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The Energy Density Tensor in Gauge-Independent Quantum Electrodynamics
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In Heisenberg representation two di6erent definitions of an energy density tensor are given for gauge-
independent quantum electrodynamics, by Eqs. (1)-(4) and Eqs. (20)—{21),respectively. Both tensors lead
to the same total energy and momentum, if we assume the interaction to vanish at t= —~. They both
satisfy conservation laws. The tensor character of the first one is proved, and the tensor character of the
second one is manifest. The first tensor is obtained by analogy with the result of a derivation of the energy
density tensor as source of the gravitational field from general-relativistic considerations in manifestly
covariant quantum electrodynamics, with subsequent omission of the "phantom terms" containing the
redundant variables of this theory. The second tensor has the advantage of admitting a simple covariant
subtraction of its vacuum value, and of simplifying even further by use of the new covariant auxiliary
condition proposed recently by the author. Its disadvantage, though, is the impossibility of direct physical
interpretation, as in Heisenberg representation it is not expressed in terms of field variables in Heisenberg
representation. The inconclusiveness of an argument for possible equality of the two tensors is discussed.
Both tensors contain the usual self-interaction sects, and the problem is posed of how to eliminate these
effects.

I. DEFINITION OF AN ENERGY DENSITY TENSOR
' 'N a recent paper' the author has developed the
- ~ formalism of a gauge-independent quantum electro-
dynamics, in interaction representation as well as in
Heisenberg representation. It is plausible to identify in
such theory the energy density with the sum of the
ordinary free-particle energy density and the inter-
action operator used in the generalized Schrodinger
equation. '

In manifestly covariant quantum electrodynamics,
on the other hand, a scalar first-order" lagrangian is
known, ' so that the total' energy density tensor T"& can
simply be derived for it by the principles of general rela-
tivity theory as the source of the gravitational field. ' The
result is Eq. (46) of reference 5. In order to make the
best use of the Lorentz auxiliary condition, ' it is then
convenient to separate the redundant longitudinal and
scalar photon variables by a transformation introducing
new field variables, and by expressing T"& in terms of
them. If from the q-number expression for the energy
density T" thus obtained' one completely omits all
so-called "phantom" terms' (which have vanishing
value due to the Lorentz condition), one simply finds
the expression just suggested for the energy density
in the gauge-independent theory. '

This makes it seems appropriate to try a definition of
the other components of T"& in a similar way. This leads
to the following expressions" for the energy density

' F. J. Belinfante and J. S. Lomont, Phys. Rev. 84, 541 (1951).
In the following we refer to its formulas by (G-I: }.

s The real part of the integrand of Eq. (G-I:31), plus the ex-
pression (G-I:10); thence, the integrand in (G-I:56}.

s F. J. Belinfante, Physica 7, 449 (1940}.' F. J. Belinfante, Phys. Rev. 74, 779 (1948}.
~ F. J. Belinfante, Physica 12, 17 (1946).
s F. J. Belinfante, Physica 6, 887 (1939).
7 F. J. Belinfante, Physica 12, 1 (1946); in particular Sec. 4.
s Reference 5, Eqs. (48), (49), (50).
s For the notation used in reference 8, compare reference 5,

Eq. (47), and Sec. 1 of reference 7. Italic indices run from 1 to 3,
Greek from 0 to 3, with xo —xo ct, and Vo= —VO=8/cBt. The

Here

T.oo= g {PtH

T."= ', et{y'—ih-c(nkV'+n'Vk)y},

T."=—R{p'ihcVkp}+ ', bc+tV(-(R{p'akim/}

(4)

Ho mc'p ih——cn V; —ok~= ,'i(nkn~ a—~n—k);-
+{4'~V}= k{4'~V + V'~'4' V'~'P 0'~*—V'j, —

(5)

(6)

where means transposition in the space of coor-
dinates" and undor indices" (the latter meaning: inter-
changing rows and columns of Dirac matrices and Dirac
wave functions), while * means hermitian conjugation
in Hilbert space (including complex conjugation of
c-numbers), and t=*T. Further, p (in esu) and j (in
emu) in Eq. (3) form a four-vector, which according
to reference 5 is defined by

j~= &n{eptaopj = e{i~qop},

symmetrization ES+SE in Kq. (2) is due to a symmetrization
in the lagrangian proposed in F. J. Belinfante, Physica 7, 765
(1940), and simpliies the derivation of the Brst of the Eqs. (18)
below, but is further super6uous due to Eq. {G-I:2)with Eq. (A.7)
of Appendix A. As in Eq. (G-I:56), we use here the abbreviation
E=Ei~+Q (G-I:44), with Eii given by Eqs. {G-I:6-7)of reference 1.

'o Thus, fV,Tg means (Bf/Bx) g. Further, +*=~ and ~ ~ =~ .
I F. J. Belinfante, Physica 6, 849 (1939).

T", for cX the momentum density=(I/c) X the energy
current density=T~'=T'~, and for the stress tensor
Tkl Tike

Tkp Tkp+T ko. T kp Tko+Trku
with

Tgoo= {8'+E'}/gn,
TF Ql{~l8kl+SklEI}/gal y (2)
TP"=8k'{8'+E'}/g~ —{Sk8~+EkE~}/4~;
Too — jg'g Tok pg
Tr"= ,'{jkSi+j iSaj—;—
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with 0QO= 1, p"= i—pn", f= ftp. One easily proves the
formal equality" of this expression (7) first proposed
by Dirac, " and the expression (G-I:8) of reference 1

6rst proposed by Furry and Oppenheimer. '
For T ", another convenient expression is found by

use of the field equation for f in Heisenberg representa-
tion (G-I:57), and of Eqs. (6) and (7):

T "=T 00+Tr" T "=${lptiItanlp/atI,
(8)

Tl "=—-'pv ——',e61{ptv&I.

Here, aH/at means time difFerentiation in Heisenberg
representation.

II. THE CONSERVATION LAWS

Using Kqs. (2), (G-I:64), and (G-I:66), we find

1(Ksj+j oK)

In this and the following equations, all 6eld variables,
etc., are tacitly understood to be expressed in Heisen-
berg representation.

In Appendix A, we prove that

~. T-'"=+0(K j+j K) (10)

so that, by Eq. (1), we find the law of conservation of
energy

V aTOI =0.

Similarly, Eqs. (2), (G-I:64), (G-I:65), (G-I:66), and
(G-I:60), yield

&. HT~'"= —{'(Kp+pE)-+[jXI]I.-
Q(&Op+ pEQ—)+j ~(& @a &0@) (12)—

Equations (3), (G-I:58), and (G-I:59), yield

~„"Tl""=-';(divj)5,+p5, ——',V (j„5)——',(j ~)g, .

(13)

By Kqs. (4), (G-I:57) and conjugate, (5), (6), (7),
(G-I:6), and various reasonings analogous to (A.2)-
(A. 12) of Appendix A, also using Kq. (A.8) and con-

jugate, we 6nd after somewhat lengthy calculation

V'„"T."=j V &5+-',v (j&K—j5&)

+Q(&l» p+ p&»Q) (14)

"Expand 11' in terms of eigenfunctions qb„of II0. Let m„be the
sign of the corresponding eigenvalues of H0. In Heisenberg as well
as in interaction representation, P &+) and P & ) are de6ned as the
sum of the terms with m„=&1 in this expansion. Then ap-
parently {1/e)Xthe difference between Eq. {6-I:8)and Eq. (7)
is given by:$~0."f:-II1l~e"pI =$ Z m {qh ~0."p ). However,
this inhnite sum over rI, formally vanishes, as the c-number func-
tions p come in charge-conjugate pairs {see reference 11) for
which {pJcx"p }has the same value, but m has opposite values."P. A. M. Dirac, "Thhorie du Positron, "Structure et Proprietes
des Noyes Atomizes, Rapports et Discussions du 7me Conseil
de Physique tenu h. Sruxelles du 22 au 29 octobre 1933. Institut
International de Physique Sokvay. (Gauthier Villars, Paris 1934),
pp. 203-212 {Library of Congress QC1-I6-1933}.See also P. A. M.
Dirac, Proc. Cambridge Phil. Soc. 30, 150 (1934).

"W. H. Furry and J. R. Oppenheimer, Phys. Rev. 45, 245
{1934).

where we finally used the (not very convincing) Eq.
(A.6) of Appendix A. [Otherwise, the expression (A.6)
would have appeared added to the right-hand side of

(14).j Adding (12), (13), and (14), we find the law of
conservation of momentum

HT'kp 0 (15)

III. LORENTZ TRANSFORMATION OF THE ENERGY
DENSITY TENSOR

For showing that the expectation values of T"& form

a tensor, it sufFices to prove the tensor character of the

q-numbers HT"& in Heisenberg representation (with its

scalar state vector). We shall use the infinitesimal

Lorentz transformation formulas for the field variables

in Heisenberg representation derived in Chapter 6 of

reference i. Thus we find that, under the inhnitesimal

Lorentz transformation

bx'= —Pl blx', ax"= bQx', (h—=v/c), (17)

TF"" of Eq. (2) by itself transforms on account of

(G-I:45) as a symmetric tensor, according to

bHTOO 2 P b HTol bHTQl — b„HTol b HTQO

bHTQQ b HTOO Q b HTlk (18)

We used here the fact that Eel =Sl„EQ because

of (G-I:2) with (A.7).
In Appendix B, we prove (Eqs. (B.10a-b-c)) that also

"T "& is transformed according to (18) as a tensor, so

that, by (1), also HT"& itself is a tensor.
If the "vacuum" can be dehned in a covariant way,

as a property invariant under Lorentz transformations,

then also the c-number vacuum expectation value of
T"I" should form a tensor, and therefore should then be
expected to take the form

(TAP) gxOT

where T is some (infinite) c-number scalar. In that case,
also T"& (T"&)„„is a tensor, s—atisfying conservation
laws by (16) and following remarks.

IV. AN ALTERNATIVE ENERGY DENSITY TENSOR

Equations (1)—(4) for the energy density tensor of
gauge-independent quantum electrodynamics were not

Equations (11) and (15) together can be written as

V'„"T"~=0,

which equation remains valid after subtraction of the

(infinite) vacuum values of T"", which are c-numbers

not depending on xyst. From the q-number relation

(16), a similar equation follows for the expectation

values of T"&, as the state vector in Heisenberg repre-

sentation is a constant.
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derived, but were based on an analogy. We could have
made a diAerent guess at an energy density tensor by
writing

by (G-I:52) and (G-I:37) with (G-I:33), and by the
fact that '3CO and HX both are integrals of motion, we
have

with

"Z""= Z ""+,'f«{-'P(y"V"+p"V")'f} (20) "K(t)= "BC(—~)='BC(—~)='3C&)(—~)+"W(—~)
«= » 'Xo( —~) = 'X)(t). (27)

«&P «» (4~)—1{&&gv»»g X «gk»»$»gv«} (21)

We have expressed Z"» here as a q-number in Heisenberg
representation with the help of the variables
(transverse electromagnetic field, with $«&)=5'"=5,
/~~=8„etc. ) and P (matter field) in interaction repre-
sentation. Since the transformation (G-I:37) with

(G-I:34—35) between both representations, or

t

"Q(f)='Q(&)+(«~)-' " d& ['Q(&) ~(&)1

5. By a similar argument, all components of "T"»(x)
and of "Z"»(x) }

—= 'T&, "»(x)] are completely identical
at t= —~, if we assume that the interaction constant e
vanishes at t= —~. ("Interaction switched on adia-
batically since the infinite past. ") Here, "free" refers
to omission of all interaction terms, including the dif-
ference between E and 5.

6. Thence, also the momentum vectors H5'~ cal-
culated according to (26) from HT" and from Hg«'

will then be equal at t= —~, and therefore always, as
they both are constants of motion:

y( 1«)-' d~, ~t d~, [['Q(~); "&V(t,)];

X"N(t2)1+, (22)

is expressed by (G-I:10) with (G-I:3, 6, 7) in terms of

gauge-independent variables, Eqs. (20)—(21) define a
gauge-independent quantity, which has the following

properties:
1. This gauge-independent quantity «&Z"» is a mani-

festly covariant symmetric tensor.
2. Due to the field equations (G-I:29) in interaction

representation,

V»'Q"»= 0, V»'Q, i+V„'Q)»+ V),'Q», =0,

V"V»V= —~ 9, V»'4V"=+x '4, (23)

with

F =-6 " 6&{4~%}=o= 6&{(V O)~'(VV)} (24)

the tensor X~» satisfies conservation laws

V„uZ"»=0, thence V„P»)„„=0. (25)

3. Because of (25), the integrals of the density com-

ponents g"0 over space give constants of motion:

&: "O'"=J'"2"'d'x, with (7 "(f'"/&7t=0. (26)

4. The energy c 6' in Heisenberg representation
thus defined is, by (20)—(21), (G-I:29), and (G-I:31),
equal to 'Ko, and therefore, by (G-I:54) with (G-I:56)
and (1)—(4), equal to the energy as calculated from
"T".Remember that (G-I:54) was derived under the
tacit assumption of vanishing of the interaction at
)!=—~ (compare footnote 13 of reference 1). In fact,

g H(PX —J'HQ) Od3x —J'Hood«x

Because of the above properties, "Z"» serves most
purposes of a total energy density tensor, better than
for instance the "canonical" energy density tensor. '
However, it does not prove equality of Z"& and T"&.

The physical interpretation of » is complicated by
the fact that in Heisenberg representation it was ex-
pressed in terms of field variables (and therefore of
creation and annihilation matrices) in interaction
representation. " While we leave unanswered the
question whether Z"» or T""is to be regarded as source
of the gravitational field' (although the correctness of
Z"» in this regard seems somewhat dubious), it must be
admitted that the definition (20)—(21) of Z"» has the
advantage of permitting an extremely simple sub-

traction of its covariantly defined vacuum value, by a
simple rearrangement of factors as suggested by Furry
and Oppenheimer" after splitting all field variables in

interaction representation into positive and negative
frequency parts according to Schwinger. After this has
been done, the photon part "Z« "» (21) will contain only
pr&)ducts Q(+) Q(+) Q( ) Q(+) and Q( ) Q( )

Then, the expectation value of ZF"» after this subtrac-
tion is supposed to vanish completely by the new cova-
riant auxiliary condition in Heisenberg representation
'5'z»(+) 4=0=4*'Q),»( ) proposed recently by the
author, ' and all energy and momentum is then due to
the "matter" terms in (20). It should be kept in mind,

though, that these "matter" terms would still depend
on photon variables when expressed, by Eq. (22) or

"Re-interpretation of the q-number occupation numbers
derived from field variables in interaction representation, as
representing the numbers of particles in Heisenberg representation,
was shown by F. J. Dyson, Phys. Rev. 75, 486 (1949), to over-
simplify the theory such as to completely eliminate all inter-
actions. (Compare p. 489, same article. )"F. J. Selinfante, Phys. Rev. 84, 644 (1951).
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by its inverse

tr~ ) n ~t ptI ~ tn-I

cf(i) = q(t)+ P i
—

} Chi dt ~
I Ch

--i &a)

so that

in terms of variables in the Heisenberg representation
used for describing the physical state by C. Moreover,
as discussed earlier, ' it is often convenient for prac-
tical reasons to ignore the new auxiliary condition
notwithstanding its fundamental significance, and to do
as if the photon terms (21) describe the energy density
tensor of incident free photons.

Perhaps one may want to argue that the tensors T"&

and g"" should be expected to be identical. If we call
their difference P", then "P"(—~)—=0 by the property
(5) above in case of vanishing of interaction at t = —~ .
On the other hand, its time derivative

8 "X"~(x)/R
= (ih)-'["P~(x) "SC—"X "P~(x)j (30)

vanishes wherever ug"~(x) itself vanishes. From this,
one might be inclined to conclude the equality of T""
and g"" throughout space-time. "

It wouM have been more convincing, however, if
equality of T"& and X"" could have been shown by
explicit calculation, using Eq. (22) or (29), since the
vanishing of P" at t= —~ was based on the vanishing
of e there, and if yet e can differ from zero at later time,
then also P" can, with some discontinuity in some
(higher order) derivative of P". Moreover, one may
well prefer, in defining the interaction representation
by (G-I:33), to postulate the vanishing of the inter-
action terms in the energy density in the limit t—+—~
only, without X""being zero for any finite time, so that
the above argument is not conclusive.

V. DISCUSSION

While the validity of conservation laws and of cova-
riance for T"& and P"& seems to be satisfactory, they
both have the disadvantage of taking infinite values
(even after subtraction of their vacuum value) in states,
in which a finite number of occupation numbers have
nonvanishing values. For T"& this is easily seen by cal-
culating the expectation value of the term E«'/Sm. in
Eq. (2) (with (G-I:44)) in state with one free electron
present. If 4'(x) is the c-number one-electron wave
function of such electron, Fock's rules of second quan-
tization' give, for one-electron theory and mAhout the
symmetrization (7) of the charge density,

(p(x') p(x") )A„——e2%'t(x') 8(x'—x")4'(x"), (31)
'7 A somewhat similar argument is used by G. Wentzel in his

book EinfNhrung in die Qgantentheorie der Wellenfelder (F.
Deuticke, Vienna, 1943) in Sec. 18, on page 137, for proving the
vanishing of (04}for all times t„.See also the translation Quantum
Theory of Fields (Interscience Publishers, New York, New York,
1949), p. 143.

's V. Fock, Z. Physik 75, 622 (1932};in particular Eq. (11a) of
its second part, on page 639,

= (e'/Sx) J'~ +(x')
~

'r —'d'x'.

In a point where ~%'(x) ~'&0, this integral diverges as
2e'~+(x) ~' for 'dr.

This one-electron theory is of course meaningless, but
a similar slightly more involved treatment in position
theory with use of Eq. (7) leads to the logarithmically
divergent electrostatic self-energy calculated by %'eiss-
kopf. "

For Z~&, the divergence of (2"&)„„is due to the com-
mutators of HTi„,""(f) with n%(ti), when Eq. (29) is
used for expressing HZ"I'(='Ti„,i") in terms of field
variables in Heisenberg representation.

To avoid the electrostatic self-energy difficulties, one
would be tempted to rearrange 'P&+' and 'P& ' factors
in the expression ( E„/Sx) occurring in the interaction
operator 'W (G-I:10). However, this alone would
disturb all our proofs of the integrability of the general-
ized Schrodinger equation' and of the covariance of the
energy density tensor "T"I". In a following paper, we
shall discuss some possibilities of eliminating self-
interaction eGects without sacrificing covariance or
integrability. "

APPENDIX A

Using Eqs. (3), (G-I:59), and (G-I:60), we find

&."Tr""=i 6 (~oi+& p—) & (A. 1)

(All quantities in Heisenberg representation. )
The anticommutation relations for P and Pt yield,

for any Dirac matrix co, and t= t',

P ~(x)&uf(x')+fr(x') &orts *(x)= (spur ce) 6(x—x'), (A.2)

which we shall assume to vanish even for x=x', if
spur ~=0. For instance,

P~nP+P n /*=0 (A3)

Similarly, we assume the vanishing of expressions like

(V f) t 'nP+Prnr'W f*= IV 6(x—x') 'spur n}„X=O.
(A.4)

By a similar argument

2e@I4'~EII'n0'} = 4(EII'i+i 'Ell)

' V. F. Weisskopf, Phys. Rev. 56, 72 (1939),and A. Pais, Proc.
Roy. Acad. Amsterdam (Verhandelingen, 1e sectie) 19, 5 (1947),
in particular page 25, footnote.

"See also F. J. Belinfante, Phys. Rev. 82, 767(A) (1951);
Prog. Theor. Phys. 6, 202 (1951);and F. J. Belinfante and J. S.
Lomont, Phys. Rev. 83, 225(A} (1951'.
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where we have taken E» first at a diferent point I',
then used Eqs. (6), (6-I:48) for [E«», P] and its con-
jugate for [P;R„»], and finally Eq. (7) and Eq. (A.3)
above, before equating x' to x. Similarly one shows

sc@{4'EiA}—-'{Eiip+ pEi }
='.~(4'4+PA')L&'(1/»)] =*-=-o (A6)

"because of symmetry. " Other symmetry arguments
yield

APPENDIX B

%'ith the abbreviating notation of reference 1, ar]d

by Eqs. (8), (6-I:14), (6-I:22) with note between
(6-I:41) and (6-I:42), Eq. (6-I:50) and conjugate,
and Eq. (3), we find, all in Heisenberg representation,

& "T "=le@{4'(b' )(IV+VI)}
——J (b' )L& (1/ )]

~${iP t(j'P+Pj') }, (8.1a)

so that

Ldb(x)/dx]. p=0, (A 7) g nTrpk= (b j)5k—p)K (B.ib)

~ "Tiki= pp(hk@i+&iL) p'(jk—&Si+j i&K) (8 lc)
4'& 4+(&4)'4*=o. (A.8)

Equation (6) with pp= V/+/V and (A.3) also yields

&{4't(& )(Vif'+W) }
'&[(4'~4-+P~'4*) ' V]=o (A 9)

while

Temporarily putting j= jk+V p (with div jk=0), we
find by some integrations by parts, with use of (6-I:20),

J'(b r')(j"v ')(1/»)f'k'(b &—')(1/») f'b i.'/—»

=J'(j '—j.') b/» (82)

N{igt(, e $)($ eg)}=0 (A. 10) Further, by Eqs. (5)—(6),

T "=jeg+p(E i'j+ j'Ei )

which giyes Eq. (10) by (6-I;44),

(A, 15)

follows from (6) alone.
Equation (6-I:57) and conjugate, with Eqs. (A.9),

(A.10), (6), and 2eV = —(%hc)(eHp+Hpn), yield, in
Heisenberg representation,

Vpj+V p=6t{f~(2e/ihc)eHpifij+(R{2cilitV Qj
= (R {ifit(%hc) [e;Hp]$}. (A. 11)

Finally, from Eqs. (5)—(6) follows

6t{(Hpf) ~( Hp/phc)P} =—0= (R{(V f) t ihcV P} (A.12)

and, with Q=—g2,

(R{f~(Hp/phc)(Hpf) j = iR{P'i(Hp'/ihc)f}
= St{gtihcDQ}. (A.13)

By Eqs. (4), (G-I:57) and conjugate, (A. 12) and
(A.13), and (6),

V„nT,p&= Vp61{Q~Hpp}+Qk Vk(R{ ifitihcVkifi}—
= 6t{$~(e/ihc)[5 e; Hp]P}

+R{ft(e/2ihc)[Hp, V]fj
+(e/8ihc) [{rP &(Hp+Hp~)P

+fr(HpT+Hp*)f*} ' V]. (A.14)

By use of Eq. (5), (A.3) with P replacing a, the defini-

tions of V t and V r (footnote 10), and Eq. (A.4) and
conjugate, in the last term of Eq. (A.14) only terms
with V from B0 operating on V are left, which yield,
by (6-I:6) and by (7), kk(E„j+j E»). The term in

(A.14) with [Hp; V] yields by (5), (6-I:6), and (A.S)
the same amount. Adding (A.1), with (A.11) sub-

stituted for its last terms, to Eq. (A.14), we thus find,

by Eq, (1),

—6t{p'ikHpp} = ${ptihcv p}—curl ,'hc(R{p—~i»pj.

(8 3)

Then, by Eqs. (8), (G-I:15), (6-I:50),and (6-I:57)and
their conjugates, (6-I:58), (G-I:63), (G-I:60), (6-I:20),
and Eqs. (8.2), (8.3), (4), (3), and (1), one finds

fi nT, = —2 Qk bk nT k pe(R—{P~(b a)(Vs+if V) }
+'J'(b r'){ V '(1/»)] 61{p'j'yj (8.4 )

By Eqs. (4), (G-I:15), (G-I:50), (6-I:51), (5), (6), (7),
by relations like ikkni+aicrk=24& and i»kin~ a~oki- '

= 2i(b~ai b~iak) = a—«k~+ak~ai+2okia, and by Eqs.
(3), (4), and (1), we find

)HTPk — b HT PP Q b HTki ib pV'

+pJ'(b 5')Vk'(1/4pr»)

+lc61{0'J'p'(b ")LV '(1/»)]kj
+-,' P. &i(Sijk—Lji). (8.4b)

By Eqs. (4), (G-I:15), (G-I:50), and (6-I:57) and con-

jugate equations, by nkai= b»+zo», and by Eqs. (6),
(7), and (6-I:7), we find

g HT kl
{{ fi HT Pk+ ib pg,

+,'I',f'(b 5')V, '(1/4-~) ,'I,b,V——
+!cJ'(b ")LV.'(1/ )]~{~tp'-~j }}

+ {{same with k, 1 interchange}}. (8.4c)

Now, by (G-I:47), in Heisenberg representation

85k ———J"'(b r')(E"V ') Vk'(1/4pr»)

=f'(b E')vk'(1/4pr»)+ J'(b r') p'vk'(1/»). (8.5)

By (6-I:44) and (G-I:6), the first term of the last
member of (B.S) equals

J"(b @')Vk'(1/4pr»)+ J'V'(b V ')Vk'(1/4pr»). (8.6)
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By (G-I:7) and (G-I:65),

f 'r~'p'Vl, '(1/r) = —hj, ~f'p'/r f—'(r(/r) VI,'p'

b„—,V+f'(r)'/4xr)&'VI, 'V'

= —s&&v+2f '[w&'v'jr&'(1/4~). (B.n
Thence

J"V'Vg'V'/(1/4s. r) = ,'bI, (V———,'f''r('p—'Vg'(1/r), (3.8)

so that, by (3.5) with (3.6) and (3.8),

SS,=f'(b lr') V,'(1/4xr) ——',b&V

+lf '(b r') p'~ '(1/r) (3 9)

Now adding (B.la, b, c) to (3.4a, b, c) and making
use of Kqs. (8), (1), (3), (3.9), and iinally of Eqs. (7),

(G-I:48), and (G-I:20), we 6nd

g HZ' 00+2 p g HZ' Ok

--', eJ'(b r')[& '(1/r)3 6tI4 tlj'; %II
= —-',ef'(1 r') 8(r') j V'(1/r)=0; (3.10a)

g HP Ok+b„H+ 00++ P HI' kl

= l~J'(h r')[~ '(1/r)3&IP'lp" III
= ——',eJ'(b r') h(r') p Vl, '(1/r)=0; (3.10b)

g HT' kl+li HI' Ok+) Hg Ot

= Pef '(h ~")[&.'(I/r) j&IW'~~fp" WII II

+ Ik, l interchanged)
= —4~f'(b r') ~(r') Ii ~~k'+i~~~'I(1/r)=o (3 1«)
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The energy distribution, and the drift velocity and electron
temperature which are closely dependent on the distribution,
were calculated for slow electrons in He and A under 6elds ranging
from X/p= 1 to 4 volts/cm mm. The calculations were based on
the theory developed by Holstein. The di6'usion crass sections of
the gases for electrons which account for the efFect of elastic colli-
sions were computed from the scat tering data of Ramsauer and Kol-
lath and of Normand. The efFect of excitatian collisions was taken
into account by comparing the results for three representative
values of excitation cross section: Q, =0 and Q, = ~ which form
the limiting boundaries and Q, =a constant obtained from
Maier-Leibnitz. Although a considerable percentage of the elec-

trons were to be found in the excitation region for Q, =0, the
results for Q, = constant were nearly the same as those for Q, = ~.
In the case of small fields, therefore, the electron energy distribu-
tion in the elastic region and related quantities may be calculated
with Q, assumed infinite.

A complete set of curves are given below illustrating some of the
properties of the calculated quantities. The agreement between
experiment and the curves obtained with the scattering data of
Ramsauer and Kollath is good, while the curves obtained from the
correspanding data of Normand indicate that his cross-section
values are too low.

I. INTRODUCTION

ECAUSE of the lack of a complete theory and
sufhcient cross-section data, the energy distribu-

tion and related parameters for electrons in gases have
heretofore been calculated under various simplifying
assumptions. These approximations have resulted in
considerable discrepancies between the theoretical. re-
sults and experiment. In the discussion below, the en-

ergy distribution, drift velocity, and electron tempera-
ture of slow electrons in helium and argon are more
exactly calculated for 6elds up to X/p= 4 volts/cm mm.
The following factors are considered, some or all of
which have not been taken into account in previous
calculations: (a) an electron loses a small fraction of its
energy by recoil in elastic collisions with molecules of
finite mass, (b) the effect of excitation collisions cannot
be neglected, (c) the elastic cross section of gases for
electrons is a function oi' the electron energy, (d) the

*Now with the Radiation Laboratary, Johns Hopkins Uni-
versity, Baltimore, Maryland.

type of elastic cross section that should be used in
computing the energy distribution is not the Ramsauer
cross section but, more exactly, the diffusion cross sec-
tion. The latter cross section is also referred to as the
cross section for momentum transfer.

The calculations below are based on the theoretical
investigations of Holstein, ' whose work represents the
most inclusive theory to date on the energy distribution
of electrons. Values for the diffusion cross section could
not be found in the literature and were therefore calcu-
lated from existing angular scattering data. Energy
distribution, drift velocity, and electron temperature
curves were obtained for three values of excitation
cross section: Q,„=O, Q„=~ and Q =a reasonable
constant. For the small 6elds considered here, the cal-
culated curves for the latter two cases were found
to be nearly coincident. As a result, for the calculation
of gas parameters depending on the electron energy
distribution in the non-excitation region, Q may be

' T. Holstein, Phys. Rev. 70, 367 (1946).


