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CONCLUSIONS

The decay of Se" is complex. %ith the help of the
Fermi theory the positron distribution has been re-
solved into four groups with end-point energies and
relative intensities as given in Table I. Four gamma-

rays have been observed. Their energies and relative
intensities are given in Table I.The 67.1-kev gamma-ray
has been found to be a magnetic octipole transition in
the parent selenium. The 361-kev gamma-ray follows
the 1.318-Mev positron group and is magnetic quad-
rupole radiation. The other gamma-rays and positron
groups have energies and intensities compatible with
the decay scheme proposed in Fig. 7.

Estimates of E-captur- positron branching ratios
have been made for several of the positron transitions.

For the intense 1.318-Mev positron group this ratio is
0.45 as compared to the theoretical value of 0.42. The
measured ratio for the weak 0.750-Mev positron group
is 1.6 and the theoretical value is 2.5, and for the very
weak 0.250-Mev positron transition the measured
E-captur- positron ratio is estimated as 6 and the
corresponding theoretical value is 100.From the relative
intensity of the E-auger electrons, a value of 0.59 was
obtained from the gross ratio of E-capture to positrons.

The author wishes to express his gratitude to Pro-
fessor Lawrence M. Langer for his valuable advice and
encouragement. He would also like to thank Professor
M. B.Sampson and the cyclotron crew for the numerous
bombardments necessary for this work and Mr. E.
Plassmann for his assistance in making some of the
measurements.
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In this paper, we have constructed a general 6eld theory in covariant form which incorporates the usual
covariant generalization of Dirac matrices. The 6eld equations are derived from a lagrangian that is a
second-order differential covariant {a scalar density of weight 1) constructed in the covariant spinor for-
malism by the same method that in riemannian geometry leads to the curvature tensor. It is possible to
show that, in spite of the apparently greater wealth of geometrical elements, this theory is completely
equivalent to the general theory of relativity. The 6eld equations satisfy the usual differential identities and,
in addition, "spin" identities'; there are four "strong" conservation laws which can be used to obtain equa-
tions of motion for singularities. Since we do not known at present whether the equivalence with the theory
of relativity may not be lost in the process of quantization, we consider eventual quantization desirable and
have, in this paper, converted the theory into the canomcal form.

INTRODUCTION
"

N a series of papers, Bergmann and co-workers' '
- developed the theory of canonization of covariant

Geld theories, in the hope that some of the difhculties
in quantum Geld physics might be overcome by the
adoption of the "best" classical (nonquantized) field
theory and its subsequent quantization.

The question now arises which theory is to be con-
sidered. the "best" one. Ke could consider Einstein's
theory of gravitation (with the electromagnetic 6eld
included). In that theory the laws of physics are

~ This paper incorporates the results of the Ph.D. dissertation
of the 6rst author, accepted by the Graduate School, Polytechnic
Institute of Brooklyn.

t Now at the Institute for Theoretical Physics, University of
Manchester, Manchester, England.

~ P. G. Bergmann, Phys. Rev. 75, 680 (1949).
I P. G. Bergmann and J. H. M. Brunings, Revs. Modern Phys.

21, 480 {1949).' Bergmann, Pen6eld, Schiller, and Zatzkis, Phys. Rev. 80, 81
{1950).

generally covariant, i.e., unchanged by all types of
coordinate transformations for which the jacobian of the
transformation is non-zero. There are other possi-
bilities, for example, the recent theory of Einstein, in
which he attempts to unify the gravitational and elec-
magnetic fields. This theory also assumes the basic laws
of physics to be, generally covariant.

There are, however, indications that the basic laws

of physics contain spinors as well as tensors. In the
Dirac theory of the electron, anticommuting quantities
arise with transformation laws diferent from those of
tensors. The success of Dirac's theory of the electron
and, among others, the ample evidence of atomic
spectra, furnish strong indications that the basic laws
of physics contain spinors.

In this paper we shall develop a classical held theory
which is generally covariant and contains spinors. 1A"e

A. Einstein, The Meaning of Relativity {Princeton University
Press, Princeton, New Jersey, 1950},third edition.
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shall follow the spin algebra and analysis developed by
Schrodinger, ' Bargmann, ' van der Waerden and InfeM, '
Schouten, ' Pauli, ' and others, and then develop a
lagrangian from the spin quantities. This lagrangian is
constructed from a spin tensor discovered by Schro-
dinger. ' Because of its relation to the Riemann-
ChristoGel curvature tensor, the spin lagrangian and the
lagrangian of the general theory of relativity turn out
to be proportional. Even though the spin vectors satisfy
algebraic conditions which must be introduced into the
lagrangian with undetermined multipliers, the field
equations in spin form are equivalent to the field
equations of the general theory of relativity. The iden-
tities due to the coordinate covariance are the same as
those obtained from the general theory of relativity
(the Bianchi identities). Besides, in the spin theory
there is another set of identities which reflects the spin
covariance. Finally, as a preliminary to quantization,
we cast the theory into the canonical form. '

1. SPIN ALGEBRA AND ANALYSIS

We shall first summarize those results of the spin
algebra and analysis necessary for our needs. Inasmuch
as the spinors of Dirac and the other early workers
were introduced as a half-odd representation of the
lorentz group, a representation that has no analog
among the representations of the full linear or even the
unimodular group, we cannot expect to develop a
general covariant spin algebra without sacrificing some
of the formal beauty of Dirac's original theory. The
loss, it turns out, consists of the complete separation
of the spin transformation group from the coordinate
transformation group. Ke write the transformation law
of a spin vector y" (the Dirac matrices)

suppressing all spin indices. The spin transformation
matrix 5 is invariant with respect to coordinate trans-
formations and is composed of arbitrary scalar functions
of the coordinates. We take as the fundamental relation
between the covariant and contravariant spin vectors
the anticommutation relation

v~v "+v "v~ = 2~~ "E, (1 2)

where E is the four-rowed unit matrix and y„and yj'

are two sets of four matrices each. In reliance on the
"correspondence principle" with the lorentzian case, we
shall also assume that each set by itself, together with
all its products, forms the base of an algebra. Now we
can prove, with the help of Eq. (1.2) alone, that the
anticommutators of the covariant y's as well as the
anticommutators of the contravariant y's are "c"num-

' E. Schrodinger, Berl. Ber. 105 (1932).' V. Bargrnann, Preuss, Akad. Wiss. Berlin, Ber. 25, 346 (1932).
7L. Infeld and B. L. van der Waerden, Preuss. Akad. Wiss.

Berlin, Ber. 9, 380 (1933).
8 J. A. Schouten, J. Phys. Math. , 331 (1933).

W. Pauli, Ann. Physik 18, 337 (1933).

Then, very simple calculations (not reproduced here)
are needed to show that

'V"=g" Vp 7 =g p'Y ~

Since the spin vectors form a linear algebra, we can
represent them as matrices. The irreducible represen-
tation is four-rowed. Schouten has shown' that the
matrix y'y'y'y', which with respect to coordinate trans-
formations is a scalar density of weight + 1, has as
eigenvalues i(—g)~, —i(—g)', and we shall, therefore,
introduce a "special" spin frame in which

v'v'v'v'= &:(—g)'v,
with

(I stands for the two-rowed unit ma, trix).
In any four-rowed representation, the spin vectors,

their distinct products two at a time, three at a time,
four at a time, and the unit matrix form a complete
base, i.e., any four-rowed matrix can be represented as
a linear combination of these 16 matrices. In the
"special" representation, they take the form

t 0 p~~

EP~, 0) (1 6)

where the P" and P" are 2X2 matrices. From now on,
we shall restrict the spin transformation matrices 5 to
a form that will maintain the validity of Eqs. (1.5) and
(1.6). The spin transformations that do this are

)u Oq
(1.7)

where u and ~ are arbitrary 2&2 matrices. We can
restrict the spin transformations further by noting that
in the Lorentz case the spin vectors are "self-adjoint. "
%e define self-adjointness in the following way for
a four-rowed matrix A its "adjoint" shall be

A =gAg (1.8)

bers. We have

(q„y,+q„q„)y~-q~(q„q„+q„q„)=0, (1.3)

i.e., the covariant anticommutators commute with
every pp. Naturally, if we reverse the role of subscripts
and superscripts, nothing is changed, and our assertion
above is proved. We shall call one-half of each anti-
commutator g„„Eand g& "E, respectively, for example,

2g~.E=vpv. +v.vp

We need to make one further assumption in order to be
able to derive all of the usual relationships, and that is
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where

and the dagger ~ denotes the hermitian adjoint. If
A'=A, we call A self-adjoint. From Eqs. (1.6) and
(1.8) we find that

put = p~ p~t = p~

Since the self-adjointness of y& must hold in all spin
systems, we 6nd from Eq. (1.8), subjecting the spin
vectors to a spin transformation, that

spin connections must satisfy a transformation law of
the form

r,'= (a~~/ax )'(Sr,s-i —S,,s-i). (1.13)

Thus we see that I', transforms as a vector but not as
a spinor.

To complete that portion of the analysis that interests
us, we form with Schrodinger a spin tensor by con-
sidering the alternator of the second covariant deriva-
tive of a spin vector. %'e find

+a +a g a+x+C, +e +a@ 0 (1 14)

R„„), is the Riemann-Christoffel curvature tensor, and

Sq~S '= q(-Sq~S ')tq-
= qSt-'~»Stq
=qP 'qq~q5tq.

Thus, we must have
S=q5t 'q.

This can be true only if

4'vv = I'p, .—I v, p
—I'pI'.+ I'vI'p

is a spin tensor, i.e.,

(1.15)

Lp st ')
This spin tensor is of the second differential order in

(1.10) the y'.

where s is an arbitrary 2)& 2 matrix composed of complex
scalar functions of the coordinates.

All the interesting matrices arising in the spin theory
are composed either of 2X 2 matrices along the diagonal
or of 2/2 matrices off the diagonal.

To develop spinor analysis, we dehne the covariant
derivative of a spin quantity in analogy to the covariant
derivative of a tensor in differential geometry. If y~

is a quantity with one spin index, its covariant deriva-
tive is

x =x' +I'z 'x'
(all capital Greek indices are spin indices), or in matrix
form

x, ,= x,+r,x.

%e refer to I', as the spin connection coefficients. The
spin vector y has two spin indices and one coordinate
index. Its covariant derivative is

Pauli' has shown that solutions of the spin connections
I', exist irrespective of the choice of aSne connections
I'„.Assuming the aKne connections to be symmetric
in their lower indices, we find with the help of Eq. (1.4)
that they are the Christoffel symbols of the second kind.
%e can solve for the spin connections I'„but for our
present purpose these explicit expressions will not be
needed. However, since the spin connection appears as
a commutator in its determining Eq. (1.11), we can
add to its solution, say A„a "t,." number vector i@,E,

(1.12)

Because the covariant derivative of a spin vector is
spin- as well as coordinate-covariant, we And that the

the spin tensor C„„(1.15), and the spin vector y". From
the spin tensor and spin vectors we can form the two
second-order scalar matrices

(2.2)

Taking the trace of either expression (2.2) (i.e., con-

tracting on the spin indices) and multiplying by the
scalar density (2.1), we obtain to within a numerical

factor the scalar density

L, &,&= (—g)» tr{&~C„„&"}, (2.3)

which we shall adopt as the spin lagrangian. It is pos-
sible to show that with the elements available, L(,) is

the only scalar density of second differential order in

existence. The proof will not be presented here, though.
The arbitrary vector that can be added to the spin con-

nection } see Eq. (1.12)) gives no contribution to the
scalar density (2.3). In order to introduce the electro-
magnetic field, we must assume an electromagnetic

2. LAGRANGIAN, FIELD EQUATIONS,
AND IDENTITIES

%e shall construct the field equations from a four-
dimensional variational principle, where we choose as
the lagrangian a linear combination of second-order
scalar densities constructed from quantities that arise

in the spin algebra and analysis. The resulting 6eld
equations, we shall show, are the same as those of the
general theory of gravitation. Finally, we shall deter-
mine the differential identities which exist because of
the coordinate and spin transformations.

The following building blocks are available for the
construction of scalar densities of weight one of the
second differential order: a scalar density of weight one

4(—g)'= ' t }~v' 'v'v'}, (2 1)
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four vector p„and construct a term to be added to the
spin lagrangian. This term is

L(-)= ( g)—'g" e'(4., . 4—...)(e-, () e—a -) (2 4)

Its treatment in what follows is the usual one and will
be omitted. "

We shall now relate the spin lagrangian to the
general theory of gravitation. By pre- and post-multi-
plying Eq. (1.14) by y", contracting on n and )(, adding,
taking the trace, and 6nally multiplying through by
(—g)&, we find that

L(,)
——2(—g) &2(.'or L(.) = 2L( ), (2.5)

where E. is the riemann scalar curvature. Both the
metric and the spin lagrangian contain second deriva-
tives of the field variables only linearly. These terms
can be converted into complete divergences, plus
terms quadratic in the 6rst derivatives of the 6eld
variables. The divergences do not contribute to the
field equations, and the lagrangians in either metric or
spin form may be considered as depending on the field
variables and their first derivatives only. This con-
sideration will be used to simplify the later computa-
tions.

Since L( ) = (—g)&E is the lagrangian of the general
theory of gravitation, the spin lagrangian (2.3) would
obviously yield the same field equations were it not for
the restrictions (1.3) and (1.4) on the variations of the
spin vectors. These conditions can be taken into account
in the hamiltonian principle by the method of unde-
termined multipliers.

The variational principle is, therefore,

~)"{ L(.)+tr {~."h'.7"+7"7.)+~~ Y.v"}7d'x= 0, (2.6)

where the matrices M„& and E are the undetermined
multipliers. The first term of Eq. (2.6) can be related to
the gravitational field equations after variation with
respect to the 6eld variables, the elements of the spin
vectors y". Using Eq. (2.5) and the variation of Eq.
(1.4), we find, apart from discarded divergences,

&L( ) = ~(2(—g)'~)
=-'(-g)'(& --'g &) «{~»"+» ~ }= ( g))G„„tr —{q~hq" }. (2.7)

If we denote the variations of those terms in Eqs.
(2.6) which contain the undetermined multipliers by
the symbol tr{U„»"},then the differential equations
satisfied by solutions of the variational principle are

We choose the latter, for we do not consider the cosmo-
logical term of importance, at any rate in atomic phe-
nomena. The field equations are then

L„=—G„„y"=0. (2.9)

In the presence of matter, the 6eld equations are not
satis6ed; but rather the left-hand sides of the field
equations equal expressions which represent charge,
current, and mass densities, momentum densities, and
stress components. Nevertheless, the left-hand sides
will satisfy identities because of the following considera-
tion. If we vary an arbitrary set of functions for the
field variables infinitesimally, the lagrangian will, as a
result, undergo an infinitesimal transformation of the
form

~L(.) ~I (.)
bL(,) tr (')y——"+ ()y", p

)

.
By~ Bp",~

(2.10)

If, in particular, the variation of the field variables is
the result of an infinitesimal coordinate-plus-spin trans-
formation,

x'= x~+ $~,

S=E+2,
(2.11)

(2.12)

then the integral over the lagrangian should not change
at all, except possibly as the result of the variations on
the surface of the domain of integration. In other words,
the variation of the lagrangian itself should be a com-
plete divergence

f)L(s) =0'(.

that case, the 6eld equations would reduce to G„,y"=0.
But we know that we can construct 6elds of y& which
satisfy the algebraic restrictions (1.3), (1.4) as well as
these stronger equations; in other words, we 6nd that
there are true solutions of the unrestricted variational
problem which, nevertheless, are consistent with the
algebraic restrictions. Hence, we can assert that among
the solutions of Eqs. (2.8), with the multipliers deter-
mined subsequently by standard methods, are at least
some for which the additional terms V„vanish. From
now on, those are the only solutions we shall consider.
We have not ascertained whether they are the only
solutions that exist.

In the general theory of relativity we have the option
of introducing a cosmological term or considering the
field equations to be

G„„=O.

G„„y"+U„=O. (2.8) If we carry out this idea, we find, «st, that

We shall now show that the term U„actually vanishes
and may be omitted. Consider a solution of the 6eld
equations that would result if the variations were not
subject to the algebraic restrictions (1.3), (1.4). In

"P. G. Bergmann, Introductiorl, to the Theory of Relativity
(Prentice-Hall, Inc. , New York, 1942).

&y» = &;,v~ —v", ,5'+ ~v'

and, therefore,

g;,=tr{L„(P,,~ ~ P+y~ -~"&)}

+Ltr {(~L( )/~v", .)»"}7,
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to be satis6ed identically even though the generators of
the in6nitesimal transformations are completely arbi-
trary. This condition can be satis6ed only if both

tr{L„y,„+(L,y ),.}
=—0, (2.13)

L„y~—y~L„=O. (2 14)

These two distinct sets of identities must hold for any
lagrangian that yields convariant Euler-Lagrange
equations.

The 6rst set of identities are a result of the covariance
of the 6eld equations with respect to coordinate trans-
formations. They are the spin form of the contracted
Bianchi identities. The second set of identities are the
result of the covariance of the field equations with
respect to the spin transformations.

Because of the identities (2.13), we can construct a
quantity whose ordinary divergence is zero. This is the
"strong" form of the conservation laws. If the field
equations are satis6ed, we have'

t, ~, ,=0, t, ~= h;L&, & tr{ (BL&,—&/8q~, )q~, }, (2.15)

which can be veri6ed to be equal to the relativistic
expressions by means of Eq. (1.4). In the presence of
matter the 6eld equations are not satished, but we
have instead

a, we have

B L(rr) O'L(, )
ply —yfs

By" Byg~ By",pByq

B'L(,) B'L(,)v"-v" =0 (3.1)
By",,Byg ", p Bp" Bpy "

The momentum densities conjugate to the spin
vectors are

~„=Jt, ,(aL&,&/ay~, ,). (3.2)

Multiplying Eq. (3.1) by Jt, ,Jt, , and introducing Eq.
(3.2), we obtain

pe —y p

iv

7l p =0

Since the y" are independent of j", we have

x'„y"—y "m'„=K) (3 3)

where K is independent of "dotted" quantities. In
order to evaluate K, we introduce the expression for m„
into Eq. (3.3). From Eqs. (3.2), (2.5), and the trace of
Eq. (1.4), we obtain

ir„=Jt, ,(&iL&„&/&7g», ,)ys (3 4)

The divergence of Eq. (2.15) does not vanish but is
equal to tr{P„y",,}.Because of the identities (2.13), we
can still form 16 quantities whose ordinary divergence
is zero. We have

T,~, ,—=0, T„~=t,,~ tr{L,q~}. — (2.16)

3. SPIN CONSTRAINTS AND HAMILTONIAN

In this section we construct the constraints and
hamiltonian in spin form. The coordinate and parameter
constraints can be formed in the same manner as they
are formed in the metric case. ' However, in the present
theory there is a transformation group —the spin group—which is not present in the metric case. This group
gives rise, as we have seen, to a spin identity (2.14).
From this identity we shall construct the spin constraint
in a manner analogous to the construction of the coor-
dinate constraints from the contracted Bianchi iden-
tities. Knowledge of all these constraints is required for
the construction of the hamiltonian. 3

To construct the spin constraint, we consider the
highest derivatives of the spin vectors in the spin
identity (2.14). They are

f && L&s& B'L(.)V"-V" }Vs'"...
&&V" &V*"" &V" &Vs'" &

where the capital Greek letters again represent spin
indices. These terms must vanish for they appear by
themselves, After symmetrizing with respect to p and

Jt, , tr{q ~„}=K„, (3.6)

where K„ is independent of j". From Eq. (3.4), we
obtain

K„=Jt, ,Jt,.(aL& &/ag &&) tr{qsq }

=4Jt Pt, .g&'(&&L& &/Bg», ,) (3.7).
The metric lagrangian L& &, given by Eq. (2.5), contains
only 6rst derivatives of 6eld variables. Using Eq. (2.5),
we 6nally obtain

(—g)' (
K~= JfpJt, { ~& g,

8~~
$ pgarr

aP

2gap +$ &rgap, , +gp&r

p}

In this and the following expressions, the numerical
coefBcients agree with those of a recent paper concerned
with purely metric space. ' The parameter constraint' is

tr{q„i,~~}+x~i„X,=O, (3.8)

Substituting this expression into Eq. (3.3), we find

K=Jt, (&&L& &/&&g», ) (y&&q& y~p&') =—0, (3.5)

since &iL &„&/Bg», , is a "c"number symmetric in p, and P.
In a similar manner we calculate the coordinate con-

straint from the contracted Bianchi identities (2.13).
We 6nd
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alld

straint (3.3), we 6nd the relation

Eg„p7r"I'= y„m'"= x"y„) (3.12)

P p= Jt, .tp'. (3.9)

To construct the hamiltonian constraint, we could
proceed by the straightforward method developed
earlier. ' But we can save ourselves the work of repeated
transformations in the symbolic vector space by simply
introducing the spin vector y" and its canonically con-
jugate momentum density vr„ into the hamiltonian of
the general theory of relativity. '" In view of the fact
that in a parametrized theory the hamiltonian is an
expression that vanishes identically, a constraint, and
since the constraints are associated with the transforma-
tion group of the theory considered, we are assured that
if we can discover a constraint independent of those
already enumerated in this section, then that new
constraint is the hamiltonian. And naturally, the
hamiltonian constraint of the general theory of rela-
tivity is an expression that will continue to vanish

identically if we introduce into it the spin quantities.
The metric tensor is related to the spin vector via

Eq. (1.4). We shall now calculate the metric momentum

density conjugate to the metric tensor in terms of the
spin momentum density conjugate to the spin vectors.
The spin momentum density is

~~(s) ~L (vrs) ~gaP, e
g"=Jf, p =2', p

~7m, P ~g~P, ~ ~'ttf. I

using Eq. (2.5) and the chain rule of differentiation.
Using the trace of Eq. (1.4) we obtain

rr = It, ,(BI.( )/Bg„s, p) rs= v' ys. (3.10)

We solve for m» in the usual way by pre- and post-
multiplying by y', adding, and using Eq. (1.2). Doing
this, we 6nd

g&r ~= ~(~s~e+~Pv ~) (3 11)

Multiplying Eq. (3.11) by g» and using the spin con-

"F. A. E, Pirani, and A. Schild, Phys. Rev. 79, 986 {1950).

The electromagnetic constraint is the same as in the
metric theory

Jt, ,/~=0,
where

~L (am)
a —J],

8@~,

useful in the construction of the hamiltonian.
It is now a straightforward computation to arrive at

the spin hamiltonian. Substituting the spin quantities
for their corresponding metric quantities, we 6nd

II= v 'v&v {~2(X,Jt, ,+X,Jl, ,)-G„
+[g«/( g)'&—](g- gv~+g-Cv g-s—g ~)

X[—', tr{v ys}J&,,—2G' s',]
X[—' tr{gray'} Jt, , 2G~—~~'a] —[2%/( —g)tX]

Xg„,(P&Jt, p 2G p—)(P"Jt, ,—2G",)}. (3.13)

In this expression, we have used all the abbreviations
introduced previously. '

CONCLUSION

With the setting up of the hamiltonian density (3.13),
we have completed the program of this paper. We have
succeeded in formulating a theory covariant both with
respect to coordinate and with respect to spin trans-
formations, in which the field equations appear as the
Euler-Lagrange equations of a four-dimensional varia-
tional principle. We have furthermore found the
appropriate hamiltonian form of that theory. We have
omitted the explicit derivation of the secondary con-
straints, but the general results reported in a paper by
Anderson and Bergmann" are applicable to this theory.

We found that this theory is completely equivalent
to the general theory of relativity, in spite of the ap-
parently greater wealth of geometric objects. In actua1
fact, because of the additional transformation group
associated with the spinors, the supply of true geometric
objects has not been increased. This result is not quite
as damning as it may appear at 6rst, for two reasons.
One is that subsequent quantization of the theory may
lead to an inequivalence not now apparent, just as the
difference between the Dirac equations and the Klein-
Gordon equation is quantum theoretical, and disap-
pears in the classical (WBK) limit. The other reason is
that the theory with spinors permits the introduction
of additional geometric objects, P-functions, that may
assume physical meaning only in the second quantiza-
tion. In other words, the interaction between particles
and field may be such that it can be described more
adequately in terms of spinors.

We intend to continue our investigation along these
lines.

'2 J. L. Anderson and P. G. Bergmann, Phys. Rev. 83, 1018
{2951).


