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Variation of ft and of |P now yields

ihip/Bt={mc'P+ca'y, ~
—e5 a}P+',e-(V/+/V) (28)

and hermitian conjugate equation. This is Dirac's
equation, including self-interaction as V is given by
(Sa) and |t is quantized according to the exclusion prin-
ciple. Equations (17) and (18) are now replaced by the
results of application of the generalized theorem of
Ehrenfest, which gives the time-derivatives of J'ftp, ,P
and of J'P xtP, as calculated from (28) and conjugate
equation.

From (27) and (28) and the commutativity of p and
V one also easily 6nds again the continuity equation
p'/c+divj=0 (Eq. (22)), which we used in deriving
Eq. (25) from Eq. (16). There are no other alterations
in the derivation of the maxwell equations from (3) with
(1) and (26) in quantum theory.

We remark that 2 is linear in time-derivatives. The
pairs of canonical conjugates are x; with y; in the clas-
sical theory (v, being derived variables, see footnote 3),
or f with ihtPt in wave mechanics; and S(x) with

I(x)/4mc in both cases. The hamiltonian is obtained
from —2 by omission of the terms —pq' from it, and

gives for the total energy the usual expression,

X=J'I ft(mc'P N—ca V )P+ ,'p-V
—j @+(@'+I')/8~} (29)

Expanding the transverse 6elds @ and 5/4~c in
fourier components, and quantizing these in the usual
way as canonically conjugate variables, one 6nds, after
recombination of the fourier components to transverse
fields, that the commutator of 5 and 5/4mc is ih X the
so-called transverse delta fgnctio-n, ' or

[Cq(x, t); g~(x', t)]=4mihchq~"(x —x')
=ihc I vI,V'( 8I,(V v —}(1/r). (30)

The commutation relations of the coulomb 6eld E,),
on the other hand, simply follow from those of the
matter 6eld, by (10a) with (Sa). These are just the
commutation relations of the gauge-independent quan-
tum electrodynamics recently proposed by the author
in collaboration with J. S. Lomont. '

' P. J. Belinfante, Physica 12, 1 (1946).
~ F. J. Belinfante and J. S. Lomont, Phys. Rev. 83, 225(A)

(1951) and Phys. Rev. 84, 541 (1951).
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The Casimir-du Prd thermodynamic theory of paramagnetic relaxation is generalized by taking account
of the thermal conductivity of the paramagnetic salt. The case of a spherical specimen in a constant tem-
perature bath is considered. One finds that infinitely many times are required to characterize the relaxation
when a magnetic 6eld is suddenly applied. The alternating current susceptibility is calculated and is shown
to contain terms depending on the size and thermal conductivity of the specimen. A limited comparison of
the theory with experimental data is made.

'
N 1938 Casimir and du Pre' developed a simple

- - thermodynamic interpretation of the frequency
dependence of the complex paramagnetic suscepti-
bility. They considered the system of all ionic spins to
be an entity separate from the crystalline lattice and
assumed that the spin system was always in thermo-
dynamic equilibrium with an oscillatory magnetic field.

Energy is transferred from the field to the spin system
which rises in temperature and transfers heat to the
lattice. If isothermal conditions are maintained, there
is a further transfer of heat from the lattice to the con-
stant temperature bath. The mathematical develop-
ment of these ideas leads to Debye-type curves for the
susceptibility.

The Casimir-du Pre theory is in fairly good agreement

*This work was done under contract with the AEC.
' H. B. G. Casimir and F. K. du Pr6, Physica 5, 507 (1938).

with experiment. ' However recent measurements by
Kramers, Bijl, and Gorter' and by Benzie and Cooke'
have revealed discrepancies. These authors have sug-
gested that a suitable distribution of spin-lattice
relaxation times could account for the experimental
results. An alternative suggestion —that the thermal
conductivity of the specimen alters the theoretical sus-

ceptibility curves —is considered here.
We shall consider a spherical specimen of a paramag-

netic salt immersed in a constant temperature bath
since no new results are obtained for an adiabatically
isolated specimen. The differential equation for the

'For an extensive survey of experimental results see C. J.
Gorter, Paramagnetic Relaxation (Klsevier Publishing Company,
Inc. , Amsterdam, 1947).' Kramers, Bijl, and Gorter, Physica 16, 65 (1950).

4 R. J.Benzie and A. H. Cooke, Proc. Phys. Soc. (London) A63,
20 (1950).



SIZE AND THERMAI. CONDUCTIVITY EFFECTS

H=H, («0),
H=H, +hoe'"' (t&0)

By combining (1), (2), (4), and (5) one obtains

pcrBTr/Bt= KATHY+ a8
AB8/Bt+ABTr. /Bt+n8= 0 (t(0)

Ciieho—e'"' (t&0),
where

(6)

(7)

A = (BU/8 Ts) H H(BM/B Ts) 0—, (g)

C= (BU/BH) r s H(BM/BH) rs-
= p(cs ciir)(BM/BH—) rs/(BM/BTs)H

It follows immediately from (4) that A is equal to
pc&, c& being the speci6c heat of the spin system at
constant H. The second expression for C in (9) can be
derived fairly easily. c~ is the speci6c heat of the spin
system at constant magnetization.

For t(0 (6) and (7) have the trivial solutions
Tg = Tp the temperature of the bath, and 8=0. Con-
sequently only the case t&0 wi11 be considered hence-
forth. (6) and (7) can be solved by a laplace transform
method. To determine TI, uniquely it is necessary to
impose the physical requirement that it remain finite
as r—+0. The following abbreviations are introduced to
facilitate writing the solution:

8= u+nA/peg= n(1+cs/cc),
«=K/pcc,
l«= (i(u/«) &(Ai(a+8) &(Ai(a+ n) 1.

conduction of heat in an isotropic solid is

pcBT/Bt =KPT+Q(x, y, s, t). (1)
In this equation p is the density, c the speci6c heat, T
the temperature, K the thermal conductivity, and
Q(x, y, s, t) the heat input per unit time per unit volume.
In the present application p is the density of the salt;
c is taken to be c~, the speci6c heat of the lattice; and
T is taken to be Tl, , the lattice temperature. Ke shall
assume Q to be proportional to the local temperature
difference of the lattice and spin systems,

Q(x, y, s, t) = n(T s Tr,) =—u8. (2)

By virtue of the 6rst law of thermodynamics the
amount of heat transferred per unit volume from the
spin system to the lattice in time dt can be written as

BQ=dU HdM=— a8dt, — (3)

which can easily be transformed into

f BU) (BM q
H{ {

'dTs
- EBTs& H &BTs& sr

/BU) trBMy
+ { { -H{ { dH=-n8dt. (4)

&BH& rs EBH & rs

The variation of the bracketed quantities with t will be
neglected. This approximation also occurs in the work
of Casimir and du Pre.

We shall set
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FIG. 1, Theoretical susceptibility curves for (cd —c~)jc&=0.571
alld various values of T/r.

x (B+Ap.')-'(p.'—i )-'(p.')-'
X (AP.++a)'(A'P. +'+2AP. +a+ uB) '

X (—1)"sin(ns. r/re)(&ter). (11)

8 can readily be calculated from (6) by substituting
(11).An inspection of the roots of (10) reveals that p +

always contains a real part which is less than zero. The
establishment of equilibrium when a magnetic field is
suddenly applied therefore proceeds with the infinitely
many relaxation times Re(1/p„+).

In calculating the susceptibility it is not necessary to
retain the exponentially decreasing terms since they
will be negligible a certain time after turning on the
oscillatory held. They will therefore be omitted from
future consideration.

It follows from

dM/dH= (BM/BH) rs+ (BM/BTs) HdTs/dII,

the expression given for C in (9), and the definition of
8 that

dM/dH= (BM/BH) rs {1+pC '(cs c~)—
X (d8/dH+d Tr/dH) I (12)

xp= (BM/BH) rs is the static or isothermal value of the
susceptibility while dM/dH is the quantity determined
experimentally. From (12), (11), and the solution of
(6) for 8, one finds

dM/dH = xo {1+p(cH cM) [ (B+Ai id) '— —
X (n/pcr+iid)+(a'/pcI)(B+Ai(g)
X(a+Aicv) '(ro sinhXr)

X(r sinh7ire) '5I. (13)

We shall also denote by p„+ the two roots of

p2+((B/A)+(s'~"/r, )5p+~'~ «/r, A =0
(n=1, 2, 3,, ) (10)

rp is the radius of the specimen. One then has

Tr, = To+ uChoe' '[pcr(B+Aiid)5

X {(ro sinh)«r) (r siuhl«ro) '—1I

+ (2uCiu&hoK/pccrro) P exp(p„+t)
n=l



550 JULIAN EISENSTE I N

0.4 0.6
X/X,

o.s to

O.R

0.4

X 2'X

FIG. 2. Theoretical susceptibility curves for (cz—c~)/c&=0.842
and various values of Tjr.

/xo=cH (cB cM)[(dr(1+—oo r )
+(T/r)(oor oo r )(1+aPr—) 2+ ~ ]

In these expressions,

r = (A/B) (1+cd/cI. ), T= pcHro'/15K

(16)

Equation (13) is an expression for what we might
call the local value of the susceptibility. The suscep-
tibility of the specimen as a whole can be obtained by
averaging (13) over its volume. The result is

(dM/dH) t.&.r = xo I 1+p(ca cm)—[ (B+—Aioo)

X (n/per, +ioo)+ (3a'a/ro'perks) (Ai++ B)
XP ro cothXro —1j]I. (14)

Equation (14) can be evaluated readily in the limiting
cases of 0 and ac frequency. For co=0 one finds

dM/dH= xo.

As the frequency goes to zero, the measured value of
the susceptibility approaches the isothermal value and
the temperature of the specimen remains constant. For
co= ~ one obtains

dM/dH= xocor/c~,

which is the well-known formula of Debye for the
adiabatic susceptibility.

If only the first few terms in the series expansion of
the hyperbolic cotangent are retained the following
expressions for the real and imaginary parts of the
susceptibility are obtained:

x'/xo = 1 cH '(c~ —cor)-(~'r'(—1+cu'r')-'

+O'/r)(2~'r')(1+~'r') '+ j (15)

Theoretical curves for the susceptibility calculated
by usmg (15) and (16) are given in Figs. 1 and 2 for two
values of (err —cor)/t, ~ and for three values of the ratio
T/r It .is clear from the curves that size and thermal
conductivity eGects alter their shape. Because of the
scarcity of experimental data in the low temperature
region it is difIicult to say whether or not the terms in-
volving T/r in the foregoing expansions are actually
important. The substance on which the most work has
been done is probably potassium chrome alum. BijP
has measured the specific heat resistance, which is the
reciprocal of the thermal conductivity, in the liquid
helium temperature region. He found that this quantity
depended on the way the salt was cooled. At 2'K,
E has a value somewhere between 0.03 and 0.12 watt
cm 'deg '. We shall take E tobe0. 08watt cm 'deg '

as an average value. c~—c~ is equal to CB'T ' and cH
is equal to (b+CH') T '. Here C is the constant in the
curie law and according to data cited by Burton,
Grayson Smith, and %'ilhelm' has a value of 0.0033 deg

g
' at 2'K. Kramers, Bijl, and Gorter' assign the value

0.75)&10o oersted' to b/C. The density of potassium
chrome alum is 1.83 g cm '. Casimir, Bijl, and du Pre'
in measurements on a powder specimen immersed in
liquid helium at 2.04'K found that the relaxation time
7 was about 3.1X10 ' sec in a Geld of 1000 oersted and
about 5.2)& 10 ' sec in a field of 2000 oersted. The values
of T/r computed from these data for a specimen of 1-cm
radius are 0.07 at 1000 oersted and 0.12 at 2000 oersted.
It therefore appears that at 2.04'K the size and thermal
conductivity do not a6ect the relaxation in potassium
chrome alum in an important way. At lower tempera-
tures the decrease of the thermal conductivity may
necessitate consideration of the additional terms in (15)
and (16). The increase of err at lower temperatures
should be nearly compensated by the increase of r.

I am indebted to Dr. F. Rodgers for suggesting to me
that the thermal conductivity might influence the
theoretical curves for the susceptibility. I should also
like to thank Dr. Rodgers for several discussions of the
problem.

5 D. Bijl, Physica 14, 684 (1948-49).' Burton, Grayson Smith, and Wilhelm, Phenomena at the Tem-
Perature of Liquid Helium (Reinhold Publishing Corporation, New
York, 1940).

Casimir, Bijl, and du Prh, Physica 8, 449 (1941).


