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Theories which are covariant with respect to transformation groups involving arbitrary functions
cannot be of the Cauchy-Kowalewski type. Therefore, it would appear that such theories cannot be cast
into a hamiltonian formalism. However, a hamiltonian function can be formed although it is, to a certain
extent, arbitrary. This lack of uniqueness is an immediate consequence of the covariance requirements.
The adoption of a particular hamiltonian function destroys the covariance of the theory. This situation
is similar to the introduction of "cordinate conditions" in the theory of gravitation or the use of the Lorentz
gauge condition in electrodynamics.

I. INTRODUCTION so-called parameters. Their introduction leads to
certain homogeneity properties in the lagrangian and
in the momentum densities which are utilized to
construct the hamiltonian. In the present paper, a
difkrent method will be presented. Parameters are not
introduced at all, but instead, by means of a trans-
formation of variables, the time derivatives of the
variables are separated into two sets, such that one
set of "velocities" can be expressed uniquely in terms
of the canonical variables ("coordinates" and "mo-
mentum densities"), while the velocities of the other
set are completely arbitrary. The corresponding mo-
menturn densities then turn out to satisfy certain rela-
tionships not involving velocities, and these relation-
ships correspond exactly to the "constraints" of the
earlier Syracuse papers and will again be called "con-
straints. " When the customary expression for the
hamiltonian is written out, the velocities are then
multiplied by expressions which vanish because of the
constraints, and thus these terms may be omitted. The
constraints then form a set of conditions which must be
satisfied on the initial hypersurface, while the canonical
equations must be satisfied throughout space-time,

As far as subsequent quantization is concerned, it
appears now as if the new formalism will be considerably
simpler to work with than the parameter formalism, at
least in the absence of particles. Whether results of the
two approaches will be equivalent in the presence of
matter, only future investigations will show.

In the sections that follow the new method will be
developed first for a general covariant theory with a
quadratic lagrangian, without reference to a particular
type of physical field. The general result will then be
applied to the case of Einstein's theory of gravitation,
for the case of combined gravitational and. electromag-
netic fields.

HE development of a covariant field theory in the
hamiltonian form has to overcome the difficulty

that the usual (lagrangian) field equations do not
permit the unique determination of a particular solution

by suitable initial conditions on a (space-like) hyper-
surface, inasmuch as from any one solution formally
diR'erent ones may be obtained by a coordinate trans-
formation confined to a bounded domain, but with
arbitrary generating functions, while on the other hand,
in the typical hamiltonian theory the equations are
solved with respect to the time derivatives of all the
variables, and as a result, the equations are a typical
Cauchy-Kowalewski system; if the initial conditions
are properly set, the solution is unique. The first suc-
cessful attempt to solve the problem was made by
Rosenfeld' although the Lagrangian considered by him
has a much more simple transformation law than those
to be considered in this paper. Dirac' and after him
Schild and Pirani' have solved this apparent contra-
diction by retaining in the expression for the hamiltonian
some of the velocities, so that some of the usual canon-
ical equations reduce to empty relations. The Syracuse
group' ' has taken a diBerent approach, by con-
structing a hamiltonian which, while free of velocities,
contains a certain number of arbitrary functions. Choice
of these functions in a particular calculation amounts
to the adoption of so-called coordinate conditions in the
usual formalism.

Originally, the Syracuse method included the adop-
tion of a system of supplementary coordinates, the
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II. THE FIELD VAMABLES AND THE LAGRANGIAN

The exact nature of the field variables will be left
unspecified and denoted by yz (A =1, ~, 1V), where
X is the number of algebraically independent com-

s
ponents. It will be assumed that the field equations can
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be derived from a variational principle of the form Also, from Eq. (1),

where

BI=0, I= )~ L(yA, yA, p)d'x, where
A"' '= 'B'-L/ByAByB,

gs=y&, 4

(9)

PAPBay y

AApBr AApBa(y )

The coeAicients A~& have the following symmetry
property:

+ApBo +BeAp (2)

Regardless of whether the field equations are satisfied
or not, I." will be used for the left-hand side of these
equations.

Kith respect to infinitesimal coordinate transforma-
tions, the field variables will be assumed to transform
according to the law (I-2.3)

&yA= &ApB"(P,.y B yApP— ,

The four functions P represent the infinitesimal changes
of the coordinate values of a fixed world point. The
F~„~' are numbers which depend on the type of field
variables which represent the field, independent of the
coordinate system used and of the coordinate values
themselves. Lastly, the 8y~ are the changes produced
in the field variables y~ as a function of their arguments
as a result of the infinitesimal coordinate transformation.

To assure covariant field equations from the varia-
tional principle, it is required that (1-2.5)

8L=Qp „.

As a consequence of this requirement and the assumed
transformation law for the y~, one obtains four identities
(I-3.3)

(P Bvy LA) +yA LA=0

By substituting L, Eq. (3), into the above identities,
the terms containing second derivatives will lead to
third derivatives, and these must cancel each other. It
follows that the coeKcients A~&~' must satisfy the
identities (I-3.6)

(P BvLACpr+P BaJ ACvp+P BpLACrv)y 0(7)—
where

LACpr AApCr+AArCp

In what follows, 4E of these identities are of special
interest, those in which p, c, and p all equal to 4, (I-3.7)

P B4y LAC44 2P B4y PA404 —0

The field equations which result from a variation of
the Lagrangian (1) will be denoted by L",

L"= BL/B—yA (BL/B—yA, ,), ,=0,
(3)

LA —(AApBa+. AAaBp)y + .

Consequently, the matrix A ' ' is a singular matrix
because it has four nonvanishing, linearly independent
null vectors, F~„'y~. In other words, its determinant
must vanish. Now A~4~4 is just the matrix of the coef-
ficients of these second "time" derivatives in the field
equations. Therefore, the Euler-Lagrange equations
cannot be solved with respect to all the second "time"
derivatives. The requirement of covariant field equations
forces the matrix 4~4~4 to be singular; that is, its
determinant is zero. Since this matrix has four linearly
independent null vectors, its rank will in general be
X—4 unless the lagrangian has other special invariance
properties, vi2. , the guage invariance of electromag-
netism. In such cases, its rank will be even lower. Each
arbitrary function involved in the transformation
group with respect to which the field equations are
covariant reduces the rank of the singular matrix 5~4~4

by one.

s"=BL/BjA

From Eq. (1), it follows that

A 2+A4Ba yB

(10)

However, the momentum densities thus defined will
not be algebraically independent of each other because,
from Eqs. (8) and (9), the functional determinant or
jacobian between the "new" and "old" variables, in
this case between ~~ and j~, vanishes.

~=
I B~"/BVBI =

I B'LIBVABVBI

Therefore, it would appear impossible that one could
solve for the "velocities, "j~, in terms of the momentum
densities, x", in the usual manner. Since the momentum
densities are not algebraically independent, they must
satisfy a number of algebraic relationships which are
free of j~.As is apparent from above, these relationships
or "constraints" are a consequence of our covariance
requirement. If the theory contains any other invariance
properties in addition to the coordinate invariance,
there will be other constraints. The number of con-
straints will always be equal to the number of arbitrary
functions involved in the transformation group with
respect to which the field equations are covariant. In
the case of coordinate covariance, there are four arbi-
trary functions in the transformation group, and con-
sequently, there are four constraints among the mo-
menta m~. In the case of electromagnetism, the gauge

III. THE MOMENTUM DENSITY AND THE
CONSTRAINTS

The momentum densities are introduced by the usual
definition
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group involves one arbitrary function, and one addi-
tional constraint arises from this special invariance. In
Eq. (10), we can separate derivatives with respect to x'
from the other derivatives, and get7

~A —2+A48ay +2+A484y (12)

We have already shown that the matrix A ' is a
singular matrix, with at least four independent null
vectors. Since F»B4yB are four null vectors of the
matrix AA48', (+= 1, , 4), multiplication of Eq. (12)
by FA„B4yB yield four relationships which are free of
"velocities" and which have the form,

pA 84' (~A 2i1A4cey ) O

These four constraints we shall call the coordinate con-
straints. As was mentioned before, the existence of con-
straints is a direct consequence of covariance require-
ments, since the matrix, AA4B4, is singular for this reason.
In what follows it will be assumed that there are z
arbitrary and consequently m null vectors to the
singular matrix i1A'8' and w constraints, (w&~4). The
null vectors form a linear manifold. That is, any linear
combination of null vectors is again a null vector, and
any null vector multiplied by a constant is again a null
vector.

IV. THE TRANSFORMATION AND THE HAMILTONIAN

We shall now proceed to construct hamiltonians for
covariant 6eld theories whose lagrangian density is
homogeneous, quadratic function of the 6rst derivatives
of the field variables. The form of the hamiltonian for
such lagrangians will be obtained explicitly. The
method makes use of the fact that the theory can be
made invariant under transformations in the jA space
which bring the singular matrix A.A4B4 to a form in which
its last m rows and columns are filled with zeros. Such
a matrix will be termed a "bordered" matrix. The
S—m sub-matrix which results will be a nonsingular
matrix having a de6nite inverse. Then, it will be possible
to solve for some of the transformed velocities in terms
of the transformed momenta. If the hamiltonian is then
formed by the usual means, the "velocities" which
could not be expressed in terms of momenta can be
eliminated by the constraint conditions. The hamil-
tonian so formed will then depend intimately on the
constraints and cannot be freed from the constraints
without re-introducing the velocities.

The transformation matrices, which accomplish the
bordering of the matrix AA4B4, are to a large extent
arbitrary. The last m rows of the transformation matrix
(D) are filled with the w independent null vectors, while
the 6rst S—z rows are arbitrary except that they must
be linearly independent of the null vectors in order that
the transformation matrix D should be nonsingular.

and other important quantities according to the laws

(+A484) I +C4D4DA DB

(PAn84y )
I (i1Anc4y )DB

m'A=DA 7r ~ AS ~BSD A)

5=1) '' )R.

(16)

VAs represents the null vectors of A ' '. This trans-
formation procedure is similar to that carried out in. III.

As indicated previously, the D matrix must be chosen
in such a way that the new matrix, A'A'8' of Eq. (16),
becomes a matrix in which the last x rows and columns
are filled with zeros. That is, the matrix A' ' ' must be
"bordered" with zeros. The matrix will have this
structure if the last zv rows of the D matrix are chosen
as the zv null vectors of A.'A' ' and if the 6rst S—m rows
are any arbitrary set of vectors, not containing veloci-
ties, which are linearly independent of the null vectors.
A D matrix so determined will be a non-singular matrix
which has a unique inverse D '

~ The D and D ' matrices
have the following structure:

N
N —m DA*A

)

D

2=1
2*=1 . V—z
5= (cV —w+1) Ã

The algebraic constrains between the canonical
variables must hold for any combination of the 6eld
variables consistent with the expression (10) for the
momentum densities. Therefore, the jA will be con-
sidered as the coordinates of a symbolical "vector
space" and the functions, xA, are then specific first-
degree homogeneous functions of the coordinates in that
vector space. In any transformation of the yA into new

yA with nonvanishing jacobian, the "coordinates" of
our vector space (the jA) will undergo a linear trans-
formation, and the momentum densities will transform
contragradiently to them. The j'A will be referred to as
"coordinates, " and all quantities with the same trans-
formation law will be called "contravariant vectors. "
The mA form a "covariant vector, " the matrix A"4 4 a
"covariant symmetric tensor, "and the lagrangian is z
"scalar. " Therefore, the hamiltonian as it is usually
de6ned,

8= L+jA7rA —2=1, , X, (14)

is also a "scalar. " If one considers the non-singular
transformation matrix D '"B, then the coordinates jA
transform according to the law

7 In this paper Greek indexes run from one to four and Latin
indexes from one to three.

D—1—N D—1A D—lA
I
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D'A =D,A =&A,B'yB.

From Eq. (16),

p~sm4 pem4Ds ~ 0 (19)

because Ds~ is a rectangular array of null vectors of
A~'~'. Moreover, the matrix

gC4D4Das' Da* (20)

is a nonsingular matrix because D~*q is a rectangular
array of vectors which are linearly independent of the
null vectors. However, A'~*4~*' is not determined
uniquely until the rectangular matrix D~*z has been
chosen. If the inverse of A' "~"is denoted by G&~4&~4,

then
PIA+4B+4G ~ ~ gA+ (21)

If the only invariance properties of the theory are coor-
dinate invariance, the rectangular matrix Ds~ is given
by

(18)

in the new space by the usual methods. However, the
hamiltonian density so determined is not unique, and,
in fact, an infinity of hamiltonians can be found. The
hamiltonian density in the original space can then be
found by use of the transformation equations for the
momentum densities and "tensors. "The fact that the
hamiltonian is not uniquely determined is not surprising
because, the covariant Euler-Lagrange equations cannot
be solved with respect to the highest "time" deriva-
tives. Therefore, the continuation of the solutions in
"time" is not unique. However, the canonical equa-
tions, by their very nature, are solved with respect to
the highest "time" derivatives. Yet the hamiltonian
formalism is equivalent to that of Lagrange. The ap-
parent contradiction finds its explanation in the fact
that the hamiltonian is not uniquely determined.
Therefore, the continuation in "time" would not be
unique with given initial conditions, and the apparent
contradiction is thereby resolved.

The hamiltonian density is usually defined as,
Therefore, the A'~4~' matrix has the form H= —L+jg~". (29)

P~A4B4

N —m

p ~A*48*4 0

0
(22)

H=H'= —I.'+j' m'~. (30)

Since the hamiltonian density is a scalar under the
"coordinate" transformation described above in the j~
vector space,

The new momentum densities, calculated from either
the new lagrangian density or from the transformation
Eq. (16), are

2(gA48myB )~+.2g~A484y ~8

Because of the special form of A.'~' ',

P~AM4~~ P~A4B*4~~ (25)

If the components of x'" in the null space are separated
from the other components,

x~A" —2(+A448ny )~+2+~A44844j~

~~8 —2(gS48ny )~

(26)

(27)

Equation (27) is the expression for the constraints
in the new coordinate system.

Equation (26) can be solved for the y'8* by multi-
plication by Gg*4p 4 to obtain

and the new lagrangian density has the form,

(gAnBmy y )
~

+2(PAa84yA ) y +y A484y y (23)

If the expression for l.' [Eq. (23)j is substituted in the
above expression for H', one obtains, after separating
derivatives with respect to x4 from the other derivatives
and using the fact that A'~4~' is a "bordered" matrix,

(444A 8 yAyB, ) , g A'48 4jr A'j 8'

y (x~A4 2(gA448my )~)y~

where A*, A, and S have the same meaning as before.
The coefficient of the j's term vanishes because of the
constraints LEq. (27)]. The fact that the "velocities"

j s drop our of the hamiltonian is very fortunate since
we cannot express them in terms of the canonical vari-
ables m, y&, and yz, „.The "velocities" j'&~, on the
other hand, can be expressed in terms of the canonical
variables LEq. (28)j, and thus we can form a hamil-
tonian altogether free of "velocities. " However, this
hamiltonian depends on the constraints in such a
manner that it cannot exist unless the constraints are
satisfied Fro.m the expression for j'A4 LEq. (28)], the
hamiltonian becomes

jp (pAnBmyA, yB, )

g A GA*48 4(27r (~ yc, a) )& (28) +GA 48*4(24r'"*—(&"*'""yA, )')

by using condition (21). The matrix GA 48 4 is arbitrary
until the form of the rectangular matrix D~*q has been
chosen.

It will be shown, by properly using the constraints
LEq. (27)j, that a hamiltonian density can be found

X(-,'~' "—(&
'

"yB,.)') (32)

after using Eq. (21). However, this expression is not
the only hamiltonian which can be obtained. We can
add to the above hamiltonian any algebraic combina-
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tion of the constraints LEq. (27)] with unknown coef- when surface boundaries are at infinity. The remaining
ficients which are free of "velocities. " Therefore, the terms have the form
hamiltonian can be written in the form

H'=H'1+Es(y'A, y'A. , ir'A')(4r's —2(AB~ yB, )'), (33)

where H'1 is the hamiltonian of Eq. (32).
If one expresses the primed quantities in the hamil-

tonian in terms of the unprimed quantities by means of
Eqs. (16), the hamiltonian

yA, vvyB. m+GA"4B 4D AD B

y(lxA gA4cvvy )(1~ gB4Dmy ) (34)

which results contains the original canonical variables
~A, yA, and yA, . The choice of the rectangular matrix
D"'A has no efI'ect on the Gnal form of H except to
permit the addition of linear and quadratic combina-
tions of the coordinate constraints (13). Therefore, the
hamiltonian (34) possesses exactly the degree of arbi-
trariness required by the general theory.

In III a similar hamiltonian to the expression (34)
was obtained which we shall call the p-hamiltonian.
We can make the p-hamiltonian identical with the
expression (34). First we must set the arbitrary function
e& in III equal to 84p; then, remembering that the
integral over all space of the momentum density X4

(III-7.5) is a constant of the motion, —the "time"
derivatives of ) 4 can be expressed as a surface integral
which vanishes when the surface boundaries are at
infinity —we shall drop the term containing X-quan-
tities. The remaining terms in (III-7.5) are then id.en-
tical with the expression (34).

The canonical Geld equations take the form

jA = 47H/Bx" (BH/BxA, .),—.= 8H/h4rA, —

F=JI (F, H)d'x,

where (F, H) is the "Poisson bracket" between F and
II and stands for

bF 8H 8F 8II
(F, H)=

yA ~~A g~A gyA

This "Poisson bracket" is very useful when passage to
the quantum theory is desired.

V. THE LAGRANGIAN OF RELATIVITY KITH
ELECTROMAGNETIC FIELD

The lagrangian density of the general theory of rela-
tivity has the following structure if the electromagnetic
Geld is included

L=Lg- +Lpi,

where L~, and L,i have the same form as in III.
The appropriate values for the constant coeKcient

F~'A„, if one considers as the basic Geld variables the
g„„and @„,are given in III. The g„„are the symmetric
components of the covariant metric tensor and the p„
are the four electromagnetic potentials. This lagrangian
density contains the Geld variables and their Grst
derivatives only. Moreover, the lagrangian is also
homogeneous quadratic in the Grst derivatives of the
Geld variables. Therefore, the theory of the earlier parts
of this paper applies to the case of gravitation with
electromagnetic field.

The lagrangian density can be rewritten to demon-
strate this quadratic structure. Renaming dummy
indexes and factoring we get,

4r A = BH/By A+ (BH—/4tyA, .),.= bH/by A. (3—5)— "'g.p, ,g,4,.+ I (36)

where A& p»&&'&' and F»" with their s metr ro er-
e time derivative of any functional of the canonical wh re and Y wit their sy et y ProPer-

variables ties are given in III. From Eq. (8) it can be shown that

ppvpcurcr+ ppvcrcsrp+ gpcrvcurp+ gpcrpcorv

F(yA, yA, „,4r, 4r .„)d'x, +psppvvvv+ gppvvvv= O (37)

can be given the form, If p=~= v=4 in Eq. (37), one sees that

p(BF 6H BF fbHp~= ~i „+„&ay„cxA ay„,„&&~A),„ alld
/4p4yb4 gy544p4 —0

P'@444 P'44@4 —0

(38)

(39)

r7F 8H BF ~bH q

a A Sy a A„I SyA), „i
If a total divergence term is separated from this ex-
pression, this term makes no contribution since it can
be converted by Gauss theorem into a surface integral
which vanishes when surface integral which vanishes

hold. Therefore, the singular matrices A. p4&'4 and I'&4"4

have the important property of being "bordered";
that is, they have their zeros in the last rows and
columns. Consequently, it is not necessary to make any
transformations to bring them into this form. The sub-
matrices A~4 "4 and Y"4'4 are nonsingular matrices and
have unique inverses.
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From Eq. (9) the null vectors of this matrix are If the lagrangian is supplied with Eq. (36), we find

(—g'.-8p'+ g.p8-') 4—,8-',
&aP —2) aP4v&ling

4 +2+aP4y44g 4

fn —2Iv&&4vny +2Iv&&4r4$

(46)

when substitution for F( p)„&&')4 and F „&4 is made.
Since the null vectors form a linear manifold, linear
combinations of these null vectors are again nu11

vectors. Therefore, multiplication of Eq. (40) by g»
will give null vectors ~4P 2+4P4ybn~

gab, n) (4&)

Because of the special structure of the matrices A."~'4&'4

and Y&'4 the constraints can be written down at once.
They are the coordinate constraints

—(8 '&8p4+8p'&8 ') —&t&'&8 ',
7

(41)
and the gauge constraint,

n, P=1, , 4 4=0. (48)

where y indicates the null vector in question and (nP)
and a indicate the components of the null vector.
Written out they become,

(000000, —1 0 0 0,
(000000, 0 —1 0 0,
(000000, 0 0 —1 0,
(000000, 0 0 0 —1,

0 0 0 —$')
000 —4')

( )

0 0 0 —y4)

Gkl4 b4&'b4 "4= (8k 84"+84 8 )k

6 Pa4n4 g n

(44)

These inverses were found by the method of "building
blocks" similar to that in III. They are

Gk&4mn4= L2/( g) g j(—gkmgln+gknglm gklgmn)—& (45)

Gk4-4= 52/( g)'g"j—gk-—
VI. THE MOMENTUM DENSITIES AND CONSTRAINTS

The momentum densities are defined by the usual
definition which, in this case, become

&rap= 81/8j p and f&= 8L/8$„,

where

x t'= gravitational momentum densities

A fifth null vector of 4~4~4 independent of those above
1S1

(0 0 0 0 0 0, 0 0 0 0, 0 0 0 x),

where x is any nonvanishing quantity.
Because of the special structure of the A~4~4 matrix

in the case of gravitation with electromagnetic field, the
whole development from this point on becomes identical
with the primed vector spaced introduced in the
general theory of Sec. IV.

The inverses to the nonsingular matrices A~4 "4 and
7"4'4 must be calculated. The inverse matrices are
defined by the equations

Substitution for h.4t'4~'" gives,

~"=4( g)'I 2—g"(g'Pg'" g'"g"—)

+g"(g"gp" g'"g'p—)jg.b'(49, )

As for the remaining momentum densities, we have,

and,
~b —2+nb4ybng

4 +2ltab4mn4d

fm 2I&'m4&ny +2 I&'m4n4$

(5o)

(51)

If the gf'" are replaced by the nt"", the electric momenta
reduce to the expressions usually given for these
momenta. 8

Multiplication of Eqs. (50) and (51) by G,b4„„4 and
6„4 4, respectively, gives

and
gmn= Gmn4ab4(2&r ~ 8 grail, n)&

G (Xpm Ivm4&vy )

(52)

(53)

VII. THE HAMILTONIAN DENSITY OF RELATIVITY
WITH ELECTROMAGNETIC FIELD

The hamiltonian is formed according to the expression
(41) which was derived in Sec. IV. If the gravitational
part is separated from the electric part,

II'= II= —A t' 'y~
g g

+G (1&lab gab4ybmg )(L~kl pkl4avng )

$7&vnvm4t 4& +G (Ip lvk4&my )

&& (-'4' —I'"""4 ) (54)

This expression may appear unduly lengthy. But the
reader should bear in mind that the ordinary concise
expressions for such quantities as the Riemann-
Christoffel curvature tensor in the ordinary theory of
relativity appear brief only because of the adoption of
abbreviating notations —the Christoffel symbols and
Einstein's summation convention. Ke have not used
here Christoffel symbols, and in indicating sums, we
had in many cases separated the index 4 from the
spatial indices. Thus, actually, the present expression

and
iP"= electromagnetic momentum densities.

' See for instance, L. Schift, Quantum 3lechaeks (Mcoraw-Hill
Book Company, Inc. , New York, 1949), p. 404, Eq. (48.4).
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is probably not longer than those current in general
relativity.

In the case of special relativity (g„„=e„.) this hamil-
tonian reduces to the hamiltonian usually given for the
electromagnetic field.

VHI. CONCLUSION

A hamiltonian formalism in nonrelativistic dynamics
determines uniquely the state of a dynamical system
for all instants —~ «& t «& ~ if the values of the momenta
and coordinates are given at one instant to. An "instant"
is here defined according to Dirac' to be a space-like
hypersurface at a given time t. A hamiltonian formalism
which satishes the principle of general covariance with
respect to arbitrary coordinate transformations must
still show how the dynamical variables vary from
instant to instant. However„ in a covariant theory the
instant can be varied arbitrarily in four diGerent ways,
and the hamilton equations of motion must always
apply. Therefore, the field variables cannot be deter-
mined uniquely as functions of the independent vari-
ables, and the arbitrariness in their determination is
exactly given by the four arbitrary coeKcients of the
constraints (13).This arbitrariness is then incorporated
in the arbitrariness of the rectangular matrices D"'~.
If the hamiltonian formalism is covariant with respect
to other transformations like the guage transformation
of electromagnetism, other arbitrary functions will

occur in the hamiltonian to allow for the freedom of
adding an arbitrary gradient to the held variables after
their initial values have been fixed. This arbitrary
function, in the case of electromagnetism, will be the
arbitrary coefficient of the gauge constraint (46). If the
arbitrary coefficient of all the constraints are chosen,
this is equivalent to the adoption of particular gauge
and coordinate conditions.

These comments apply equally to the parameter-
hamiltonian developed in III and the formalism pre-
sented in this paper. The chief di6erence between the
two methods of constructing a hamiltonian lies in the

use of "parameters" in III. The parameters are an

auxiliary coordinate system which is introduced along-

side the usual coordinates x&. The purpose of the
parameters is twofold. Prior to quantization, the
parameters enable us to prescribe the motion of any
singularities at will in terms of the parameters and,
thus, to restrict the domain of integration of the lagran-

gian density to regions free of singularities. In the
quantized theory, then, the coordinates, including the
coordinates of any singularities of the 6eld (particles)
appear as q-numbers, while the parameters remain
c-numbers. In this formalism, on the other hand, there
is only one system of coordinates used, and we succeed
in constructing the hamiltonian function without
recourse to the homogeneity properties characteristic
of the parameter formalism. In the unquantized theory
and in the absence of singularities, the two systems of
equations must lead to identical results; the treatment
of singularities in this formalism must await subsequent
investigations. In the quantized theory, we cannot
expect the coordinates to appear as q-numbers, they
will remain in the c-number-field on which the field

variables are defined.
While the parameter formalism may possibly aGord

a more direct access to the operators representing the
dynamical variables of particles, the present forma&ism

is simpler in every other respect. It should, therefore,
facilitate the comparison of the covariant formalism
with other theories (such hs quantum electrodynamics)
which lack full covariance, but which have been inves-
tigated more fully in the past. Thus, for many purposes
the present formalism constitutes a bridge between the
covariant and more conventional theories, and we
expect that the two formalisms now available will sup-
plement each other in future investigations.

It is a particular pleasure to thank Dr. Peter G.
Bergmann for suggesting the problem and for his
guidance and encouragement throughout my work. I
wish to thank Dr. Killiam Fredrickson, Dr. Charles
Loewner, and Dr. Henry Zatzkis for many valuable
discussions.


