1 coefficients being determined by (17b),
using the 2n+1 eigenvalues of gP4.

In Appendix II it is shown that, as is to be expected
from rela, tivistic covariance, the transformation (8),
(9) is not the only one that leads to (15).More generally,
there are four transformations S„such that [S„,P„]=0,
S„'P„+PP„'=0 (rats); they correspond, in Bhabha's
Ave-dimensional scheme, to rotations through the angle
w/2 in the (x„,xs) plane. Finally, it is interesting to
note another possibility leading yet again to the ex-
pressions (15), vis. , (see Appendix III)

s„p„+p„s„=o, [s„&,p,]=o.
These four transformations correspond to rotation
through the angle m./2 in the (x„,xs) plane and reflection
of xs.

it follows that the resulting equation for three 0's, after
similar suitable reductions with the help of the charac-
teristic equations and the relations involving only two
different o's, will be the same as for three gP's. The
converse is not true; owing to the different structure of
the sets of three 0's and three p's, an equation between
three o's, for example (5d), need not be satisfied by
three gp's.

(oi,——,')(o p+-,') =0, (20)

(ii) Derivation of Commutation Relations
for Spin —,

' and Spin 1

Substituting (15) in (1), and using the result that gP„
and OI, satisfy the same characteristic equation, the
commutation relations of the P's can now be derived
in a few lines. Putting X= p,4 v, one obtains

P.'P.+P.P.' 2P.P—.P.= (1/g') P., (u& v), (19)

whatever the value of the spin.

(a) Dirae's Cornrnutation Relations

For spin —, the characteristic equation of 0.I, is given by

B. APPLICATIONS OF THE CANONICAL
TRANSFORMATION

(i) Some Consequences

whence also

Hence (19) becomes

(gP.)'= 4 (21a)

The existence of the transformation (8), (9) has
numerous immediate consequences that hitherto have
been derived only by laborious calculations, using the
expressiens (15). For example, it follows immediately
that the characteristic equation of 0I„which determines
the eigenvalues of the spin components, is also the
characteristic equation of gP„. For owing to the com-
plete parity of the four p„, the characteristic equations
of y~ and 0 ~ are the same, and the characteristic equa-
tion of yq transforms into that for gPq. Furthermore, it
is now obvious that the four operators y~ and gP4
satisfy the same algebraic relations as the four P„.

Similarly, it is now easy to see why the three operators
o q satisfy commutation relations of three operators gPq.
Regarding relations involving only two different o's
this is now almost self-evident; for owing to the com-
plete parity of all four p's and in virtue of the equivalent
structure of two o's on the one hand and two y's on
the other, the relations between two y's will also be
satis6ed by two r's, and the relations between two y's
are satisfied by two gP's. Now the relations between
three difterent gP's are obtained from (see Sc) (Sa)

S= (1 i P4)/v2, S '= (I+i—P4)/&;
5'= —ip4 = —ig4.

(b) The Dugn Kernmer Relalions-

(22)

For spin 1 the characteristic equation of o.I, is given
by

whence also

(oa —1)oa(o~+1) =0, (23)

P.P.P.= —(1/4g') P.,

whence, multiplying by P„and using (21a),

p„p„+p„p„=o, (t g v). (21b)

Since the numerical factor g can be absorbed in the
mass constant, its value can be freely adjusted. Without
loss of generality one may therefore put g'=4, so that

(21c)

Equations (21) are identical with Dirac's commutation
relations for the electron. The expressions (17b) now

give

[[v~, vi], v-]= 0, (18a)
P.'=(1/g')P. . (24)

[[o&,«], a„]=0, (18b)

by canonical transformation, after suitable reductions
with the help of the characteristic equations and the
relations involving only two different p s. Since, ac-
cording to (Sd), the three o's, too, satisfy whence again

(1/g')P'P. P' = (2/g')P. P.P., (26)

Hence, multiplying (19) by P„on both sides, one obtains

2P.'P.P.'=(1/g')P. p.p., (25)
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and therefore
P„P„P„=0, (PW I'). (27)

(32) becomes

(ippl —&0P4+ 14) U=O (33)
Taking @WE, I WX, 14/2, and using (15b), (1) gives

P.PIP.+P.PIPu=P. P.PI+PIP.P~, (28)

whence, multiplying by P22 on the right and using (27)
and (19),

The solutions U of these equations for given p can be
obtained from the elementary solutions U0 for P=O,
(40=000), by the Lorentz transformation

U= TUo, Uo= T 'U
where(29)P.P.PI+PIP.P0=o

(35a)(—400P4+ II) U0 ——0,

( 010P4+—a)T 'U=O.
Putting g'=1, Eqs. (19), (24), (27), (29) are identical
with the DufFin-Kemmer commutation relations for
the meson of spin 1. The expressions (17b) now give

i.e.,

S=1—iP4 —P42, S '=1+iP4 P4'—,

S'=1—2P4'= v4.

Multiplying (35b) on the left by T and using (33), one
obtains

(30b) —40 TP T IU+2U

(iii) Derivation of Solutions of the Wave Equation
by Lorentz Transformation

Apart from making the derivation of commutation
relations much simpler, the knowledge of the existence
of the canonical transformation (8), (9) is of great help
in finding solutions of the wave equation. Instead of
solving a system of n simultaneous linear equations,
where rs is the degree of the matrix representation, the
idea is to construct the solutions from the obvious
elementary solutions in the rest system (all but one
spinor components vanish) by Lorentz transformation,
the procedure being greatly simplified by an application
of the canonical transformation (8). This method also
facilitates the finding of that combination of solutions
that is also eigensolution of certain operators, as is fre-
quently desirable. It is best to demonstrate the method
for a particular case, say Bhabha's equation' for a
particle of spin -,'. In this case the canonical transforma-
tion (8), (9) holds true with

1 i5 13 4
~P4 2P4'+~P4-

2vZ E2 3 3

1 (5 13 4
S '=—

I

—+ iP4 —2P42 —-2P
2v2&2 3 3 )

S'=i 214 = 2i (7P4 —4P4');—

but the explicit expressions will not be required in the
following. Designating the four-vector of momentum
by p, (P4

——i40), and the position vector of the world
point by x, (g4=it), consider the plane wave solutions

(0 2
—2) (~2—2) (~2+ 2) (02+ 2) =0. (37)

Since y~ satisles the same equation, T can be repre-
sented by

T= 1+Ayi+Byg'+CyP, (38)

where A, B, C are ordinary constants.
A considerable simpli6cation can now be effected by

substituting (38) not in (36b) but in the canonically
transformed equation

STS 'P4 (00/010)P4STS ——' i(P/000)SPIS —'STS ' (39)

where S satisaes (8), (9), (11).Since SARIS '=S'Pl(S ')'
= —Pl, the awkward terms yl' and yl' in T are now
simply transformed into PI2 and —PI2, (39) thus giving

P4 &PIP4+ —&Pl'P4 CPI'P4—

(40/400) (P4 ~P4P1+ fiP4P1 CP4Pl )

2(p/400)(vl +'rlPl++YIP1 c'rlPI ) ~ (40)

Using the direct product representation' P = $X v, (40)
can be written in the form

40,T—P4T 'U ipPI—U+&0P4U=O (36.a)

Hence T satisles the equation

TP4=(~/~0)P4T 2(P/~0)—PIT (36b)

It is natural to assume that T can be expressed in
terms of powers of the operator y~, this being the
generator of translations in the x~-direction. Now the
components of the spin satisfy the characteristic equa-
tion of fourth order

IP = U exp(ip x). ( 1)
(Gl)4+ fllpl(4+ 41)4)1)'g4

The (16-component or 20-component) spinor amplitude
U satis6es

(ip„P„+a)U=O. (32)

Taking the direction of x~ in the direction of the three-
vectol' wltll conlpollellts pl p2 p2 and wl'Itlllg pl= p

' H. J. Bhabha, Proc. Indian Acad. Sci. (A) 21, 241 (1945}.

+ (112$4+tl2b54+ 4254$1) rilII4 0 (41)

where the constants a, b, c, involve the coefFicients A,
B, C. Now q4 and q~g4 are independent operators, and
so ale $4 $1)4 $4/1. Hence a=b= 4=0, which gives six
linear equations for the coeflicients A, B, C. The solu-

' Madhavarao, Thiruvenkatachar, and Venkatachaliengar,
Proc, Roy. Soc. (London) Qi, 385 (1946).
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tion is

2 P td —13tdo td oo—pA=- gf —A
) )

3 td+tdp 5(do —
pd 5(dp —td

gives

Adding

one obtains

P (S ')' 2S'—(S ')' 2S'P =0.

p2aa —asp2=0,

providing that

8 p td top
C= ——

3 td+opo 5&do —pp

~2 ~ 2+po

(42a)

one has

(42b) Adding

piss —vspl =o

p4(S ')'crsS' —{S ')'crsS'p4=0.

p4a2 —a2p4 =0,

p~[~k+(s-')'~ks g —[p, +(s-') op, sgp, =o.
Again, by canonical transformation of

(A4)

In the general case, for motion in any direction with
momentum components pt, po, po, the transformation
T is obtained by simply replacing in (38) pt by
(plyt+ popo+ po"ro)/p, where p =pt +po +pk ~

The solution U can now easily be constructed from
(34), (38), (42). This method has the particular ad-
vantage that if, as is often desirable, the solutions are
to be eigensolutions of the component of the spin-vector
in the direction of p (ot in the above case) it is easier
to construct 6rst the corresponding eigensolutions Uo
in the rest system. Since y1 commutes with o.1, the
transformed solutions U=TVO are then still eigen-
solutions of o-1.

APPENDIX I

Multiplying Eqs. {4d), (e), (f) by q4 on the left and right, and
using (6a), one obtains, adding respectively (4d), {e), {f),

p), (q4y? g4+yI) —(q4y? g4+yI) p), =0,
valid for all four py. The operator g4yqq4+y?, thus commutes with
all the elements of the algebra and must therefore be a multiple
of the unit operator, say a1. But since g4=q4 ', and since, from
(5b), spur yq=O, it follows that aspur1=0, whence a=O.

Similarly, it follows from {4a), (b), {c) that g4aI, = akg4.

one obtains

P.I,+{S-)2 ~j—E +(S-')'a~3P4=0.
Finally, by canonical transformation of

psa2 —a2ps = —Ah
one obtains

(A5)

one now obtains by the canonical transformation (A2)

zas pl p? p2pl.
Similarly, from

(A9a)

P&[dk+(S ')knks'j [nk+—(S ')'nks'-]Pk

o[p&—+(S ')'P)s']i (A6.}
Hence, assuming that pl anticommutes with S, one now derives,
SinCe Spuras=O,

a2S'+S'a2 =0, (A7)

which, because of a2=SplS ', is consistent with the assumption.
Similarly one 6nds that, if p2 and p4 anticommute with S', then

alS'+S'crl =0, ysS'+S'73=0, (AS)

in agreement with (A2). It can therefore be deduced that, apart
from a constant factor, S' is identical with the operator qs dehned
in (6).The expression for S can be obtained from (17) by replacing
p4by ps.

It now remains to show that the expressions (15) still hold true.
Indeed from

~as alas asal

&p2 alp3 p3al
Ql = a2Ps —Psa2,
&71=a2+s —psa2,
$+2 basal ales)—2p =ysps —psys

(b)
(c)
(d)
(e)
(f)

the old expressions (15)
tively, by the canonical

APPENDIX II
(A9)In the transformation (8), {9) the role of p4 divers from that

of the three other pp in that S commutes with p4 and with the
three components t„. „ for which both p, &4 and 1/4, while the
three tI,4 are transformed into pq. Owing to the relativistic covari-
ance, there is of course no real distinction of p4, and in fact any
other p can play the same role. It is instructive to see how,
despite the altered correspondence between Eqs. (4) and (5), the
expressions (15) are again obtained if, say, ps is chosen to play
that role. Thus, in place of (8), (9), consider the transformation
characterized by

[S,pk]=0, [S,t„„j=0 if both pW3 and yg3,
(A1)

tls~P1, t23~P2, t4S~P4'

fOr crl, 02, yl, y2, ys are Obtained, reSpeC-
transformation (A2).

APPENDIX III

Consider the transformation

yp=SpkS ' Sp4= —p4S. (»)
From Eqs. (4d), (e), (f) one derives by a now familiar procedure

[Pk, &l]=0, [Pk, »]=0,
[Pk, » j t[pk (S=-')'P~-j

1.e.)

[S,Pk]=[S, 7kl=[s, Vkl=[s, nk]=0,

as ——SP1S-1 a, = —SP2S-1 ys ———SP&-1. (A2) where

Now from (4b)
Plas —a2P1 =Ps,

whence, multiplying by S ' on the left and S on the right, and
using (A2),

pl(S ')'a2S' —(S ')'a2S'pl= —ips
7I,= —i(p4pj —pi,p4).

To obtain the expression for a note that from (4a), {b), (c) one
now derives by canonical transformation

[Vk, &k]=0, [Vk, &l)=0, [P4, &k)=0, (34}

Hence
plI a2+(S '}'a2S j—t as+{S ')sa2S jp1=0.

Similarly, canonical transformation of

pla1 al pl =0

(A3)

r&——~&—(S-l)2~~.
A consistent solution can be obtained assuming

S'Pk, =P~, i.e., S'y?, =y~. (a3)
Multiplying (4f) by S on the left and by S ' on the right, and
using (81), one obtains
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where
&a=a-SB '.

to the transformation

I Isg =xgp s4 =ss] ss =Kg)
Owing to (4f) this means that the operator Zg, commutes with
the four p„; it is therefore a multiple of the unit operator. Since,
from (Sd}, spurrq=0, it follows that

S~a=~P.

(B7}1.e.)
a~'= aP =ass= 1, a4'= as'= 1.

This describes a rotation through the angle ~/2 in the (s4, xs)
plane, and reflection of xs.

Owing to the relativistic covariance it is clear that any other
Pq can play the role of P4. Hence there are four transformations
S„such that

(B5)

Hence by canonical transformation of (Sc) one obtains

&~m =PI Pi—P~Pa.

The canonical transformation under consideration is character-
ized by s„p„+p„s„=o, Ls„,pg)=0. (38)

It is interesting to note that S„' is now a multiple of the unit
In Bhabha's 6ve-dimensional scheme, using (16), this corresponds operator.
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Thin beryllium targets were bombarded with 400-kev protons and the energy spectra of the particles
given off at 90 degrees to the beam direction were observed with a cylindrical electrostatic analyzer. The
beryllium was evaporated onto a nickel backing which was thin enough to con6ne the elastically scattered
protons to a narrow energy range. At energies below that of the elastically scattered protons, peaks were
observed in the energy spectra which corresponded to the maximum alpha-particle energy in the continuous
energy distribution of alpha-particles resulting from the breakup of Be'. The position of these maxima give
a value for the energy release in the disintegration of 77.5~4 kev.

INTRODUCTION

HE nucleus Be' occurs as a compound state, or
an intermediate product, in a large number of

nuclear reactions. ' In cases where the ground state is
involved, there is evidence that alpha-decay occurs. '
The result of the early work on this problem was the
conclusion that the ground state of Be was unstable
against alpha-decay by about 125 kev. The conclusion,
as to the instability of Be', is bolstered by the fact
that naturally occurring beryllium contains no de-
tectable amount of mass eight isotope. ' Recently, a
measurement of the half-life for this decay was made

by measuring the track lengths of fragments of oxygen
nuclei in an emulsion when the emulsion had been
exposed to energetic gamma-radiation. ' Some of these
fragments were identified as Be nuclei. The half-life
was found to be (5&1)X10 "second. This value cor-
responds to an energy of the order of 100 kev which is
available for decay into two alpha-particles, assuming

'Hornyak, Lauritsen, Morrison, and Fowler, Revs. Modern
Phys. 22, 309 (1950).

~ Oliphant, Kempton, and Rutherford, Proc. Roy. Soc. (London}
150, 241 (1935); O. Laaf, Ann. Phys. 32, 743 (1938); K. Fink,
Ann. Phys. 34, 717 (1939);J. Wheeler, Phys. Rev. 59, 27 (1941).
Wheeler summarizes the earlier work and corrects some mistakes
in analysis.

A. Nier, Phys. Rev. 52, 933 (1937).' C. Miller and A. Cameron, Phys. Rev. 81, 316 (1951).

the latter have zero angular momentum. ' Two recent
direct measurements of the energy release give values
of 103~10kev, ' and 89+4 kev. '

The method used in the present experiment, consisted
in bombarding an evaporated beryllium target with
protons. This results in the reactions,

Be'+H'~Li'+ He4+Q~, (1)

Be'+H'~Be'+He'+ Q„ (2)

Be'—&He4+ He4+ Q, , (3)

where Q~, Q2, and Q~ refer to the energy releases. Pre-
vious work has shown that the alpha-particles from
reaction (3) have less energy than the elastically scat-
tered protons at bombardment energies above 240 kev,
where sufhcient yields for our measurements may be
expected. "In the present work, a backing of nickel
foil was used, which was thin enough to con6ne the
elastically scattered protons to a narrow range of
energies, thus permitting alpha-particles to be observed
without serious interference. An electrostatic analyzer
was used to separate particles of different energy-to-
charge ratio. In previous work with these reactions,

' H. Bethe, Revs. Modern Phys. 9, 167 (1937).
s A. Hemmendinger, Phys. Rev. 75, 1267 (1949).
7 Tollestrup, Fowler, and Lauritsen, Phys. Rev. 76, 428 (1949).' L. del Rosario, Phys. Rev. ?4, 304 (1948).


