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Its average over the unitary group may be written as

f(Vydgl), +zV IdRQ fdR=0, (2)

Cf,f2f3f,ui' u2"u3'm4'4j (5)
k =0 fx+fs+fs+f4 =k

where dR is the element of volume of the four dimensional unitary
group. If f is analytic we can write'

4

V'f= II {cosorrypu~)p, (3)
X=I

where or is the difference step, rg~ are the elements of E, and u~ are
the diA'erential operators B/Bx~. The first term of Eq. (2) can be
written as'

1 4 BV'
vx~O'&4=- —,& v~—|t. (4)

or e=I Buo

Expanding cosorry~u~ in a power series and integrating we get a
result of the form

f 4

II cosorfy&u&dR
I

discuss in this note a related problem: the distribution with respect
to the actual path length of the particles.

Let t+5 be the actual path length of a particle after passing
through a foil of thickness t,.' Under the small angle approximation

ay =~Z;ti8„,2, W =~X;t,8.P, (1)

where t;, t; tan8„;, and t; tan. ; are the projections along the t, y,
and z axes of the displacement of the particle between the (i—1)-
and i-th scatterings. The approximation made in (1) in neglecting
terms of order 84 amounts to a correction on d of less than 3 per-
cent for 8 as large as ~20'.

We want to calculate the probability P(t; y, 8„, 6„;z, 8„6,)
)(dyd8„db, „dzd8zdb, , that a particle at the thickness t has lateral
displacements, direction of motion, and increment of path length
in the specified ranges. Under the usual gaussian approximation
(as in reference 1) we can write down the following diffusion
equation for P:

BP BP BP 1 B'P 1 B'P 1 BP 1 BP—= -8 —8 —+- +——--8 2—--8 &—(2)
Bt, "By 'Bz ~~ B8„s u~ B8P 2

' Ba„2 ' Ba,
'

This is separable into a product of distribution in (t—y) and
(t—z) planes:

Inasmuch as the element of group volume is invariant under, say,
right translations we have

P=F(t, ; y, 8„, a„)F{t;z, 8„a,),
where F satisfies

(3)

ff(Ru)dR =ff(RT~)d(RT) =ff(Ru')dR, ,

where T is unitary and u'= Tu. Hence

(6)
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8—+
Bt By w2 B8 2 86

The initial condition is

(4}

F(0; y, 8, ~) =~(y)~(8)~(~). (5)
Ciyf2fsf4uI"u2 u3' u4' j

x =0 f&+is+f3+f4 =a Equation (4) can be solved by first taking the fourier transform
with respect to 5 and y:

P=JJ dp4p(~; p, ~, ~) ~xp(~px+K~), (6)

BP/Bt = f(i/Ttr') (B'/B8') —~~iqP —iP8j&. (7)

citi.i.i.(ul') "(u2') "(u3') "(u4')"l. (7)
k =0 it+f2+f3+f4 =k

Equation (7) is an identity in u and implies that the homogeneous
polynomials

This is easily reducible to a form identical with the Schrodinger
equation for a harmonic oscillator. The only difference is that the
"frequency" is here complex. Expanding f into normalized eigen-
functions @ of the harmonic oscillator one could solve for the
3-dependence of the coefBcients. One then uses the initial condi-
tion (5} to determine the constants of integration. The solution
obtained this way is

(8)Cftfsf&f&ui, lu2 u3 u4 4

'll + f2+i3+f 4

are invariant under a unitary transformation. But the only in-
variant of a unitary transformation is the unitary scalar product
(and functions of it). Hence the polynomials {8) cannot be in-
variant. It now follows from the validity of Eq. (7) that

Cf&ftfef4= 0 (9)
eXCept fOr ~i=i.=i3=~4=0. ThuS

V'dRQ= const P

and consequently from Eq. (4) it follows that

v~~x~xd~4 =0. (11}

Combining Eqs. (2), (10), and (11) we get finally

ft, (constant p}=0

y= —,Z tt —y m8+—exp t ——(2n+ilor, (8)

(10) where

tt „(x)= (m&2&n!) &or&H„(or&x) exp( —-'orx ) (9)

or =zq/2K, (10)

(12)
or

p=—0. (13)
We may now conclude that the rotation group is the only com-

pact group we can use to obtain relativistic invariance.
~ B.T. Darling, Phys. Rev. 80, 460 (1950).
s F.D. Murnaghan, The Theory of Group Representations (Johns Hopkins

Press, Baltimore, Maryland, 1938), p. 57. probability =A (5)dA =B f(v) dv,

v =2m'b, /P, (12)

and H (x) are the hermite polynomials. ' The real parts of or, or&r

or& are chosen positive. The distribution function P can be com-
puted from (8), (6), and (3).

The general solution given above can be used to compute the
probability A(h)db, (for any given geometry) that the charge
particle has in a foil of thickness t a path length between /+ 6 and
t+b, +dA. The final result for two common cases is given below:

Case I. All particles are detected irrespective of their position
and angle of emergence.
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~HE angular and spatial distribution due to multiple scatter-
ing of a beam of charged particles after passing through a

foil has been extensively studied by many authors. We wish to

B (v) =2 &v &(u —3u +5u"—7u"+ ), (13)
u= exp( —1/v).

The following asymptotic approximations of BI are good to within
1 percent in the ranges indicated:

Bl(v) =2~ 4 &(e I"—3e ") for v 20,

BI(v) = ~x exp( —x'v/16) for v~2.0.
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Case II. Only those particles with 8„=8,=0 at emergence are
detected. The position of emergence is arbitrary. In this case

BII(&)=4~ ~~ "' (&+»'+2»"+ ) —-(I+~'+~"+ )
2

The following asymptotic approximations of BII are good to within
1 percent in the ranges indicated:

Bll(I)) =4m &e 5~2 1——e-»' for m~1.0,
2

Bii(~) =pa exp( —eI/4) for e 1.0.

The distribution function BI and Btt are plotted in Fig. 1.
The average value {0)Av of 6 for any case can be easily computed
by the following method without first solving for the complete
distribution with respect to b, :

Equation (1) can. be written
t
(8„2+8,2)dt'.

0

Hence

(&)Av= k f, ((&,'+eP)Av)d~' (14)

For case I the probability for a particle to have the angle e„at
thickness t' is given by G(t', 8„)de„where G is defined in reference 1,
Eq. (1.63). From this we find

(ey )Av= (ee )Av 2t /Rl

Hence by (14)
(6}Av——t'/H.

For case II suppose E is the number of incoming particles. The
number of particles at thickness t' having angles =e„and 8, is

XG(t', 8„')G(t', 8.')d8„'de, '. (15)

The probability for these particles to come out with angles of
energence d8„~8„~0,de,~e, 0 is

G(t-t', -e„')de„G(t-t', -e,')de, . (16)

The product of (15) and (16) therefore gives the number of
particles with the specified angle of emergence that had the
angles =8„' and 8,' at t'. Hence the probability for a detected
particle to have the angles 8„' and 8.' at t' is

PG(t, 0)g 'G(t', 8„')G(t', 8,')G(t —t', —8„')G(t—t', —8,')d8„'d8, '.

From this we can easily calculate the average (8„2)Av at t'. Sub-
stitution of the result into (14) gives finally

(~)Av t2/3~2

It is evident that this method of calculation of (A)Av can be
applied whenever we know the angular and spatial distribution
functions. One could, for example, dispense with the gaussian
approximation and use the exact numerical solution of Snyder and
Scott' to compute (8„')Av and (h)A„.
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FIG. 1. Distribution function with respect to path length. v =(actual path
length-thickness of foil) X2m~/ts Bdv =probability.
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&HE photodisintegration of C~ leading, in the final state, to
three alpha-particles, has been the subject of a number of

recent investigations. ' s These established the following facts:

(a) The cross section for the reaction goes through a pronounced
resonance, with a peak value of the order of 10 "cm' at approxi-
mately E~=18 Mev and a half-width of roughly 3.5 Mev, and
increases again after a minimum around E~= 21 Mev.

(b) In the region of the first resonance, the reaction proceeds
predominantly via the well-known 3-Mev level of Be', while some
other mechanism(s) prevail in the region of re-increase.

(c) A small fraction of the disintegrations, increasing with E~,
involves the ground state of Be'.

A better understanding of these facts as well as some informa-
tion on the spins of Be *and Be' can be gained by analyzing more
deeply some anomalies encountered in the investigation of this
reaction with the resonant gamma-radiation from I i~+p.

Diagram A in Fig. 1 shows a histogram of the energy distribu-
tion of the alpha-particles from 483 stars produced by the 17.6-
Mev line in nuclear emulsions. To permit an analysis after Bethe6
the distributions to be expected for the first alpha-particle (WI)
and the alpha-particles from the break-up of Be'*(W23) in the
3-Mev state have been drawn in. For the calculation of W23 a
level width I' of 1.1 Mev and absence of correlation between the
direction of Right of Be'* and the velocities, in the C. G. system of
Be *,of the alpha-particles resulting from the break-up have been
assumed. The gamma-ray momentum has been neglected through-
out.

While the general agreement of the theoretical distribution
W= WI+W22 warrants statement (b), the deviations for E&3.5
Mev seem to be outside statistical Ructuations. A somewhat more
satisfactory agreement can be obtained by assuming' that about
16 percent of the disintegrations proceed via an 8-Mev level of
7=0.75 Mev in Be . This mechanism would explain the appear-
ance of an extra maximum around E—1.5 Mev, but fails to pro-
duce the very noticeable minimum between 2.0 and 4.0 Mev. It
is also discredited by the observation that at higher photon ener-
gies this level does not participate more strongly if at all. Further,
Nabholz et ul. ~ have emphasized that similar discrepancies occur
for E&=14.6 Mev, which is insufhcient to excite the 8-Mev level.

We wish to show that the appearance of this minimum can be
explained quite naturally on the assumption that the 3.0-Mev level
in Be' has J=2. It might be noted that this is in contradiction
with Wheeler's conclusions. On the basis of the assignment J=2,
the observed distribution may arise as a result of angular correla-
tion eftects. Electric quadrupole (E.Q.) absorption would not give
correlation, because the alpha-particle emitted from the 2+ state
of carbon would be expected to be mainly an s wave. Magnetic
dipole (M.D.) absorption, on the other hand, would lead to a 1+
state in carbon (jI), decaying by emission of an alpha-particle of
two units of angular momentum (lI) to the 3-Mev state of Be
(j=2+) which breaks up with a d wave (l2) with respect to its


