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reason, it appears that H2 is not involved. The existence
of H&- remains a possibility. Calculations, such as were
made for H~ to compare electron amenities, are not
possible since the concentration of H1 is unknown.

The pressure independent component is much too
large to explain" in terms of a radiative recombination

~ D. R. Bates, Phys. Rev. 77, 718 (1950).

process. Dissociative recombination, as suggested by
Bates," can very well account for the observed data.

The author wishes to express his gratitude to Pro-
fessor S. C. Brown and to Professor %. P. Allis of
Massachusetts Institute of Technology for stimulating
discussions and to Mr. K. %. Rau for expert assistance.

'3 D. R. Bates, Phys. Rev. 7S, 492 (1950).
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A phenomenological definition of diffusion in a binary mixture suggests a description of the motion by a
hydrodynamic equation which contains a frictional force proportional to the relative diffusion velocity.
Plausible assumptions give a set of hydrodynamic equations for any gaseous mixture, which may include
charged molecules in a magnetic Geld. The equations determine the diffusion velocities in terms of the applied
forces, the pressure gradients, and the binary diffusion coefBcients. The same equations are also derived from
kinetic theory in the Grst diffusion approximation. In higher approximations where thermal diffusion Grst
appears, the equations are no longer valid.

' 'N a previous paper' the motion of electrons and ions
~ ~ through a neutral gas in a magnetic 6eld was
analyzed with hydrodynamic equations in which fric-
tional forces represented the retarding action of the gas.
A phenomenological de6nition of diGusion suggested
the frictional force, and its dependence on both diffusion
velocity and di6usion coefficient. Thus diffusion ve-
locities could be related to the forces acting on each type
of ion without the dificult ideas of mean free path and
collision frequency. The present paper has three pur-
.poses: to state assumptions necessary for applications
of the phenomenological de6nition; to extend previous
equations, limited to ion densities small compared to
the gas density, to any gaseous mixture and to test
the conclusions by the second approximation of kinetic
theory, ' a procedure which shows that there is no simple
way to include thermal diffusion.

' M. H. Johnson and E. O. Hulburt, Phys. Rev. 79, 802 (1950).' A. Einstein introduced such a force in his well-known theory
of Brownian motion. Thereafter it has been repeatedly used in
the theory of electrolytes. A. Schluter, Z. Naturforsch. 5a, 72
(1950); 6a, 73 (1951), has based a treatment of gaseous diffusion
on the concept of frictional forces. He introduced the forces and
evaluated the frictional coeKcients in a different way than that
followed in reference 1 and in the present paper. The hydro-
dynamic equations he obtained, explicitly given in his second paper
for a mixture of two ionized and one neutral component in the
presence of external Gelds, are essentially the same as Kq. (6)
above.

3 For a preliminary report, see M. H. Johnson, Phys. Rev. 82, 298
{1951).

'S. Chapman and G. T. Cowling The Mathernaticai, Theory of
Eon-uw'form Gases, Cambridge University Press, Cambridge,
England (1939},Chaps. 7, 8, 9, and 18. We shall use the notation
and units of this book. For symbols we have sometimes incom-
pletely defined, the list of symbols at the beginning of the book
should be consulted, where page references to all definitions will
be found.

Let p„, p„and n„be the pressure, mass density, and
number density of the rth species of molecules in a
mixture of E species. Each gas is assumed to obey the
ideal gas law, p„=n„kT To define .the diffusion coef-
6cient D„„suppose the mixture consists of the two
species r and s at a uniform temperature and uniform
total pressure, p =p,+p, . Let the mean molecular
velocities (c,)A„and (c,)A, at a point r, t be measured in a
reference frame such that m„(c„)A„+n,(c,)A„=0 We.
assert as an experimental fact that the diGusion current
is then given by

n,(c,)A, = D„ae„/ar. —

For the coefficients so de6ned, D„=D,„, which can be
seen by applying the de6nition to the species s. To
remove the restriction to a special reference frame it is
only necessary to express (c„)A, in terms of the velocity
difference(c„)„„—(c,)A„(c„)A,——rs, (e„+n, )-'((c„)A„—(c,)A,).
If, at the same time, e, is replaced by p„ through the
ideal gas law, Eq. (1) may be written

—aP,/ar= e„((c„),„—(c,).„), (2a)

0„—=kTm, e,(N,+e.)-'(D„)—'. (2b)

Equation (2), which is equivalent to Eq. (1), may be
applied in any reference frame for both terms are
invariant to Galilean transformations.

The form of Eq. (2) suggests an equilibrium of hydro-
dynamic forces since the negative pressure gradient is
the force exerted on a Quid in a unit volume by the Quid
outside that volume. The right-hand member has the
appearance of a frictional force, for it is proportional
to and oppositely directed to the relative velocity of the
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two fluids. Moreover, with this interpretation the force
exerted by species r on species s is equal in magnitude
and opposite in direction to that exerted by s on r,
which can be seen by writing Eq. (2) for species s.
Hence we assume that Eq. (2) represents an equi-
librium of hydrodynamic forces; the left side is the self-
force of molecules r and the right side is the force
exerted by molecules s on molecules r.

Our final assumption may now be stated: if a force
between two groups of molecules is specified by physical
parameters of the two groups, it is not altered by the
presence of molecules foreign to both groups. For ex-

ample, by applying this hypothesis to the force between
molecu1. es of species r inside and outside a unit volume,
the self-force is —Bp„/Br whatever may be the mixture
containing the species r. Likewise, the frictional force
exerted by molecules of species s on molecules of species
r is 8„((c„)»,—&c.)»il), where 8„ is given by Eq. (2b),
whatever gases comprise the mixture.

The last hypothesis determines the dependence of D„,
on the number densities. In the foregoing binary mix-
ture (r, s), arbitrarily divide molecules r into two groups
of number densities n„' and n,",with n, '+n,"=n„. Con-
sidering the mixture as one of three components, we
have

8p./8—r = 8-'((c.)». (c')».)—
+8-"((c.")».—&c.")"), (3a)

8p /8r 8 ((c )» (c )» )
+8 ((c )» (c )» ) (3b)

—8p„"/8r =8„,"((c„")„—&c,)„„)
+8„,((c„")»„—(c„')»,). (3c)

Adding the last two equations,

-»,/8 =8,.«, )"-& .).,)+8,.-(&');-& .)") «)
But Eq. (3a) and Eq. (4) must be identical with the
force equilibrium for the binary mixture (r, s). That
requires

(8„' n, '8.,/n—,)(c,')»,+ (8.," n,"8.,/n—,)(c,")» 0 (5)

for arbitrary values of (c,')»„and (c„")», since, with n,
n„" and n„" fixed, two of the velocities (c,)»„(c,')»„and
(c„")»,can be made to assume any preassigned value by
adjusting the three pressure gradients. Equation (5) can
be satisfied if, and only if, 8,„/n, does not, depend on n„
A similar division of species s shows 8,„/n, cannot
depend on n, Hence 8.„,/n, n. cannot depend on the
number densities or, by Eq. (2b), D,.(n,+n, ) cannot
depend on the number density of either species.

Consider a mixture of E components in which mole-
cules r have a charge e„and mass ns„. The various forces
in the dynamical equilibrium for molecules r are: the
self-force, —Bp„/Br; a frictional force, 8((c„)»—(c,)»y),
for each species s(sWr); an external force, p„F„which
may be partly gravitational and partly electrical in
origin; the ampere force n~„&c„)»,XH on the electric

There are E such equations which may be solved for
the X velocities in terms of the pressure gradients and
the external forces. Equation (6) may be applied in any
reference frame for it is invariant to galilean trans-
formations. Thus (c,)»„may be replaced by the mean
peculiar velocity, (C,)»,——(c„)»,—c(&, provided we use the
electromagnetic 6eld, E and H, proper to the reference
frame in which c(&=p ' P, p,(c,)»„——0.

The hydrodynamic equations solve a variety of
problems. For example, to obtain conductivities of an
ionic mixture, the terms on the left side of Eq. (6) which
do not contain E or 8 may be omitted. If the equations
are then solved for the velocities, the total electric
current, j=P, n,e,(c,)»„ is obtained as a linear vector
function of E. The coeKcient of E is the conductivity
dyadic.

We now turn to kinetic theory. The second approxi-
rnation to the distribution function' is f„("(1+&,)
where f„(" is the maxwell function,

f„('&=n„(m„/2ckT) t exp( m„C,—'/2kT)

and p, satis6es the equation,

D f ((&) 8f ((&)

+C. +) F.—
at Br

D(&c(&& Bf„

Dt ) aC„

e„
+—f,'"(C,XH) = —2*I-(4"+4.) (»)m„BC„

I„((t&„+(k,)= t'
I f,('&fr, ("&((t&„+Q, f Q, )k„(—fndc,—

The solution of Eq. (8) has the form,

y„=D„C„,

where D„ is a linear vector function of the pressure
gradients, the forces F, and the temperature gradient;
the coeftj.cients depend on 8 and on the magnitude of
C,. With Eq. (9), the diffusion currents become

n, (C,)» — t f (')C,(t&&c,= s Jl f„(c)C, D&c,. (10)
aJ

The solution of the integral equations for D„which

' T. G. Cowling, Proc. Roy. Soc. (London), A 183, 453 (i&45);
see reference 4, Chap. 18.

current, produced by the motion of the charges, in a
magnetic field 8; and 6nally the force of inertial reac-
tion, —p„a, which must be included according to
d'Alembert's principle if the gas as a whole has an
acceleration a. Collecting all terms, the hydrodynamic
equations for the equilibrium of forces become

B—p,/Br+ p„(F„a—)+n,e,(c,)»„XH
-Z. 8-(( ).—( ) ) (6)
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present a formidable mathematical problem, have been

given by Cowling' when D„does not depend on the

velocity, i.e., in the 6rst diffusion approximation. To
this order, terms containing the temperature gradient

drop out and there is no thermal diGusion.

The hydrodynamic equations may be regarded as a
momentum balance. Similar relations are obtained
from kinetic theory by multiplying Eq. (8) by oa„C+c„
and integrating over dc„. The 6rst term vanishes

because it contains C„only as a scalar. The second term
becomes(8/Br) (CC)A„=(B/&ir) p&'&=&ip, /Br. The third

and fourth can be integrated by parts so that the whole

equation becomes

&lp~ ( Doco)
+p,

~

Ii„— )+n,e„(C„)A,XH
Br 4 Dt

=g, 6„&'&(tn„C,), (11a)

with

a„&»(m,C„)—= m„C„I„,(y„+y,)dc„ (11b)

There is then a simple connection between 6„.&')(ns„C,)
and the velocities, for we have

d„."'(m„C,)

=)t )
t

)
"f„&o&f &o&m„C„[D„(C„—C„')

+ D, (C,—C,')7k„dhdcgc.

The integral 6,.«'(es, C„) is the momentum per unit
volume transferred by collisions from molecules r to
molecules s. Identifying Doco/Dt with a, the left side
of Eq. (11a) is the same as the left side of Eq. (6).
Hence the second approximation to kinetic theory leads
to the same expressions for the hydrodynamic forces
even in the case that the thermal gradient i4 not zero.

g/hen D„does not depend on C„Eq. (10) becomes

(C„)„=(kT/m, )D,. (12)

f

f,&o~f„&o)m,C,(C,—C,')dhd c,d c,

~ (D,—m, D,/m, )

f,&"f,&"m„C„(C„—C„')dhd

chic,

f &' t'

As 6„,&'& (m„C,) is a linear vector function of (C„)A„—(C,)„„
which does not depend on D„or D„all reference to
species other than r or s has disappeared from Kq. (13).
The momentum transferred from molecules r to mole-
cules s is independent of the mixture, in accord with
the final hypothesis made in deriving Eq. (8). Moreover
the right side of Eq. (13) must have the known value
for a binary mixture, that is

A„,»(m, C,)
= (kT(e„+m,) 'e„e,/[D„,7&)((C„)A„—(C,)A„), (14)

where [D„,7& is the first approximation to the binary
diffusion coefficient. Inserting Eq. (4) into Eq. (11a)
we obtain Eq. (8) if it is understood that [D„,7& be used
in Eq. (2b). The hydrodynamic equations are therefore
equivalent to the 6rst diffusion approximation. '

If D„depends on C„, 6„,&"&(m„C„) becomes a linear
vector function of all the velocities and of the tempera-
ture gradient; each coefFicient is a complicated integral
which depends on all the components in the mixture.
Consequently the right side of Eq. (11a) cannot be
resolved into a sum of terms, each of which refers to an
isolated binary mixture, so that it no longer has the
same form as the right side of Eq. (6). In higher dif-
fusion approximations the simple connection between
momentum transfer and diffusion velocities, Eq. (14),
is lost and the hypothesis underlying the right side of
Kq. (6) is not valid. Since thermal diffusion appears
only if D„depends on C„, it is not possible to describe
thermal dift'usion by adding a sum of binary terms
proportional to the temperature gradient to right side
of Eq. (6).

6 I am indebted to Professor Cowling for the observation that
Eq. (6) may be derived from Eq. (37) of his 1945 paper (see
reference 5) by multiplying the latter equation by 8, and
summing over s, thus establishing the equivalence.


