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Kqs. (184), (186), (187) or (175), (169), and (172)—
(173), of Pauli's Pandbuclt article, ' so that essentially
we have given a new proof of the intrinsic Lorentz
covariance of Pauli's theory (confirming that E«
should not be quantized as a photon field) . At the same
time, we have shown how Pauli 's theory can be extended
to electron fields quantized according to the exclusion
principle, and also how it can be formulated in inter-
action representation, making possible some unique
covariant kind of distinction between positon and
negaton states.

In some fol lowing papers we shall formulate a co-
variant auxiliary condition stating that al1 photons
present can be regarded as at some time having been

emitted by a source, "we shal 1 discuss the energy density
tensor in gauge independent quantum electrodynamics,
and we shall show how our proof of the integrability of
the generalized Schrodinger equation lends itself to
interesting speculations on how a covariant quantum
electrodynamics freed from self-interactions might be
formulated "

Grateful acknowledgment is made to the Purdue
Research Foundation for a research fel lowship awarded
one of us to make possible this investigation.

"Compare also F. J. Belinfante, Phys. Rev. 81, 307{A) (1951}.
F. J. Belinfante and J. S. Lomont, Phys. Rev. 83, 225 {A)

(1951). See also F.J. 8elinf ante, Prog. Theor. Phys. 6, 202 (1951),
and Phys. Rev. 82, 767 (A) (1951) .
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A new lagrangian for the maxwell field is defined, expressed completely in terms of gauge-independent
transverse field-strengths {5,5) and matter variables (x;, v;, and p; in the classical theory; p and p~ in
the wave-mechanical theory) . The coulomb field is defined in terms of matter variables, and a (solenoidal)
vector potential is defined in terms of the magnetic field strength I. The variational principle gives the
usual equations of motion and field equations. Quantization leads automatically to the formulas of gauge-
independent quantum electrodynamics.

1. CLASSICAL THEORY

HE usual lagrangian of electrodynamics has the
disadvantage of being expressed in terms of the

potentials, which are not uniquely determined and have
no direct physical meaning. However, it is possible to
derive the maxwel 1 equations for the field and the
relativistic equations of motion for charged particles in

the 6eld from a variationa 1 principle, in which only
physically meaningful quantities are to be varied. For
instance, in classical electrodynamics we may put, for
charged particles (point charges) moving in the
microscopic maxwell field with transverse (solenoidal)

part @,5,
2= g +f[m (&'/4xc —(5 +8 )/8 +m'j ——'pv], (1)

with'

divP =0, d ivy =0. (7a-b )

From (7a) and the definition (5b) we deduce the
identities

keeping the variations zero at the limits of integration .
In Eq. (1), p, j, V, 5, and J' are abbreviations for

p(x, t) =P, e,b(x —x;(t)), (4 a)

j(x, t) =P;(e;/c)v;b(x —x;(t)), (4b)

V(x, t) =J' p(x', t)/r,

'g(x, t) =J'[curl'8 (x', t) ]/4 s r, (5b)

f=fd'x, f'=fd'x', r= ix —x'i. (6)

From the de6nition of the electromagnetic radiation
field @,P as being a transverse field it follows that

p; (x" —v;) —m;c'( 1—v '2/c') i (2) curl'g =P, divS =0. (Sa-b)

On account of (Sb), the second term is transverse, while
(3) the first term is obviously longitudinal (irrotational), so

that we may write
bf Zdt =0,

where ' denotes time diBerentiation (5'= 8(f'/R, We shall further define another vector field

x';=dx;/dt); and then vary the functions x;(t), p;(t),
v;(t), and the transverse fields $(x, t) and 8(x, t)
independently in

For a discussion of this form for g see F. J. Belinfante, Phys.
Rev. ?4, 779 {1948). E~~ V V Eg 'I /c E E«+Ei (10a-b-c)
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The field E„defined by (10a) with (5a) is what one
calls the coulomb field. From (9)—(10) and (Sa) we find

the identity
divK= divE„= 4m p.

Thus, the ~deetit~es among the maxwell equations
(Eqs. (7a) and (11))are a consequence of the definitions
of the field. (Compare also the alternative definition of
E by Eq. (14).) The field equations of motion for the
electromagnetic radiation held will now follow by vari-
ation of the transverse fields S(x, t) and 8(x, t) in (3)
with (1). Properly speaking, one should keep these
fields transverse while they are varied. This can easily
be done by equating these fields temporarily to the
curl of other vector 6elds and then varying the latter.
The results thus obtained turn out to be identical with
the results Eqs. (12) and (15) obtained by direct arbi-
trary variation of @ and 5 themselves. This is due to
the fact that the members of the latter equations appear
to have no longitudinal parts anyhow, on account of
Eqs. (7)-(8).

%e thus obtain, by variation of (&,

Variation of p; yields

Independent variation of v; yields'

—p;+m;v;(1 —vP/c2) &+ (e;/c)iaaf(x;) =0. (19)

Substitution of p; from (19) in Eq. (17) gives the
equation of motion

(d/dt) {m, v;(1—v;%')-l I
= efE(x;)+ (e;/c) v; X 8(x;), (20)

where we used the equality

d5(x;(t), t)/dt= ct5(x;, t)/Bt+x~", V;S(x;, t), (21)

the equation (18), the identity (8a) and the definition
(9).

From Eqs. (4) we find

p'/c+divj=P;(e;/c) I
—x';+v;) V 5(x—x;(t)) =0, (22)

where we finally used Eq. (18). From (Sa) and (22)
follows

S=—'I'/c. (12)
V'/c= —J' div'j(x')/r= —div J'j(x')/r, (23)

By the definition (5b), this relates S to 8 . By (8) and
(10) this relation can also be written as

curlE= curlS= 88/c—Bt

so that, by (10a) and footnote 2,

E'„/c= —V V'/c= V div J'j(x')/r= —4'„. (24)

Adding (24) finally to (16), we find by (10c) with (14)

Moreover, (12) yields a new interpretation of (9)—(10)
cur18 =4xj+cjE/ccjt. (25)

E= —v V+(&, E,=S, (14)

so that E is the sum of the coulomb field K» and the
electric radiation field 5. Therefore we call E the total
electric field strength. (We also could have started with
(14) as a definition, and then have derived (9)—(10) by
means of (12).)

Variation of 8 in (3) with (1) alters also 5 in (1)
according to the definition (Sb), so that this variation
yields

thence

8 p j(x')+S'(x')/4nc——+curl d'x'
4mr

curl8 = 4ir j~+S'/c,

=0. (15)

(16)

~ This followers from j=(curl curl —& div) J'j(x'}/4m=j~+j»
vj ith di~g=curlj)) =0.

where j~(x) = curl curl Jj(x') 4/riris the solenoidal part'
of j.

Ke now turn to the equations of motion for the
matter variables. Variation of x; yields

—p', +(e;/c)V, S(x;) v, —e;V,V(x;) =0, (17)

where we used the dependence of j and p and thence of
V by the definitions (4) and (5a) on the function x, (t)
being varied.

By (7a), (11), (13), (25), and (20) we have derived
Maxwell's equations and the relativistic equation of
motion of point charges in the electromagnetic field,
both featuring E according to (14) composed of the
coulomb 6eld and the electric radiation field, only the
latter being considered as an independent variable in
the variational principle (3). We obtained these results
without introducing potentials as independent variables,
and the only potentials introduced by Eqs. (5) as
mathematical abbreviations have by their definition a
uniquely determined gauge depending only on the
Lorentz frame, in which we work.

2 =JPt(ihB/R 'ce p,p
—mc'P)P, — (26)

where p,„= i7iV, w—hile the definitions (4) are now
replaced by

p e4&4 —j—e 4tu4.

Here, ::is Kick's notation for omission of the
vacuum current and density. '

' This equation de6nes the derived variables v; in terms of the
canonical variables p;, x;, and P(x). Compare page 781 of
reference 1.

' 0, S. Wick, Phys. Rev. 80, 268 (1950).

2. QUANTUM THEORY

In relativistic quantum electrodynamics, we replace
the matter terms (2) in the lagrangian (1) by the
analogous terms of the Dirac theory,
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Variation of ft and of |P now yields

ihip/Bt={mc'P+ca'y, ~
—e5 a}P+',e-(V/+/V) (28)

and hermitian conjugate equation. This is Dirac's
equation, including self-interaction as V is given by
(Sa) and |t is quantized according to the exclusion prin-
ciple. Equations (17) and (18) are now replaced by the
results of application of the generalized theorem of
Ehrenfest, which gives the time-derivatives of J'ftp, ,P
and of J'P xtP, as calculated from (28) and conjugate
equation.

From (27) and (28) and the commutativity of p and
V one also easily 6nds again the continuity equation
p'/c+divj=0 (Eq. (22)), which we used in deriving
Eq. (25) from Eq. (16). There are no other alterations
in the derivation of the maxwell equations from (3) with
(1) and (26) in quantum theory.

We remark that 2 is linear in time-derivatives. The
pairs of canonical conjugates are x; with y; in the clas-
sical theory (v, being derived variables, see footnote 3),
or f with ihtPt in wave mechanics; and S(x) with

I(x)/4mc in both cases. The hamiltonian is obtained
from —2 by omission of the terms —pq' from it, and

gives for the total energy the usual expression,

X=J'I ft(mc'P N—ca V )P+ ,'p-V
—j @+(@'+I')/8~} (29)

Expanding the transverse 6elds @ and 5/4~c in
fourier components, and quantizing these in the usual
way as canonically conjugate variables, one 6nds, after
recombination of the fourier components to transverse
fields, that the commutator of 5 and 5/4mc is ih X the
so-called transverse delta fgnctio-n, ' or

[Cq(x, t); g~(x', t)]=4mihchq~"(x —x')
=ihc I vI,V'( 8I,(V v —}(1/r). (30)

The commutation relations of the coulomb 6eld E,),
on the other hand, simply follow from those of the
matter 6eld, by (10a) with (Sa). These are just the
commutation relations of the gauge-independent quan-
tum electrodynamics recently proposed by the author
in collaboration with J. S. Lomont. '

' P. J. Belinfante, Physica 12, 1 (1946).
~ F. J. Belinfante and J. S. Lomont, Phys. Rev. 83, 225(A)

(1951) and Phys. Rev. 84, 541 (1951).
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The Casimir-du Prd thermodynamic theory of paramagnetic relaxation is generalized by taking account
of the thermal conductivity of the paramagnetic salt. The case of a spherical specimen in a constant tem-
perature bath is considered. One finds that infinitely many times are required to characterize the relaxation
when a magnetic 6eld is suddenly applied. The alternating current susceptibility is calculated and is shown
to contain terms depending on the size and thermal conductivity of the specimen. A limited comparison of
the theory with experimental data is made.

'
N 1938 Casimir and du Pre' developed a simple

- - thermodynamic interpretation of the frequency
dependence of the complex paramagnetic suscepti-
bility. They considered the system of all ionic spins to
be an entity separate from the crystalline lattice and
assumed that the spin system was always in thermo-
dynamic equilibrium with an oscillatory magnetic field.

Energy is transferred from the field to the spin system
which rises in temperature and transfers heat to the
lattice. If isothermal conditions are maintained, there
is a further transfer of heat from the lattice to the con-
stant temperature bath. The mathematical develop-
ment of these ideas leads to Debye-type curves for the
susceptibility.

The Casimir-du Pre theory is in fairly good agreement

*This work was done under contract with the AEC.
' H. B. G. Casimir and F. K. du Pr6, Physica 5, 507 (1938).

with experiment. ' However recent measurements by
Kramers, Bijl, and Gorter' and by Benzie and Cooke'
have revealed discrepancies. These authors have sug-
gested that a suitable distribution of spin-lattice
relaxation times could account for the experimental
results. An alternative suggestion —that the thermal
conductivity of the specimen alters the theoretical sus-

ceptibility curves —is considered here.
We shall consider a spherical specimen of a paramag-

netic salt immersed in a constant temperature bath
since no new results are obtained for an adiabatically
isolated specimen. The differential equation for the

'For an extensive survey of experimental results see C. J.
Gorter, Paramagnetic Relaxation (Klsevier Publishing Company,
Inc. , Amsterdam, 1947).' Kramers, Bijl, and Gorter, Physica 16, 65 (1950).

4 R. J.Benzie and A. H. Cooke, Proc. Phys. Soc. (London) A63,
20 (1950).


