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The covariant auxiliary condition Eq. (3) or (15) is assumed to be valid for all states occurring in nature.
Such special assumptions as the condition for a "photon vacuum" of the type of the noncovariant Eq. (18)
then become superQuous. The meaning of the new auxiliary condition (15) is that the expectation value of
the electromagnetic Geld is equal to that of the retarded Geld from charged matter: "All light has once
been emitted. " If in some discussion of properties of a particular photon one wants to ignore the source of
that particular photon (without denying its existence), one can ignore Eqs. (3) and (15) in such a special
case, replacing them by an appropriate "practical" boundary condition. In self-energy calculations one
sometimes uses a "photon vacuum'" condition of the type of Eq. (20). Such approximation to (15) gives
correct results up to second but not to fourth powers of e.

I. AUXILIARY CONDITION FOR TRANSVERSE
PHOTONS IN HEISENBERG REPRESENTATION

' 'N Fermi's quantum electrodynamics, the Lorentz
- - condition ensures equality of the values of div E«
and, 4+p, and thus guarantees that all charges are sur-
rounded by their longitudinal electric fields. In "gauge-
independent" (G-I) quantum electrodynamics" the
same is guaranteed by the dehnition of the longitudinal
field.

It is however a common experience that there exists
a second tie between matter and the Maxwell 6eld,
which may be expressed by saying that also each
transverse wave that is observed was once emitted by
a source. Although the most general solution of
Maxwell's equations may be described by

A "(x, t) =A„"(x,t)+A,"(x, t), (1)
where A, t' is a solution of the homogeneous equations,
we use to assume that in reality A,t' or at least its
physically significant transverse part 8," (with spatial
part 5,) vanishes. Thus, light spots in the sky at night
are interpreted as stars rather than as solutions of the
homogeneous equations.

One may object that the vanishing of A,& or' of 8,~
is contrary to "the fact that" nature is symmetric in
time. Vet, even if this symmetry of nature with respect
to the sign of t would exist, there is the other fact that
physics (which is our knowledge of nature) is not sym-
metric in time. In knowledge there is, for instance, a
distinct difference between memory and prediction. If
we say that 0',,~ vanishes, this is perhaps not a property
of objective nature, but rather a property of supposed
knowledge. I.et us express this in the form of an equa-
tion.

The q-number Q,,t" is a part of the description of
nature; there are arguments why it probably cannot
vanish. 4 Our supposed knowledge of nature is de-

' W. Pauli, Kapitel 2, B.8, p. 269 sqq. of Geiger and Scheel's
Pandbuch der I'hys~k, second edition, Vol. 24/1 (1933).' F. J. Belinfante and. J. S. Lomont, Phys. Rev. 84, 541 (1951).
Ke shall refer to equations from this paper by (6-I: ).

3 J. Schwinger, Phys. Rev. 74, 1439 {1948).
4 F. J. Belinfante and J. S. Lomont, Phys. Rev. 78, 346{A)

{1950).

(C*, &5.(x, t) C) = 0. (2)

Here, denotes Heisenberg representation. Equation
(2) together with the equality of the mean expectation
values of the longitudinal Geld E„and the coulomb 6eld
—V J'd x'p(x')/r, tells us how to interpret the dualism
between the field concept and the action-at-a-distance
concept in quantum electrodynamics.

It is impossible to postulate n5, (x, t)C =0, since the
commutator Eq. (II.3) of the appendix does not vanish.
But we want to state only that in the 5,-6eld "no
photons are present. "This we formulate by assuming"'

8,&+&"(x, t) C = 0,

where 8, '+) is Schwinger's "positive frequency" part
of the 8,-Geld, which describes annihilation of photons
only. In fact, Eq. (2) will now follow directly from Eq.
(3) and its hermitian conjugate

C*"8.~-»(x, t) = 0. (4)

Note that (4) follows from (3); it is impossible to
replace (4) by a similar formula with (8—8,z )&

—
&

replacing 8, & & =—(8—8„&)& &, if we want to stick to (3).
It should be well understood that it was our assump-

tion that in principle, for all states of nature considered
in physics, condition (3) should hold rigorously. For
many practical problems, however, Eq. (3) may be of
little interest. Suppose we know what photons are
present at a time represented by a space-like surface I in

space-time, and that we want to make predictions on
what will happen at later times. We can express
A,«&(x, t) as an integral over space-time" as in Eq.
(I.2) of the appendix, and we might divide the integral
into two parts A„,„.&z&(x, t) and A„,&z"(x, t) corre-

sponding to the parts of space-time before and after

' F. J. Belinfante, Phys. Rev. 75, 337(A) {1949).
s J. Schwinger, Phys. Rev. 75, 651 (1949).' F. J. Belinfante, Phys. Rev. 76, 66 {1949).

scribed by the state vector, say 4 in Heisenberg repre-
sentation. Our statement is then in the first place that
the mean expectation value of 5, vanishes:
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the surface I,

A„f)r"(x, t) = —41r d'x D(x x')—"j"(x', t'),
oJ I

(5)

both cases, U satisfies the usual generalized Schrodinger
equation (similar to Eq. (G-I:9) of reference 2), which
for infinitesimal parallel displacements of the surface
3= constant simplifies to

where t on the integral denotes the surface t= constant,
d'x = d'x dx'withe'= xo —ct, a——nd D(x) is Schwinger's
D-function. ' HA«~~I& is a similar expression with in-
tegral from —~ to I. Then, by (1),

where
A~(x, t)=A&~(x, t)+A„„&~(x,t), (6)

A,~(x, t)=A.~(x, t)+A„«r~(x, t) . (7)

Now, in the problem considered, we may not be
interested in this division (7) of Aq" or of its transverse
part 5i into two parts. We would simply postulate as
initial condition the numbers of photons (and of other
particles) present at I.For instance, in some very special
problem, we may start out with a photon vacuum at I,
so that we want to put

"ttq&+&(x, t) 4 = 0, (photon vacuum at I). (8)

Although we would believe that in principle Eq. (3) is
still correct, we would make no attempt to use it or
even to reconcile it with the condition (8), which is of
more practical importance for such particular problem.
The practical importance of Eq. (3), then, —beside its
mere philosophical value as a general principle of
physics, —lies in the fact that in many instances we
idealize practical problems with initial photon vacuum
at I, by taking the limit I—+—~. In such cases, the
rigorous condition (3) can replace the ad hoc condition
(8). But in a problem like the Compton effect, the
ad hoc condition of presence of a photon at I would
lead in the limit I~—~ to a practical initial condition
contrary to the fundamental but in this case not very
interesting equation (3). In such case, we would there-
fore simply ignore Eq. (3) for the solution of such
problem.

II. USE OF INTERACTION REPRESENTATION

The main task of this paper will further be to refor-
mulate formula (3) in a different mathematical form,
and to prove its covariance. For this purpose we shall
relate our Heisenberg representation of q-numbers to
an interaction representation (') coinciding with the
Heisenberg representation (H) on the initial surface I:

"q(x, t)=Ur(t) " 'q(x, t) Ur(t), (9)

Ur(I) = 1. (10)

U, (—~)=1. (10a)

This is simply a special case of (9)—(10) for I~—~. In

We shall also consider the interaction representation
('), which coincides with Heisenberg representation at
t ——~'

"q(x, t) = U, (/) "q(x, t) U, (t), (9a)

ih—[dU /dt]= U, (t)-' 'W(t), (12)

where 'N(t) is the integral of the interaction operator
W(x) over the space-like surface t

In Manifestly Covariant ("M.C.") Quantum Elec-
trodynamics ("q.e.") it can then be shown easily (see
Appendix I) that

"A r~(z) L—= "A~(z) —"A„„&~(z)]= 'A~(z). (13)

In Gauge-Independent ("G.I.") q.e. , no four-vector A'
is defined, but one does define a solenoidal vector 'g(x),
which is equivalent to Schwinger's 8& when 8,' vanishes.
It is easily shown (see Appendix II) that in G.I.q.e.

"Sr(x)L=—"$(x)—"5,.&)g(x)]= '5(x), (14)

where S„t(z) is the transverse retarded vector poten-
tial, and where &I refers to sources "after" the surface I.

Taking in Eqs. (13)—(14) the limit I~~, so that
81~8, and 'Q~'8, we can rewrite our fundamental
auxiliary condition (3) as

'8&+»(x, t) C = 0. (15)

In this fundamental formula, a "q-number in inter-
action representation" seems to operate on the state
vector in Heisenberg representation. In fact, our result
for I~—~

(14a)

shows that Eq. (9a) can be regarded as a canonical
transformation by which —in Heisenberg representation—new variables 'g are introduced, in which the retarded
fields have been rigorously separated from the electro-
magnetic field. The limitations to the usefulness of such
canonical transformation (which according to Eq.
(G-I:54) of reference 2 eliminates the electromagnetic
interactions altogether), and a more useful trans-
formation leaving the interaction with external fields,
were discussed for instance by Dyson. '

Note that, even in M.C.q.e., one cannot "generalize"
Eq. (15) by replacing 8 in it by A. There is not only no
physical reason for such a "generalization, " but the
p=0 component of such "generalized" Eq. (15) would
even be an absurdity, as "there is no state, in which
no scalar photons could be created. " '

III. PROOF OF COVARIANCE

The Lorentz-invariance of (15) is not yet obvious.
(By Lorentz-invariance we mean independence from
the choice of the time-like four-vector n& used by

s F. J. Dyson, Phys. Rev. 75, 486 {1949).
~ F. J. Belinfante, Phys. Rev. 76, 226 {1949).

ikC dU, (&)/Chj= U, (t) "W(t) = 'm(~) U, (t), (11)

and its hermitian conjugate
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Schwinger in his de6nition of 8. We prefer to choose
this nf' always along the time-axis, so that out n& and
8» do not transform as four-vectors. )

In M.C.q.e. , the covariance of the condition (15)
under Lorentz transformation of the time direction
given by n can be proved as follows: By

'A = A, =— A —A„t

we find in Heisenberg representation

a„'A (z)C = O

(13a)

(16)

or
"{5&+&(z)} c = o

'g&+&(x, t) er(t) = 0,

which has been used in various older publications. "
In G.I.q.e., the covariance of the condition (15)

follows from the invariance of the tensor formula

by subtracting the identity B„nA„&»(z)=0 from the
I.orentz condition 8»nA»(x)4 =0. But (16) with'

'A»(x) = 0

and the four-vector character of 'A& together guarantee
the rigorous invariance of (15) by the same argument'
as used to prove the invariance in zeroth-order approxi-
mation of the "photon vacuum" condition

With the first-order approximation sometimes used in
the calculation of the self-energy of a free electron, use
of (20) instead of (15) can be shown to lead to errors in
the free-electron self-energy proportional to the fourth
and higher powers of e only, so that, contrary to earlier
belief, " this cannot account for the appearance of
"kinetic self-energy" terms. (The latter are due to
certain ambiguities in the evaluation of the divergent
integrals of products of Schwinger's 6 and X) functions
and their derivatives in the expression for the electron
self-energy. )

APPENDIX

I. Manifestly Covariant Theory

In M.C.q.e. the interaction operator is

%(t) = fd'x ji(x—, t) A"(x, t).

In Heisenberg representation, the retarded field from
a source Hj„(x, r) (compare Eq. (9)) is given by' '

"A...»(x, t)= —4s Jt dc(' J{ d3x'Ur(t') '

XD(z—x') 'j (x', &,")U, (&'). (I.2)

'Si»'+&(z) C' = o, (19) 4~ihcg» "D(x x') = ['A»(—x); 'A "(z')] (I 3)

where '5'&,» is the electromagnetic field '5, '8 in inter-
action representation. Equation (19) follows from (15)
by 'Qi„'+'= Bi '8„'+'—8„'8&,'+ &while Eq. (15) (with
'8'=0) again follows from the space-like components
of (19) ('5&+&C=o) by the definition Eq. (G-I:3) of
reference 2, of 5 in terms of 8.

and by (I.1) we find from (I.2), for the part of the
integral between the surfaces I and f as in Eq. (5),

"A,e, &i (x, t)

~t
=

J
(dh'/ih) Ui(t') '['A "(x, t) % (t')jU&(f')

IV. COMPAMSON OF AUXILIARY CONDITION WITH
PHOTON VACUUM CONDITIONS

In earlier publications, Eq. (18) was meant as either
only a zeroth-order approximation for the state-vector,
or as a boundary condition on a specific initial surface
I, where it is by 0'r(&') = Ur(t)4 with (10) and (14)
equivalent to the special "practical" assumption (8).
Equation (18) was not rigorously covariant, but only
in zeroth order. ' This is due to the fact that from (18)
we cannot conclude the vanishing of rg&+&(x, r) 4'r(&,'),
since differentiation of (18) with respect to 1 introduces
d%'r/dt. Thus, (19) is no longer valid, and in a different
Lorentz frame '8'+'4'i, and therefore '5'+)+i will no
longer vanish. On the other hand, the general law given
by Eq. (15) (together with (16) in the M.F. theory) is
rigorously covariant.

Let us remark here that in many calculations one
uses neither (15) nor (18), but something in between:

~g(+& @ L~] —0 (20)

where O'I is obtained from 0,= U,4 by a transformation
not quite equal to Uo ', but an approximation of it.

dt' (d/dt') {U, (t')-&rA»(x, r) U, (t') }

= Ui(&&) "A"(x, t) Ur(t) —Ur(I) "A»(x 3) Ur(I)

= "A»(x, t) 'A»(x, r), —(I.4)

where we used (11)—(12), (9), and (10). From (I.4) with
the definition (6) follows Eq. (13).

II. Gauge-Independent Theory

In G.I.q.e. the interaction operator is given by Eq.
(G-I:10) of reference 2, or

% =Jd'x{(R '/8') —5~j}

Since in Heisenberg representation "5 satisfies the
Maxwell equations (G-I:59—66), it must be equal, but
for a solution g, of the homogeneous equations, to

'0 Compare the wrong remark in F. J. Belinfante, Phys. Rev.
81, 307(A) (1951)„ that the "kinetic self-energy" of an electron
would be due to incorrect use of (20) instead of (15).
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the retarded field, for which we find in Appendix III: given by

"5""(x t)

3

= —4tr cdt' d'x' Ui(t') ' Q Di "(x x')—
J „ m=1

X'j (x', t') U (t'). (II.2)

Now, according to Eq. (3.14) of reference 3 and Eqs.
(III.5—6) of Appendix III, we have"

['5 (ix); 'Pf„(x')]=4trikc{8(„& ViV —
}$(x—x')

=4rrihc D(~"(x x') —(II..3)

Further, the coulomb field 'E„(x') defined by Eqs.
(6-I:6—7) of reference (2) commutes with '$(x) even
for time-like x—x'. Therefore, we find for the part of
the integral (II.2) between I and t as in Eq. (5), by
Eqs. (II.1), (II.3), (11)—(12), (9), and (10):

Hpf ret) i(» t)

t

(dt'/ik)U, (t') '['@,-(», t) ~(t')~U
I

dt'(d/dt') {U, (t')-"5&(x, t) Ui(t') }

="gi(x, t) tg&(x, t) (II.—4).

"Si '"(x)=+(1/4x') fd'kjd'x' { k„k"]-'
X {6&~—(kik /lt') } "j"(x')exp{ik„(x—x')"}. (III.2)

As the integrand has singularities for k'= & {k~, we
take the principal value in these points. We complete
the path of integration for k'(= —ke) to a contour,
closed along &i~ as (I—t') 0. Thence, with «(t —t')
=(t—t')/}t t'}, w—ith E —=V', and with Schwinger's
D- and S-function, s 6 "
"5( '"(x, t) = (1/4m') {'d'x' «(t —t') 1'd'lt~ k

~

-'
XP„{8(„—(kik„/it') } "j~(x')
Xexp{r'lt (x—x') } sin{ kc(t t')—}
2~j—d'x'«(t t') P—„,"j-(x')
X {6(„—(ViV„/&) }D(x x')—
27rI'd4x—'«(t t') Q —"j (x')

X {6,.Z —V,V„}n(x —x'). (111.3)

If the factor «(t —t') is omitted, we apparently get a
solution of the homogeneous equation, since X)=0.
Adding this solution to "Si '", we find an integral over
II'&t only, therefore the retarded solution:

3

5i'"(x, t) = —4z ~ cdt' d'x' P

XDi "(x—x') n j„(x', t'). (III.4)

Here, we introduced the "transverse D-function, "
defined in analogy to the transverse delta-function"
for l, m=1, 2, 3 by

Subtra. cting this from "8&(x, t) we get Eq. (14).

IG. The Transverse D-Function
Di '"(x)= bi D(x) —Di„'"s(x) (III.5)

D~ ""s(x)= ViV $(x); D(x) = pi D«'"s(x). (III.6)

Some of its properties are

A solution of"

"Si(x)= —4s.("j~)i

—= —(1/4rr') fd«k I'd4x'{ 8i (kik /k') } "j—(x')

Xexp {ik„(x—x') &} (III.1) tr(x) —0 D& tr(x) —D &tr(x) — Di tr( x)
(III.7)

(with summation over m from 1 to 3) is apparently
and, by Eqs. (14a)—(14b) of reference 7 and Eqs. (12)—
(13) and (17) of reference 12,

Di "(t=0)=0, {8«D& "(x)}~ e
———8i '"(x). (111.8)

Similar equations hold for D&„'"s(x).

"The S-function has been defIned by Schwinger (see references
3 and 6). It equals 5)(r, t) = [ ~

r+ct
~

—}r ct
~
}/(Ser). (Similarly, —

Schwinger's X)&'&-(unction equals Pct/4e rj ln l ~
r+ct {/}r ct {l-

+Lt/4ee j ln {
r' c't'

~

+cons—tant. )
"Compare Sec. 2 of F, J. Belinfante, Physica 12, 1 {1946).


