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of the newer experimental data. Actually our plot of
the formula does take account of the newer values for
the masses of the neutron and proton.

The present study is being systematically extended
to higher masses. The results obtained, when supple-
mented by masses for the unstable isotopes in the
region, will provide a large block of coherent data. Such
information will make it possible to determine more
precisely the numerical values for the various terms in
formulas proposed for nuclear binding energies and
should shed light on shell structure theories. In Fig. 3
it is interesting to note the close correspondence in
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undulations of the two curves and to observe the
apparent discontinuities occurring at masses 40 and 48.

The authors wish to acknowledge the very able
assistance of Ruth C. Boe in making many of the
measurements reported here. The construction of the
apparatus was aided materially by grants from the
Graduate School and the Minnesota Technical Re-
search Fund subscribed to by General Mills, Inc.,
Minneapolis Star and Tribune, Minnesota Mining and
Manufacturing Company, Northern States Power
Company, and Minneapolis Honeywell Regulator Com-
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The P. R. Weiss method developed in the theory of ferromagnetism is applied to antiferromagnetism by in-
troducing sublattices. Atomic lattices (spin } per atom) with negative Heisenberg exchange coupling J be-
tween the nearest neighbors are investigated. It has been found that two-dimensional lattices cannot sustain
antiferromagnetic order. The Curie temperatures of the simple cubic and b.c.c. structure are, respectively,
2.004|J | /k and 3.18|J|/k. That the f.c.c. lattice cannot be ordered by the interactions among the nearest
neighbors is deduced from the disorder of a quadratic layer and the ineffectiveness of the interactions be-
tween layers in a f.c.c. lattice in producing order. This helps to understand why the ordering pattern of spins
in Mn ions in MnO should be such as observed by Shull. Curves are obtained for reciprocal susceptibility and
for short-range order vs temperature above the Curie point 7. The experimental formula x=const/(T+6)
is compared with our theory. We obtain for the simple cubic and b.c.c. lattice §=1.5T; and 1.25T respec-
tively if we extrapolate our theoretical curve from extremely high temperatures, and 6 is slightly higher
than these values if we extrapolate from the temperature range at which experimental readings are taken.
This compares more favorably with the experimental data than the prediction 8= T of the molecular field
theory. The general validity of our theory and its failure in the range of low temperatures are discussed.

I. INTRODUCTION

MAGNETIC medium with negative exchange
coupling between the neighboring atoms cannot
be ferromagnetic, but under certain circumstances the
spins of the neighboring atoms are ordered antiparallel
at low temperatures. This ordering effect is called anti-
ferromagnetism. Its existence was first suggested by the
discovery of an anomalous specific heat in MnO near
the ordering transition temperature, at which a’ maxi-
mum susceptibility has also been observed.! The latter
phenomenon made possible the proper understanding
of this transition. We can imagine that, as the tempera-
ture is lowered, the inner field which causes the stagger-
ing of spins becomes stronger and makes it harder for
the applied field to align the spins in one direction.
Quite a few substances are found to show antiferro-
magnetic transitions; among them are most of the ionic
salts of transition metals. Theoretical interpretations of
this phenomenon have been given by Néel,? Bitter,?
! See the review article, J. H. Van Vleck, Revs. Modern Phys.
17, 27 (1945).

2 L. Néel, Ann. phys. 17, 64 (1932); 5, 256 (1936).
3 F. Bitter, Phys. Rev. 54, 79 (1938).

and Van Vleck* using the molecular field method in
which the ordering ‘“force” is assumed to be uniquely
determined by the existing degree of order over all the
lattice. Increasing attention has turned to antiferro-
magnetism since the development of the neutron diffrac-
tion technique, which makes possible a direct investiga-
tion of the ordering pattern.® Using this technique,
Shull et al.® have found in MnO a rather unexpected
structure: The spins of Mn*+ are ordered in such a
manner that spins are lined up antiparallel in each of
the four simple cubic sublattices of which the face-
centered cubic lattice of Mn ions is composed. This
indicates that the exchange interaction between the
next-nearest neighboring Mn ions is more effective in
ordering spins than that between the immediate neigh-
boring Mn ions. A satisfying explanation of the strong
exchange force between next-nearest neighbors has been
offered by Anderson,” in which he takes into considera-

4J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).

5C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949).
¢ Shull, Strauser, and Wollan, Phys. Rev. 83, 333 (1951).
7P. W. Anderson, Phys. Rev. 79, 350 (1950).
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tion the perturbation of the excited state of the O ion
between two next-nearest Mn ions.

The ordering effect of antiferromagnetism is one of
the so-called cooperative phenomena in which the inter-
action between the unit systems is vitally important.
A cooperative assembly usually means a difficult prob-
lem for statistical mechanics. It is almost unnecessary
to mention that an exact solution of the cooperative
assembly with the Heisenberg exchange interaction is
not in sight at this time, since the diagonalization of the
hamiltonian of the crystal is overwhelmingly involved.
In the case of a negative exchange integral even the
lowest energy levels have not been worked out except
for the linear chain.® The purpose of this work is to
undertake an approximate statistical theory of anti-
ferromagnetism, more refined than the molecular field
theory. As usual, only the most important Heisenberg
exchange interaction, which is not always the interac-
tion between nearest neighbors, will be considered. We
assume that the orbital moment is quenched, so that
the magnetic interaction arises entirely from the spins
and is isotropic. Naturally we look to the methods de-
veloped for the theory of ferromagnetism. The elegant
method of Bloch’s spin-waves? is not available in anti-
ferromagnetism, because the lowest energy levels can-
not be obtained with his scheme when they are the
states of very small magnetic quantum number. The
Opechowski method,!® in which the partition function
is evaluated as an expansion series of 1/7, has been
used to locate approximately the ferromagnetic Curie
temperatures by making an extrapolation from the first
few terms of the series expression of the reciprocal
(magnetic) susceptibility, which becomes zero at the
Curie point. However, for the case of antiferromag-
netism the series becomes violently oscillatory, reaching
+ o at absolute zero; hence, an extrapolation for the
Curie point, at which the susceptibility reaches its
maximum, cannot be effected with the terms given by
Opechowski and by Zehler.!! A few more terms can be
obtained only with immense labor. The P. R. Weiss
method,’? which is the reformulation of Bethe’s well-
known method® (for the theory of superStructure in
alloys), is the most convenient one to use. Consequently,
we shall apply the P. R. Weiss method to the problem
of antiferromagnetic transitions by introducing sub-
lattices. A discussion of the failure of this method in the
range of very low temperatures'* will be given in a later
part of this article.

II. STATISTICAL METHOD AND CURIE
TEMPERATURES

As in the theory of order in binary alloys, it is con-
venient for the present problem to describe the long-
TS L. Hulthén, Arkiv. f. Mat. Astron. Fys. 264, No. 11 (1938).

9 F. Bloch, Z. Physik 61, 206 (1930).

10 W, Opechowski, Physica 4, 181 (1937); 6, 1112 (1938).

1Y, Zehler, Naturwiss. BSa, 344 (1950).

12 P R, Weiss, Phys. Rev. 74, 1493 (1948).

13 H. A. Bethe, Proc. Roy. Soc. (London) 1504, 552 (1935).
1 P. W. Anderson, Phys. Rev. 80, 922 (1950).
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range order in terms of sublattices. This makes the
problem of antiferromagnetic transitions formally more
complicated than its counterpart, the ferromagnetic case.
A proper assignment of sublattices must be such that
we find the lowest energy state when all the spins on
each of the sublattices are perfectly aligned but anti-
parallelism prevails between certain different sub-
lattices. The lattices to be considered in this section are
the simple and body-centered cubic structures, the
quadratic net, the honey-comb net, and the linear
chain. For these we need only two equivalent sublat-
tices; all the nearest neighbors of any site (a- or B-site)
are on the other sublattice (8- or a-site). At the lowest
energy state a spin is antiparallel with respect to all
its nearest neighbors. In the Bethe-Weiss method the
interactions in a cluster containing an arbitrary atom
(the central atom) and all its immediate neighbors
(the » “first shell” atoms) are treated in detail. The ex-
change energy of this group is diagonalized. The inter-
action between a first-shell atom and those outside the
group is replaced by an internal field. After the assign-
ment of sublattices we find two different kinds of clus-
ters; one with the central atom on an a-site, and the
other with the central atom on a g-site. Therefore, we
must consider two different internal fields H, and Hpg
acting respectively on the first-shell spin on an a-site
or a B-site. The central spin is, of course, acted upon by
the applied field only, since all its neighboring inter-
actions are accounted for. The average magnetic mo-
ment of the central atom and that of the first-shell atom
can be derived from the partition function of the cluster.
The self-consistency of this formulation requires that
the magnetic moment of a central atom on a certain
sublattice equals that of the first-shell atom on the
same sublattice. These relations determine H, and Hs.
H, and Hj will be treated as either parallel or anti-
parallel to the applied field Ho. The neglect of direc-
tional effects is not a real shortcoming except in the
highly ordered states at low temperatures, but in the
latter range our approximation is inadequate under
any circumstance (see Sec. IV). Theoretically, the higher
approximations can be obtained by taking larger clus-
ters, i.e., including the second-shell neighboring atom,
the third-shell, and so on, but the complexity of the
computation increases very rapidly.
The hamiltonian of the cluster of atoms is given by

= —2J Z So'S,'—S()gIIo'_z S.‘sz

=1 =1

2.1)

where s, is the z-component of s and the direction of the
applied field is taken as the z-axis. H;=H, or Hg ac-
cording as the central atom of the cluster is on a B-site
or an a-site. (In this article, the symbol H stands for a
magnetic field in gauss multiplied by u where p is the
product of the Bohr magneton and the Lande g-factor.)
The energy states may be labeled by the quantum
numbers Sy, S, and m; S is the total spin quantum



THEORY OF ANTIFERROMAGNETISM

number of the cluster, S, that of the »# outer atoms, and
m the magnetic quantum number of the cluster. In
what follows we shall consider only the case in which
each atom as spin %. (The generalization to cases of
higher spin is straightforward.) The partition function
of the cluster of atoms has been given by P. R. Weiss:

P(Ho, Hy, T) =352 5,0(S1) X m
Xexp[—W(S, Sl’ m)/kT]: (2'2)

where
nl!

[6) 51 =
(59 (%n+51) En—3S))!

!
- z 2.3)
(St (n—Si—1)!

for S1<in, and w(Si=3%n)=1. The energy levels ob-
tained by diagonalizing (2.1) are

W (S35, S1, m)=Egy—mH+ ey (Hy— Ho)

+32(;t) (H/’—Ho)2+ e (24)
with
Egy=—JS, Eo=J(S1+1),
1
61(5:)=“—m(1:i: ),
25:+1
1 4m?
ey =F (1‘~ ),
47281\ @281y
m 4m?
€3 =T (1~ )’
2J2(2S,+1)3 (25:+1)?
m
ey =k
63 (284 1)8

24m? 80m
x(1— a ) (2.5)
(2Si+1)2 (2S41)*

The subscripts (+) and (—) stand respectively for
S=S5+% and S=S;—1 and the upper and lower signs
in (2.5) correspond to (4) and (—) respectively. For
the cluster with a central B-site, we write

P,=P(Hy H., T), (2.6a)
and for a central a-site
Pg=P(H,, Hp, T). (2.6b)

Considering the central site, we get the average mag-

netic moments per atom,
Ma®=ukTd InPs/dH,, me*=ukTdInP./dH, (2.7)

for the atoms on the two sublattices. On the other hand,
from the consideration of the outer atoms of the
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cluster, we have
fo*=n"'ukTd InP,/dH,,

(2.8)
mg*=n"ukTd InPs/dHs.

Since no distinction should be made between the cen-
tral spin and one of the first shell, we must have
MaS=1m," and Mmg°=1mmg°. This consistency requirement
gives a set of equations which relates H, and Hj to
the applied field Hy and temperature T. They are,

nPaaPﬁ/aHo—Pgapa/aHa= 0, (293.)
1PsdPa/dH,— PadPs/dHs=0. (2.9b)

By exchanging the roles of H, and Hj in (a) we get (b)
and vice versa. For any given H, and T there is a set of
solutions of (2.9) with H,=Hj corresponding to the
paramagnetic case. However, this is not always the only
solution of (2.9). For a substance with negative ex-
change integral (J <0) and at sufficiently low tempera-
tures a set of solutions with H, different from Hg may
appear to be the solution for the equilibrium state.
With Hy=0, P, (or Pg) is an even function of H, (or
Hpg), and both dP,./dH, (or dPg/dH,) and dP./dH , (or
dPs/0Hpg) are odd functions of H, (or Hpg). Conse-
quently, Hg=—H, offers a set of solutions for (2.9)
by making them identical, giving .= —s. Near
the Curie temperature T the antiferromagnetic solu-
tion can be determined from

A+4CH 2=0, (2.10)

which is obtained by putting Hg= — H,0 in (2.9) and
neglecting all the terms in the ascenting power series of
H, except the first two. Detailed evaluation gives

a E
A=zwwoz[%w+“ﬁkmfufﬂ (2.11)
S1 @ kT kT
C=3 w(S) X [Co&>+c—l(i)+62(i) fi(ﬂ]*
81 [@s) kT RT? R3T®
Eqy
Xe ——, (2.12
) e
where
a0=2m(—2e),
(n—1)a1=2n{(n—1)el+nme,},
(2.13)
co=2_m(—4es),
(mn—1)c1=2"m{2(n—1)(es2+ 2e163)+ nmes},
(m—=1Dce=2m{—2(n—1)ees—nmeies},
(2.14)

6(n—1)cs=2_m{(n—1)es*+nme;®}.

Incidentally, we might mention that if we change the
symbol # into —# in the coefficients 4 and C of (2.10)
we get Weiss” Eq. (36), the counterpart of (2.10) in the
ferromagnetic case. The simple connection is an out-
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TaBLE I. The curie transition of different lattices. Each atom has spin 4. The numerical values are those of £7./|J|.

Number of
nearest Antiferro- Present method Molecular
Lattice neighbors magnetism ferromagnetism» Ising model® field method®
Linear chain 2 no transition no transition no transition 1
Honey-comb net 3 no transition no transition 0.910 1.5
Quadratic layer 4 no transition no transition 1.44 2
e . 2.47(J>0) fes

Hexagonal layer 6 no transition #no transition {no transition (J <0) transition
Simple cubic 6 2.004 1.85 247
Body-centered cubic 8 3.18 2.90 3.48 4
Face-centered cubic 12 7o transition® transition transition transition

a After P. R. Weiss.
b For both the antiferromagnetic and the ferromagnetic cases.
© See Sec. V.

come of the fact that if we put H,=Hg><0 in (2.9) our
theory reduces to that of ferromagnetism.

A transition of second order takes place at a certain
temperature, such that 4 changes sign and above this
temperature (2.10) yields an imaginary value of H..
By numerical computations using the condition 4=0,
which involves different coefficients for different lat-
tices, we find that without the external field!® the values
of kT,/|J| for the simple cubic and b.c.c. lattices are
respectively 2.004 and 3.18 and that none of the two-
dimensional nets investigated show antiferromagnetism.
Previously, the latter conclusion had been suggested by
its counterpart in the theories of ferromagnetism.

For convenience of comparison, the results of the
P. R. Weiss theory for both antiferromagnetic and
ferromagnetic cases and those obtained by Van Vleck
using the molecular field method are listed in Table I.
Also included in Table I are the results of the present
method with the Ising model. In this model spin vectors
are replaced by scalars s==-3% so that

3C=—2Jsop_isi—SoHo— HyY_s:, (2.15)
and
P(Ho, Hy, T) =0y ' Hay) "
+xofayyt+a Ty, (2.16)

with
xo=exp[Ho/2kT]), x,=exp[H,;/2kT],

y=exp[J/2kT].
III. PHYSICAL PROPERTIES
(a) Magnetic Susceptibility

When the crystal is antiferromagnetically ordered,
its magnetic susceptibility depends on the direction of
the applied field with respect to the existing internal
field. Our theory is not qualified to evaluate the sus-
ceptibility below the curie temperature, since from the
beginning the directional effect is neglected. For the

16 In general, the Curie temperature is a function of Ho and can
be determined by using (2.9). The calculation for the case of non-
vanishing applied field is much too involved. However, that T
should decrease as Hy is increased is shown qualitatively in a pre-
vious note (Y. Y. Li, Phys. Rev. 80, 457 (1950)) by drawing an
analogy with the well-developed theory of Ising model.

disordered state the consideration of sublattices is un-
necessary, and so the formula for x given in Weiss’
article is valid for both the ferromagnetic and anti-
ferromagnetic cases. In the present notation it reads

KT <s>>:z( Sl
X=——X v mi— e
)Py 5 D H, ml&))
Xexp[—Ew/kT] (3.1)
where

(Hy—Ho)/Ho={ X 5,0(SD L 2Zm
X [nmi+-(n+1)mer ] exp[ — Ew/kT ]}
{508 X w2 mlnmeiwy+ (n+1)
X (e1w®—2kTexw) J exp[ — Ew/kTTH  (3.2)
Po=P(H,=0, H;=0,T). 3.3)
x may be written as power series in J/kT, such that

2

X (3.4)

£
= 1/}
Both P. R. Weiss and Opechowski have found B;=1#n
and B,=3%n (3n—1) for all the lattice structures under
consideration. The coefficients of the higher terms are
not functions only of #. By detailed calculations we get
for the simple cubic lattice

u? 3 6
x=— 1+ ——+
4kT kET/J (RT/J)?
2579 10725
+ + :
224(kT/J)* 448(RT/J)*

- [1+
4kT

3.5)

with the coefficients of the third and higher powers
slightly different from those in the series,

B u? 3 . 6
“aer T RT/T RT/TY
1 165
g T} (3.6)
(RT/J)® 8(RT/J)
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obtained by Opechowski and by Zehler (see Sec. IV).
For extremely high temperatures, we may take only
the first two terms in the series and rewrite in the form
of the modified Curie’s law

x=u*/4k(T£T"), 3.7
with

T'=n|J|/2k, (3.8)

where the upper sign is for antiferromagnetism. The
molecular field theory gives this formula as its predic-
tion of susceptibility for any temperature above the
Curie point. This is equivalent to the neglect of all the
terms except the first two in (3.4).

It is customary for experimentalists to fit their data
taken at temperatures above the Curie point with the
formula x=-const/(T=46). If we compare this formula
with (3.7) we simply get 6=T". However, this is an
extrapolation from the range of extremely high tem-
peratures and is not in conformity with the ordinary
experimental practice, in which the data are taken from
temperatures immediately above T, to those of several
times 7', in the absolute scale. Therefore, in order to
obtain a theoretical value of 6, the so-called “para-
magnetic critical temperature,” we should effect a
linear extrapolation from the theoretical curve 1/x
against 7T in the range T'=2T, to 3T.. The tangent of
this section of the curve is then extended to meet the
abscissa at —@ in the case of antiferromagnetism.
Table II shows the ratios of 8/T. and T’/T. for both
antiferromagnetism and ferromagnetism. The values
obtained with the molecular field theory are also in-
cluded. We see that in the antiferromagnetic case
6> T’ noticeably, but in the ferromagnetic case <7’
and is only slightly higher than T'.. In general, an experi-
mentalist would notice that, as the temperature goes
higher, the value of 6 in his empirical expression must
be shifted in order to obtain the best fit for his data
when they are taken over a wide range of temperatures;
in the ferromagnetic case 6 increases with increasing
temperature, but in the antiferromagnetic case 6 de-
creases. This difference is an outcome of the fact that
the tangent of extrapolation meets the T-axis at a
point immediately above T in the ferromagnetic case,
but the intersection is on the negative T-axis in the
antiferromagnetic case. Experimentally, it is found that
for various antiferromagnetic salts 6/7, ranges from
1.4 to 5.0, though for the iron group @ is only higher
than T, by only a few percent. These results agree
nicely with our theory. The well-known prediction
6=T. is a consequence of the simple theory of the
molecular field method. Therefore, it is not essential
to include the next-nearest interactions in order to
explain the appreciable deviation of 6 from TV
though it may be required for getting better quantita-
tive agreement with experimental data.

The quantity x is calculated numerically from (3.1)

18 T,, Néel, Ann phys. 3, 137 (1948).
17 P. W. Anderson, Phys. Rev. 79, 705 (1950).
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TasLE II. The paramagnetic critical temperatures
for two cubic lattices.
The present method Moleculat
Antiferro- Ferro- field
magnetism  magnetisms method®
6/T, 1.7 1.1 1
simple cubic
T'/T. 1.50 1.62 1
6/T. 1.5 1.05 1
b.c.c.
T'/T, 1.26 1.38 1

a After P. R. Weiss.
b For both antiferromagnetism and ferromagnetism.

for the simple cubic lattice and is presented in Fig. 1
with x(T';)/x against T/T.. At the Curie point we have
x(Te)=3.63 102u2/|J|. Our curve is concave upward,
instead of being a straight line as required by the modi-
fied curie’s law. The experimental data of Bizette ef al.!®
on MnO are also presented for comparison. The Mn
ions in the f.c.c. lattice are ordered on four super-
imposed simple cubic lattices, and therefore it seems
legitimate to compare their data with our calculation
for a simple cubic lattice, if we identify our J with the
exchange coupling between two next-nearest Mn ions.
The Mn ion has a spin 5/2 instead of §. In making the
comparison we assume that the spin quantum number
per atom does not have much influence on the behavior
of x/x(T.), though it has a great effect on the value
of x itself. Figure 1 evidently shows that our calculated
curve is much nearer to the experimental one than is
that of the molecular field theory, although the present
theory must still be regarded as only a fair approxima-
tion in the temperature range directly above the Curie
point.

. AT
i
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Curve a gy the present theory
Curve b By Van Vleck's Theory
Curve ¢ From the experimental data of

Bizette et al.

Fic. 1. Reciprocal susceptibility »s temperature.

18 Bizette, Squire, and Tsai, Compt. rend. 207, 449 (1938).
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F16. 2. Energy vs temperature for a simple cubic lattice.

(b) Energy and Short-Range Order

It is trivial to verify that Weiss’ formula for ¢, the
energy per atom, when Hy=0, is unchanged by the
introduction of sublattices. We have

€= —J<So' ZiSiM
= {Zslw(sl)Z&)ZmE&)
Xexp—— W(Slzt%, S1, m, Hf)/kT}/2P
With T2 T, the above formula reduces to

(3.9)

[
e=——3 w(S)Si(Sr+1)

PO S1

Figure 2 shows e versus the temperature for a simple
cubic lattice.

As the energy decreases with the temperature, more
antiparallel pairs are formed at the expense of the
parallel pairs. The very similar situation of finding
more unlike neighboring atoms than like ones is well-
known in the theory of order in alloys and is called
the short-range order or order of neighbors. With the use
of neutron diffraction patterns, Shull e ¢l.® have found
evidences of the short-range order in MnO up to room
temperature, which is ca. 2.5T, in the absolute scale.
The degree of the short-range order ¢ may be defined
as the percentage abundance of antiparallel pairs minus
that of parallel pairs, i.e.,

4
o= ——(Soz 2 Siz)m (3.11)
n i

At temperatures above T, and in the absence of applied
field we have (0.2 :S..)a=3(So- > :8:)a. Therefore

e=—3n|J|o. (3.12)
The corresponding relation for the Ising coupling reads
e=—1in|J|o. (3.13)

From (3.12) the o vs T curves (Fig. 3) are calculated

YIN-YUAN LI

for the two cubic lattices with J<0. Table III is com-
piled for comparison between different theories and
models. We see that the values of ¢(7;) obtained by
using the Ising model are quite close to our results, but
it is not so for €(7'.). The equation for o the short-
range order of parallel spins in the ferromagnetic case
is different from (3.12) only by a negative sign.

In (3.9) H; vanishes at T, but not its derivative
with respect to temperature, so our theory gives a jump
of the specific heat at T.. Using Weiss’ formula we ob-
tain for a simple cubic lattice the discontinuity of
specific heat at T,

Ac=1.0k. (3.14)

Millar!® measured the specific heat of MnO. From his
data we have
Ac=150k. (3.15)

A close agreement between (3.14) and (3.15) is not ex-
pected, since the MnO have a spin 5/2 in contradiction
to our assumption of 3, and we have neglected the inter-
actions other than the most important ones. Besides,
the result of an exact solution,® or of even a better
approximation, might yield a quite different value for
Ac. However, we notice that Millar’s value of Ac is
exceptionally large as compared with the specific heat
jump found in other second-order transitions such as
order-disorder transitions in alloys (say, p-brass).
We should like to point out certain complications which
are profoundly associated with the antiferromagnetic
transition. First of all, the appearance in the lattice of a
periodic change of spin directions gives a new charac-
teristic behavior to the electrostatic interaction and
influences the wave functions of the crystal. We can
make it clear by considering the Hartree-Fock equation,
following the interpretation given by Slater.?! At the
ordered states py and p_, the densities of electrons with
-+ and — spins respectively, are two different periodic
functions with a period twice the crystal spacing. Ac-

3

[
Q

Curvea  Simple Cubic Lattice
\ Curve b Body-centered Cubic Lattice

\\%

3

3

Short-Range Order in Per Cent, T

\
T —
—
0
/0 15 20 25 30 25 40
T/

Fic. 3. Short-range order above Curie temperature.

19 R. W. Millar, J. Am. Chem. Soc. 50, 1875 (1928).

20 I,. Onsager, Phys. Rev. 65, 117 (1944); this exact solution of
the two-dimensional Ising problem gives an infinite specific heat
at T instead of a finite discontinuity of specific heat as shown by
the approximate solutions.

2 J, C. Slater, Phys. Rev. 81, 385 (1951).
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cordingly, we have two different periodic potentials
for each electron; one is the ionic potential and the
other is the electronic interaction corrected by the so-
called Fermi or exchange hole. The latter potential
depends on the long-range order and is different for
electrons with opposite spins mostly by a phase shift
of a half period.” In the Heisenberg approximation, the
wave functions and the integral J must change appreci-
ably as the order of antiparallelism increases. For sim-
plicity of manipulation, J is assumed in our theory to
be a constant, which is certainly not true even when the
thermal change of lattice spacing is considered. (The
variation of J with the degree of antiparallel order is
more profound than with the thermal expansion.) At
the Curie point the rate of change of J with temperature
reaches its maximum because here we have the highest
rate of the increase of order as temperature is lowered.
Our theory has neglected this effect, as well as its con-
tribution to the jump of specific heat. Furthermore, the
recent observations of a slight change of crystal sym-
metry and space parameters in the vicinity of T'. of
most antiferromagnetic salts® add one more complica-
tion to the transition and its specific heat. As pointed
out by Greenwald and Smart, the change of crystal
symmetry is connected with the change of J.

IV. LIMITATION OF THE METHOD

Before we proceed to treat more complicated lattices,
we must discuss the validity of our method and its
limitations. Bethe’s theory of atomic order in alloys,
as shown by Fowler and Guggenheim,? has its sound
origin in the customary statistical mechanics as an
approximate evaluation of the grand partition function
of the whole crystal. In the problem of atomic interac-
tions in alloys or of the Ising coupling, the states of the
cluster can be simply stated as #4 atoms of one kind
and n—mn4 of another kind around the central one, and
the interaction of these atoms with the rest of the crystal
can be brought in by introducing the factors £,"4 and
£z 4 (only one of £4 and £p is independent). It is
evident that the use of the inner fields H, in Sec. IT
for the Ising problem is nothing more than writing &
as exp H;/2kT (see Eq. (2.16)). In dealing with the
problem of the Heisenberg exchange couplings, we can-
not rejoice in the simplicity of scalar quantities; for
different eigenstates, different parameters are needed to
adjust the ordering effect of the rest of the crystal to
the cluster. These parameters are somehow related to

2 When we use the “band” approximation, the effect of the
superstructure of antiparallel spins within the atomic lattice would
split one energy band into two, which may overlap. This situation,
however, could not occur in the case of ferromagnetic order in
which spins are lined up simply in a certain direction without
periodic variation. See the recent article by J. C. Slater, Phys.
Rev. 82, 538 (1951).

%S, Greenwald and J. S. Smart, Nature 166, 523 (1950); J. S.
Smart and S. Greenwald, Phys. Rev. 82, 113 (1951).

%R. H. Fowler and E. A. Guggenhelm Statistical Thermo-
dym;gnics (Cambridge University Press, London, 1939), Chap-
ter 13.
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TaBiE IIL. Short-range order and energy at 7.
The present method Molecular
Antiferro-  Ferro- Ising field
magnetic magnetic models methoda
o(T2) 0242  0.175 0.200 0
simple cubic
e(0)—e(T) 1097 0.788J 0300|J| 0
o(T.) 0.159 0.130  0.143 0

b.c.c.

w)—e(Te) 0.954|J| 0.7797 0.286|7| 0

s For both the antiferromagnetic and ferromagnetic cases.

each other, but their inter-relations are by no means
known. This situation forces us to make a reasonable as-
sumption that the interaction between the cluster and
the rest of the crystal is —S1,(H;— H,), which sounds
so natural from the viewpoint of the molecular field.
It becomes clear that besides inheriting Bethe’s ap-
proximation in statistics, the P. R. Weiss method con-
tains an assumption which does not have a sound basis
in the quantum-mechanical treatment. Therefore, we
can hardly expect P. R. Weiss’ theory to yield results
for the true exchange coupling case as good as those
given by Bethe’s theory for the Ising problem. It is in
the lowest temperature range that the theory meets its
failure, as can be easily seen from the behavior at ex-
tremely low temperatures of several equations in the
preceding section. Anderson'* has made this point clear
by a comparison with Bloch’s theory. In the latter
theory, the dominant states at lowest temperatures are
certain spin-waves with rather long wavelength, but
the cluster considered in Weiss’ theory can accommo-
date only the shortest spin-waves. Anderson shows that
in the extremely low temperature range the second-
order perturbation of the ordering field H; offsets the
ferromagnetism even for ferromagnetic lattices. With
numerical calculations, he finds the existence of an anti-
Curie point at a temperature about 1/7 of that of the
Curie point computed by Weiss for the simple cubic
lattice; only in the range between these two tempera-
tures should the crystal be ferromagnetic, if Weiss’
theory were correct. These remarks remain true for the
present application of the P. R. Weiss method to anti-
ferromagnetism. From the equation A=0, the anti-
Curie points are found at 0.981|J|/k and 0.714|J|/k
for the simple and body-centered cubic (antiferro-
magnetic) lattice respectively. We also notice from 4,
as a function of T, that half-way between the Curie and
anti-Curie points the theory already shows its failure.
For higher temperatures, however, the thermal excita-
tion then outweighs the improper influence of H;.

On the other hand, the justification of our theory in
the range of higher temperatures can be inferred by a
comparison with the Opechowski theory. In the latter,
the free energy function is written in the form of an
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infinite power series of J/kT,

F/N=—(kT/J) In(2 coshH,/kT)
+>°_°:1 AJRT/T)= (4.1)

where A, is the coefficient of NV in the expression
[(=1)*/r ] spurl & exp(—ex/kT) ]/spur
X[exp(—en/kT)] (4.2)
e=—2J 5‘:‘;’ (s;°8k) 4.3)

ea=—Ho T (s (44)

with j summed over all the V atoms in the assembly
and & over all the nearest neighbors of the j-th atom.
Only the first four coefficients 4,, - -+, A4 have been
worked out. The longest chain of connected spins
(ss1-8j2) (8i2-8i3)- * - (8ir-Sjrt1) involved in the calcula-
tion of 4, contains 7+ 1 spins (see Table I and II of the
article by Opechowski). Our center-and-the-first-shell
cluster can take in only the two-spin and three-spin
chains. Consequently, when we expand the closed ex-
pression of our theory into the power series of J/kT,
we obtain for A; and 4, in the free energy function and
for By and B, in x the same values as by the Opechowski
theory. Furthermore, our first approximation, in which
the smallest Bethe cluster includes all but one of the
configurations involved in the calculation of 4; in the
Opechowski series, gives a very accurate value for Bj
in the series of x (3.5). As the power of J/kT in the
series goes higher, the fact that our clusters no longer
contain the configurations of spin groups involved in
the correct evaluation of the coefficient of (J/kT)" be-
comes worse, and so the accuracy of the coefficient given
by our theory decreases. (B4 in (3.5) is 15 percent higher
than the correct value.) In general, if a central atom
and its first r shells are taken as the Bethe cluster, we
should expect to get the correct value for By, B, - - -,
B,y1 in x and a very accurate B,ys. For the diamond
lattice the first approximation of the Bethe-Weiss
theory produces the same result as for the quadratic
layer. However, the second approximation (with a
center-and-the-first-two-shells cluster) would correctly
give different results for these two lattices. In parallel,
the Opechowski theory gives the same values of 4; and
Aq but different 4, (r>3) for these two lattices. The
advantage of our method lies in its ability to obtain
approximately closed expressions for the thermo-
dynamic functions instead of the finite number of terms
of an infinite series obtained by the Opechowski theory,
leaving the coefficients of all the higher powers of
J/ET unknown. Both theories cannot produce depend-
able results for very low temperatures, since then the
very high powers of 1/T become important. It is be-
yond any doubt that, in the temperature range around
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the Curie points of the cubic lattices, the Bethe-Weiss
method gives at least semi-quantitatively correct re-
sults (see reference 14).

V. HEXAGONAL LAYER AND FACE-CENTERED
CUBIC LATTICE

In this section we shall treat the hexagonal layer and
f.c.c. structures, in which we find nearest interactions
among the first-shell spins. The work will be presented
rather briefly, since it involves no complications beyond
that just mentioned. The hexagonal layer (triangular
net) has a coordination number 6, as does the simple
cubic lattice, but each of the 6 nearest neighboring
spins has two nearest neighbors to itself. Even if we
adopt the Ising model this lattice sustains no anti-
ferromagnetic ordering, as has been shown by Wannier2
who obtained an exact solution. In our approximate
method, the proper assignment of sublattices has alter-
nate rows of a- and B-sites (Fig. 4). When all the spins
in each sublattice are aligned and those in different
sublattices are antiparallel to these, we have a maximum
number of antiparallel paired spins and the lowest
energy. As shown by Wannier, the lowest energy state
of a triangular net of Ising spins can be arranged not
only in the above manner, but also in many quite
different ways. Our assignment of sublattices, perhaps,
has an effect of over emphasizing the possibility of
ordering. The cluster which we consider in detail has a
central a- (or 8-) site, and four 8- (or a-) sites and two
a- (or 8-) sites in the first shell. With the Ising model,
the present method obtains the same conclusion as the
exact solution of Wannier. The details of its derivation
are not given, since they are very similar to the follow-
ing consideration for the case of the Heisenberg ex-
change coupling. We have the hamiltonian

Je=—2J(80-2_:8i+81-S2+ 8283+ - - - +86-81)

—Hypro— Huri—Hoso,, (5.1)
where
Tl=s2z+sﬁz; (5.28.)
and
T2=S1,F $3,+ 42+ Se.. (5.2b)

H 1, stands for Haq or Hgg and Hp for Hap or Hpo; Hag
is the internal field acting on the spin of a g-site in the
shell of an a-centered cluster, and similarly we have
Hpgay Heao, and Hpgg. The eigenfunctions of (sy-Se+- - -
+s6-s1) and the expectation values of 7, and 7, are
given in the Appendix. The diagonalization of the per-
turbing part - 2]80' Z,'S,;—‘HIQTT"HHTI—HQSOZ is simi-
lar to that carried out in a previous section. The energy
levels of 3C are now

W(SI:!:%’ Sly ja m)zEJ'(Sl)_I"E(:E)—'mHO

+ewXi(S)+ewXAHS)+---, (5.3)

25 G. H. Wannier, Phys. Rev. 79, 357 (1950); see also G. F.
Newell, Phys. Rev. 79, 876 (1950) ; R. M. F. Houtappel, Physica
16, 425 (1950).
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with
Xi(S) =di(S)(Hu—Ho)+(1—d;(S1))(Hie— Ho), (5.4)

where Eqy and ewy’s are as defined above. E;(S;) and
d=11/71+ 72 are given in Table V of the Appendix.
The index j refers to the different eigenstates listed in
Table V. With these data the partition functions for an
a-centered and a B-centered cluster,

P,,=P(Ho, HO!B’ Hoq, T) and P5=P(H0’ Hﬂa) Hﬂﬁr T),

can be written. The condition of self-consistency re-
quires

Mal= ma(a) = ma(ﬂ)’

(5.5a)
(5.5b)

where mg(® is the average magnetic moment of the first-
shell spins on B-sites in an a-centered cluster. These
quantities can be derived easily from the respec-
tive partition functions. It can be shown that, when
H,=0, the possible antiferromagnetic solution with
Hoo=—Hgg(=H,) and H .= — Hg.(= H,) sends (5.5a)
into (5.5b) and vice versa. The internal field intensities
are to be determined by equations

F(H1, Hz, T)=O, G(H1, Hz, T)=0 (56)

obtained from (5.5). H; and H; can apparently take
small but nonvanishing values near a temperature T}
which is determined by the equation

d(F,G)/o(H,, Hy)=0;

mg’= mﬁ(ﬁ)-:mﬂ(a),

5.7

at this temperature H;=H,=0 is a double solution.
We find by actual calculations that the only solution of
(5.7) is T1=0, and above zero temperature there is no
nonvanishing solution for H; and H,. So we conclude
that the hexagonal layer does not sustain an antiferro-
magnetic order. As an immediate consequence of this,
we may point out that the spin superlattice of the ca-
tions in the salt of FeCl, group should conform with the
“superexchange” interaction between the next-nearest
neighboring cations which are separated by anions, since
the nearest neighbors of cations form hexagonal layers.
A neutron diffraction experiment could easily reveal
this.

Finally, we come to the problem of a f.c.c. lattice
with negative exchange coupling. With the Ising model
we can show that antiparallel order exists at low tem-
peratures and the transition is one of the first order
with a latent heat.?® We have no reason to believe this
conclusion would hold for the quantum-mechanical
exchange. To follow our treatment, we need first to solve
the problem of exchange energy of 12 electrons in the
first-shell atoms of the cluster. There are accordingly
924 S;-states (S1=6, 5, 4, - - -, 0). The work would be
immensely laborious. So we decided to resort to an
argument which makes use of the result we have ob-

®Y. Y. Li, Phys. Rev. 80, 457 (1950).
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LEGEND----O Q-SITE
® B-sITE

Fic. 4. Hexagonal layer decomposed into two sublattices.
(At the center a Bethe cluster is indicated by labeling the sites
as shown.)

tained for the simpler lattices. The f.c.c. lattice may be
viewed as consisting of quadratic layers. Since a quad-
ratic layer with the Heisenberg coupling does not sus-
tain antiferromagnetism, the ordering in a f.c.c. lattice
can only be effected by the interactions among the
spins on neighboring layers. For any atom there are
four nearest neighbors in the next layer. When they are
ordered, two spins are opposite to the others. Therefore,
we cannot count on their total effect on their common
neighbor in the next layer (i.e., on the interaction be-
tween layers) to produce order. We may safely con-
clude that an antiferromagnetic transition does not
occur in a f.c.c. lattice. (On the other hand, the same
argument shows that, either with the Ising model or
in the molecular field theory, the f.c.c. lattice should
sustain antiferromagnetism, because then each quad-
ratic layer does so.) This offers an explanation for the
fact that the f.c.c. lattice of manganous ions in MnO
is not ordered in a superlattice corresponding to the
nearest interactions, but is found to show ordered
structure agreeing with the superexchange interaction
between next-nearest neighbors. The above argument,
which was hinted at by Anderson in his articles,”!? is very
useful if not rigorous. It applies to the hexagonal layer
as well. The latter may be considered as made of linear
chains; each spin has two neighbors in the next chain.
When they are ordered, one of the two neighbors is
opposite the other. (See Fig. 4: sites 1, 0, and 4 are on
one chain and so forth.) Therefore, the ordering cannot
be effected by the coupling between chains. Since a
linear chain cannot be ordered regardless of the inter-
action (Ising type or quantum-mechanical), the hex-
agonal layer must not sustain antiferromagnetism.
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TasLE IV. Bond eigenfunctions of a benzene ring.
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TaBLE V. The eigenfunctions of a benzene ring.
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APPENDIX: THE ENERGY LEVELS AND EXPECTATION
VALUES OF THE FIRST-SHELL OF A BETHE
CLUSTER OF A HEXAGONAL LAYER

The 6 atoms in the first shell of our cluster form a benzene ring,
the exchange energy of which has been obtained by Serber?
using algebraic methods. Unfortunately, we need not only the
energy levels but also the expectation values of 7, and 7,. There-
fore, we must obtain the eigenfunctions of the energy states. The
method of achieving this aim has been well developed by Eyring
et al2® The calculations are cut short by using some knowledge of

27 R. Serber, J. Chem. Phys. 2, 697 (1934).

28 Eyring, Frost, and Turkevich, J. Chem. Phys. 2, 777 (1934);
Eyring, Walter, and Kimball, Quantum Chemistry (John Wiley
and Sons, Inc., New York, 1944).

S ¥i(S1) Ei(S)/J d;(S1)

3 ¢(3) =B@3) —-3.00 1/3

2 ¢1(2)=B1(2)+Bs(2)+Bs(2) 1.00 1/3
¥2(2) = B1(2) — By(2) — B4(2)+-B5(2) 0.00 1/2
¥3(2) =B1(2)+ B»(2) — B4(2) — B5(2) 0.00 1/2
¥4(2) =B1(2) — B3(2)+B4(2) — Bs(2) —2.00 1/2
¥s(2) =B1(2) —3By(2)+4B5(2) —2.00 1/6

—3B4(2)+Bs(2)

1 ya(1)=f1(1) —1.235fx(1) 423  1/3
Yo(1)=£1(1)+3.23612(1) 0.236 1/3
¥3(1)=B1(1) — B3(1) — B4(1)+Bs(1) 2.00 1/2
V4(1) =B1(1)+2By(1)+B3(1) — B4(1) 2.00 1/6

—2Bs(1)—Bs(1)
oD =fo(1)— 1.56172(1) 2561 0.4500
Ve(1) =fe(1)+1.56115(1) 2.561  0.2167
$i(1) =1,(1)+2.5627:(1) 1561 04934
Yo(1) = o1 —2.5627x(1) 1561 01733
V(1) =B1(1) —B2(1)+B3(1) — B4(1) —1.00 1/3

+Bs(1) —Bs(1)

with £1(1) =Ba(1) +-Ba(1) 4-Bs(1) +Ba(1) +Bs(1) +Bs(1)
f2(1) =2{B1(1) +Bs(1) +Bs(1) }
f5(1) =Bi1(1) —Bs(1
fe(1) =Bi(1) +Bs(1) —2Bs(1)
f1(1) =B1(1) —Bs(1) +Bi(1) —Bs(1)
f3(1) =Bi(1) —2B2(1) +B;(1) +Bs(1) —2Bs(1) +Bs(1).

the theory of groups. The six-atom configuration as 20 Si-states:
One with S;=3, five with S;=2, nine with S;=1, and five with
S1=0, and so the same numbers of bond eigenfunctions corre-
sponding to these are used. They are listed in the following table.
Each S)-state is (25141) fold degenerate. When the z-component
of S is +1, the function B,(2) listed in Table IV is actually
B1(S1=2) = (a1t1 bous™ — agtbs™brur™)csustdsustesust fous+all pos-
sible terms of different permutations among the functions of the
atoms 3, 4, 5, and 6, where a, b, ¢, d, ¢, and f are the orbital func-
tions. The bond (indicated by an arrow in Table IV) between two
electrons requires their taking only antiparallel spins in each term
of B(S1). Following the method of Eyring et al., we have found the
eigenfunctions of the exchange energy —2J(si'se+---+S6-51)
and the expectations of 7, and 7; as given in Table V. Those for
S1=0 states are not shown there, since they are not involved in
our calculations. The energy level agrees, of course, with Serber’s
value except for a shift of the zero level. The eigenfunctions of a
degenerate level are chosen, such that they are also eigenfunctions
of both 7, and ..



