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%re discuss a covariant, but not manifestly covariant, form of quantum electrodynamics. No gauge-
dependent potentials are introduced as independent (canonical) variables. Only the transverse electro-
magnetic field is quantized as a photon 6eld. %'e formulate the theory first in interaction representation,
although only Rat space-like surfaces cr are considered. The interaction operator given by Eq. (10}is then
used for describing Lorentz transformations (rotations of 0) as well as time dependence (parallel progress
of 0.). The integrability of the generalized Schrodinger equation is then proved. As we transform to Heisen-
berg representation the electron wave function f loses its spinor character and the transverse photon
field 6, p its tensor character, but by adding the coulomb 6eld Rl~ to @we restore the tensor character of
the electromagnetic field. The gauge-independent quantum electrodynamics of Pauli s Pandbuch article
is a special form of the result thus obt;ained for the particular case that the number of electrons is known
and finite. Our theory has a more general form allowing use of positon (hole) theory.

INTRODUCTION
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form is gauge-invariant, that is, physical results
calculated by it are invariant under a change of the
gauge of the longitudinal and scalar potentials used as
some of the canonical variables in that theory. It is,
however, slightly unsatisfactory that these physically
meaningless gauge-dependent variables enter the theory
at all. The interesting fact that gauge-invariance is in
some way linked up with the fact of conservation of
charge is not very essential' and certainly does not
outweigh the bothersome facts that (1) quantization of
these gauge-dependent variables necessitates discussion
of such unphysical features as longitudinal and even
"scalar" photons, the latter of negative energy;2 (2)
consequently, the redundant degrees of freedom of the
electromagnetic field thus introduced have to be undone
again by "auxiliary conditions, "which render the state
vector unnormalizable and are a source of much nui-
sance and ambiguity if not mathematical inconsistency
in various problems. '

In his article in the Huedbgch der Physi k, Pauli' has
developed long ago a di6erent type of quantum electro-
dynamics, in which the gauge-dependent variables did
not occur, so that auxiliary conditions could be avoided.
This theory was relativistically covariant in its essence
although not in its external form. It was given in
Heisenberg representation, which made the proof of its
invariance somewhat cumbersome. The fact that Pauli
did not use the method of second quantization, and thus
made his theory formally not applicable to positon

*Based, in part, on chapter II-B of a thesis presented by one
of us (J.S.L.} in partial fuMllment of the requirements for a de-
gree of Doctor of Philosophy at Purdue University, June, 1951.

f Now at North American Aviation, Inc. , A.E.B,. Div. , 12214
Lakewood Blvd. , Downey, California.' See the remark below Eq. (23) of F. J. Belinfante, Physica 7,
449 (1940).

~ F. J. Belinfante, Phys. Rev. 76, 226 (1949).
~%. Pauli, Kapitel 2, 8.8, p. 269 of Geiger and Scheel's

Handbuch der Physi (Springer, Berlin, 1933}, second edition,
Vol. 24/1.
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theory, is of little importance, as his theory is easily
generalized in this regard. 4 The theory developed below
might have been derived from Pauli's theory in this
generalized form by transforming it to interaction
representation by methods similar to the ones used for
nonscalar interactions. "For the validity of such deri-
vation, use would have to be made of the Lorentz-
invariance of the generalized Pauli theory. It seemed,
however, more appropriate, in particular with a view
to certain future applications, to prove the invariance
of our theory directly in interaction representation, and
then reversely derive the invariance of Pauli's theory
from that of our theory.

1. THE FIELD VAMABLES IN INTERACTION
REPRESENTATION

The variables describing the electron field in inter-
action representation are the undors (Dirac spinors) 'f
and 'Pl satisfying the free electron Dirac equation and
the usual covariant four-dimensional anticommutation
relations.

The photon field is described by a tensor field
'Q„„('Q, 'P) satisfying in interaction representation the
vacuum maxwell equations (charges omitted), so that
by div'5=div'5=0 the field is purely transverse.
The four-dimensional commutation relations for 'g„„
are the usual ones

['Qg„(x); 'Q„(x')]=4mikc{g„,BgB.+gx.B„B,

g"~~~a g~—A~. I D(*—x'), (1)—
with D(x) given by Eqs. (12)—(15) of reference 5. For

F. J. Belinfante, Phys. Rev. 75, 1633(A) (1949).' F. J. Belinfante, Phys. Rev. 76, 66 (1949).'F. J. Belinfante and J. S. Lomont, Phys. Rev. 77, 757(A)
(1950).

7 Notation: x is the spatial part (with components xq) of x (with
components x"); italic indices run from 1 to 3 and Greek indices
run fromO to 3; x = —xo=ct; r'=x' —x= —r, r= ~r~; 8 =8/axe';
V'I, =B/BxI„V'I,'=8/Bxf, ', A=VV. Often we write F for F(x)
and F' for F(x'), f=jd'x and f =f'd'x'. lA;B]=AB—BA.
bi =Kronecker symbol. Superscript ' denotes interaction repre-
sentation, H denotes Heisenberg representation. a= {iQ) '.
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I=)' this yields the usual commutation relations for
Sand8:

Here, for electrons,

p=e.4t4 ~ j=s:—/tnt:,

[g&(x, t); g„(x', t)]=iI&c{8& E' 7&'V—'„'}(1/r)
= —4zihc{b& b&'&(r') —8&„' ~(r') }

= —4zikcb& "(r'). (5)

Here, 5&
' I(x) and 5& "(x) are the longitudinal and

transverse delta-functions defined earlier by one of the
authors. s In fact, the commutation relation (5) is
identical with the commutation relation between the
transverse parts of the 6elds K and A in conventional
quantum electrodynamics. In the present theory, we

0

Fio. 1. Possible displacements e($, y, g} of the Bat surface 0.
The displacernent 0~0 represents a rotation; 0-+1 represents a
parallel displacement.

are not going to define any longitudinal counterpart to
I.In fact, our solenoidal 5 is a most natural description
of the potential field in interaction. representation. '

%e shall also introduce a longitudinal 6eld

E„(x,&,)=—v V(x, t), (6)

[(g~(x); (R&(x')]= [8&&(x);8„„(x')]=0,
[8g&(x); (R„(x')]=4zih&;{bp 7&—8& Vp}h&"(r'). (2)

%e shall introduce the following functional of P:
'&lf(x, i) —=J' d'x' curl'8(x', i)/4zr, (3)

so that
div5= 0, curlS= 8.

where:: is Wick's notation for subtraction of the
vacuum charge density. " In (6), we used a letter E
instead of 6, because V and K«are derived from the
6eld of charged matter, and not from the electromag-
netic field.

W= (E,P/Sz.)+(5 E„/4z) —&ff j. (10)

Note that (10) by Eqs. (3), (6)—(7) is expressed com-
pletely in terms of gauge-independent variables g, 8,
p, and j without introduction of redundant variables.
Although, by div5=0, the middle term in the right
hand member of (10) will drop out in Eq. (9) for parallel
displacements bc~=a= constant, we yet need this term
for rotations of 0, which are then accompanied by a
Lorentz transformation of the frame of reference used
in defining W by (10).

2. THE GENERALIZED SCHRODINGER EQUATION

Let 4', [o) be the state vector on a space-like surface
0", let d&ra d$——dpd f be the projection of a surface element
on the plane r= constant of some Lorentz frame ggf r.
Let 0+b0 denote a new surface obtained from 0 by
infinitesimal displacement 8(cr) =e($, q, f) of its points.
Then, with a= (i7ic) ', the generalized Schrodinger
equation is

e,[~+&~)—e.[~]
=aJ'do e($, q, f') 'W($, y, f;0) %r [a]. (9)

Here, 'W is a function of the point $, q, f as well as
a functional of the 6eld variables in all points of the
surface 0. %e shall dehne the value of this functional
of 0 for flat surfaces 0 only. Therefore we restrict the
displacement e($, g, f) in (9) to either a rotation like
0—+0 in Fig. 1, or a parallel displacement like 0—+1.

It is then convenient to express 'W(g, o) in terms of
the 6eld components calculated in a Lorentz frame
(xyst), in which o is a plane(= constant. In such special
frame of reference we put"

V(x, t)—=J'd'x'p(x', i)/r. (&)
3. PROOF OF LORENTZ INVARIANCE OF THE THEORY

8 F. J. Belinfante, Physica 12, 1 (1946). Note that these longi-
tudinal and transverse delta-functions are different from zero for
large as well as for small values of their space-like arguments.

9 If in interaction representation the potentials A" are resolved
into Fourier components A "(k}exp(ik„x"},the component of A "(k}
outside the plane tangent along P' to the light cone has no physical
meaning due to the Lorentz condition k„A "(k)=0. Furthermore,
in this plane, components of A"(k) parallel to k" are physically
meaningless as they do not contribute to the field strengths. All
four-vectors connecting any pair of points on two lines parallel to
k" describe therefore from a physical point of view the same Geld.
In particular we may choose A "(k}in the intersection of the plane
tangent along k" to the light cone, with the plane /=constant.
Doing so, we Gnd a potential without time component and with
solenoidal spatial component g as used in our theory. The fact
that in a diRerent Lorentz frame g then represents a diGerent
four-vector does not matter, as we have seen that such different
"arrows in space-time" connecting points of the same pair of
parallel lines // k" are physically equivalent (diferent by a gauge
transformation only).

The Lorentz invariance of the 6eld equations and
commutation relations for the tensor {'5,'8} and the
undors 'P and 'ft is obvious. What we have to show is
merely the covariance of the Schrodinger equation,
which means that (9) with (10) should (in Fig. 1) give
the same change 4',[1]—4', [0]of the state vector with
time when calculated directly (0-+1) as when calculated
in a different Lorentz frame (0—+0—+1-+1). In other
words, we must prove the integrability of (9).

%e follow almost exactly the method used in Chapter
2 of reference (5) for the Proca field. As explained there,
it is sufhcient to show the equality, up to terms bilinear

'o G. S. Wick, Phys. Rev. 80, 268 (1950).
"Compare Kq. (49} of F. J. Belinfante, Physica 12, 17 {1946).
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in the in6nitesimal displacements &=constant for 0—+1

and 0—+1, and "s~(x') =b ~(x' —xq) for 0-+0 and 1-+1,of

+,[1]=[1+aJ'b (x' —xq) I'W'+sas 'W'}]4,[1]

e.[1]=[I+~J'I'w+b (x—xq)as'w+b'w}]e. [0],
where

@,[1]=[1+asJ' 'W]+.[0],
'Iro[0]= [1+ttJ' b (x' —xq) 'W']4', [0].

For this purpose we need only show that'

aJ'J' b (x' —xq) ['W', 'W] = J'b'W. (11)

Here, b 'W is the variation 'W(P) 'W(P) —of (10)
under the in6nitesimal Lorentz transformation 0-+0 in
the point P(x).
As, for t'=t, p(x') commutes with p(x) and with j(x),

also E«(x') and E„(x) defined by (6)—(7) will commute
with each other and with j(x) and j(x') in the com-
mutator [W', W] with W from (10). Naturally they
also commute with the photon 6eld 6, I, 5. The only
contribution to the left-hand member of (11) therefore
arises from Eq. (5). This yields

ff b (x' —xq)Pt (ji' Eii —'Eii&''j„)b&„"(r)

Integration over x gives by Eq. (22) of reference (8)

J' b (»' —xq) }'j"('E«')x—'E«'"jx'}.
The first term apparently vanishes. In the second term
substitute (6) and integrate by parts. Since divjx=0,
this yields

(see Fig. 1), so that, for F(x, t)= J'd'x'f(x', t)/r, we find

,f(P') f—(P')
bF(x) = ~ d'x'

r

,bf(~')+f(P') f(P—')
d x' (16)

where r= }x'—x~ = }x(P')—x(P) ~, while t(P')=t(P)
as t'=t No. w, by (13) with t'=t, the vector P'P' has
components

x(P') —x(P') =x(P') —x(P') = —bx' =0,
ct(P') —ct(P') =ct(P') —ct(P') = —bct' = b r'

Thence, (16) gives

b(f'f'/r) =f'I bf'+(b r')(af'/cat) }/r. (18)

This may be used for calculating 5 '5 and 5 'V. By
(3), (18), (15), and the maxwell equation a '8/cat=
—V X'g, we find

b ''I(x) =fr (4') ' [(bV r) X '8'+ V r X b '8'
+ (b r') v r x a '8'/cat]

= —f'(4irr) ' [bX (v r X 'g')
+v'X(bx'5')+(b r')v'X (v'X'5')]

=f'(4rrr) ' [2(b V ) 'O' —V r('5"b) —b(V r "5')
+(b' ') I&' '@'—v'(v'"@') }] (19)

Integrating by parts wherever V acts on '5', we
obtain, by

r'Q'(1/4rrr) = —r'b&s) (r') =0, (20)

b '5(x) = —J' (b r') ('5"V ') V (1/4rrr). (21)—J' b 'j~'I' (12)
Similarly, by (7), (18) and a 'p/cat= —div'j:

b'V(x)=f'} —(b j') —(b r')(v& 'j')}/r
=J' (b r')('j"V )(1/r), (22)

and by (6), (15), and (22)

b 'E„(x)= —v (b
' v) —J'(b/r) a 'p'/cai

=J'L-(b ")('j"v')v (1/r)
+b( j 'V')(1/r)+b(V' j )/r]

=J'(b'r') ('j"v ')v '(1/r) (23)
bx'=—x(P') —x(P') = —b(ct' —ct); bx =0;
bct'= ct(P') ct(P') = ——b (x' ——x); bet=0 (13) From (21) and (23) we find

for the left-hand member of (11).
For calculating the right-hand member of (11) we

first note that 'W(P) is invariant under (finite) trans-
lation of the origin, so that it is allowed to consider the
co-ordinates x, t of the point P invariant. (P is the point
where we calculs. te b 'W in the integrand of (11).)
Then, for the point P(x) and for a different point P'(x')
the infinitesimal Lorentz transformation from the
x-frame to the x-frame gives

Under this transformation, we have (with bf=f f):—— J I ('6 b 'E„/4rr) —'j b 't21 }=0. (24)

s '5= —bx'5;
6 'j= —b 'p,

b 'P = —-'b 'rr 'P

~ 'S=bX'8, Further, from (6)—(7), (14), and (3),
b 'p= —b 'j, (14) f I (oE b og/4 ) oi2I b

o'
}

b 'Pt= ——', 'Pttr b, = —J'(bx'8) v f ' /4prx
bv r= ba/cat'(= ba/cai, when t'= t) (15).+J' 'pb f'r(V 'X'8')/4xr

Let a new point P' be defined by z(P') =x(P') —=x', =fr 'p'b'f v X('8/4rrr)=0. (25)

n Notation as in reference (b), except h here for ]i there. Also we
use here the xyzt-frame tangent to (and coincident with) the
surface 0 for the ggg~-system of reference 5.

Adding (24) and (25) we find

fbI('@ 'Ell/«) —'@"j}=0, (26)
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so, by (10), (6), and (23),

f t&
''W= —fJ'(b r')('j"v')v'(1/4&rr) v 'V. (27)

Ily Eqs. (13), (22), and (1) of reference 8 this gives

J' ~ 'W= J'J'(b")2-, -'i'-(&-'I') b-.'-'(")
=J'(b ')'j' ~(v 'I")„—J'(b )'j, v'v

=J'(b x)'ji v 'I'= J'—'I"ji b. (28)

Comparing (28) with (12) we see that we have proved
(11) and by this the integrability of the generalized
Schrodinger equation (9) with (10) and the Lorentz-
invariance of our theory.

4. HEISENBERG FORM OF FIELD EQUATIONS
IN INTERACTION REPRESENTATION

Obviously the field equations of motion

(& '5/c(&t = curl 'I, (& 'I/c(tt = —curl '5,
ikB 'P/(tt= (mc'P ikc—e V )'P, (29)

and all derived equations such as

solution for U is then the in6nite series"

U(t)=1+(ik) ') dtg "q(&

+(ik)-' dt, dt. 'W, 'W, + . (34)J„J„
where '(tq„=% (t„)=J'd'xW(x, t„) The. inverse of U is
seen to be

t

U(t) '=1—(ik) ')l dt('%)

~t ptI

+(tk) ') dt()' dt2'%2'W) — = U(t)&) (35)

so that U is unitary. Apparently

ikdU(t) —'/Ct= —U(t)-' 'tV(t) = "&—(t) U(t) ', (-36)

where the superscript pre6x is de6ned by

(& '5/c(tt= —'5, (t 'V/c(tt= div J' 'j'/r, —
(29a) We also Put

(t 'K„/c(tt = —4&r 'j„,

(37)

(38)

U( —~)=1 (33)

as boundary condition for U on 0. at t= —~. If we
write t instead of 0 for surfaces t=constant, Dyson's

'8 Assuming this in every Lorentz frame we tacitly assume that
in some way W(—~) 0 in Kq. (9) when used for a change of
slope of tr at t= —~.

can be summarized by

ik(& 'q(t)/(&t= 'q(t) 'Xo(t) —'BCo(t) 'q(t), (30)

where

iRO:J I 6 +8 I/8X+ Jp (&oK p iko(K ' V )p K~ga

(31)

The subtraction of the c-number X „is most easily
performed by splitting up the 6eld variables into
positive and negative frequency parts and then rear-
ranging factors, which could be indicated by %ick's"
symbol::. Omitting vanishing integrals such as
J'Io@(+),~@(+)+~8(+),~8(+)

I or J' Oy(+)(. . .)oy(—)

may also write

~~0—J' [og(—) so@(+)+os(—) o~P (+)
I /4&r

+J' 'p(+&(»tc'+key v ) 'p(+&

—J' 'p( &(»tc' key—T v )—'p( —
&. (32)

Here we put p=ptp, and y= —ipe.

S. TRANSFORMATION TO HEISENBERG
REPRESENTATION

In Eq. (9) replace +,Loj by an operator Ufo7, and
solve this equation with "

Then, by (36), and by (9) or ikd%', (t)/dt='(t&7(t)4, (t),
one easily finds dC'/Ct=0, so that C is a time-inde-

pendent state vector. From (37) and (38) and the
unitariness (35) of U, we find for matrix elements of

Q(t) between states (t and b:

(+"(t)"Q(t)+. (t))= (4'J "Q(t)@) (39)

%e thus have performed a transformation from inter-
action representation to Heisenberg representation.

6. LORENTZ COVARIANCE OF FIELD VARIABLES
IN HEISENBERG REPRESENTATION

Since 'W was no scalar, we should expect the variables
in Heisenberg representation to satisfy Lorentz trans-
formations diferent from those for the variables in
interaction representation, ' "but we might try to find
new variables, which form tensors in Heisenberg repre-
sentation. From (37), and from Eq. (9) with U for 4'„
with x' for g and with b r' for o, we find

t)nq(x) = U '(b'q) U+ U ' 'q(bU) —U '(t'&U) U ' 'qU
= U '(i'&'q)U+af'(b r')U 'f'q; 'W']U; (40)

so, if t&'q='f(q), then

I&nq="f(q)+of (b r')"[q; WJ. (41)

It is easily seen that bp, 6V, BE„and bj are not
affected but for labels H replacing ' in Eqs. (14), (22),
(23). (In the case of t&nj, the delta-functions from

[j;W'] are cancelled by the factor r' in (41).)
However, we find, by (41), (14), (10), (5), (20), (23),

'4 F. J. Dyson, Pcs. Rev. 75, 486 (1949).
'6 See chapter 3 of reference 5.
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and (2):

a ~@( ) = (bx +)+J ("'r ) { 3 t-"k ( j 'v )v }(1/")
= (bx HI) —a E„(x); (42)

a "8(x)= —(bxH6)+ fr(b r')("E„'xv)a(r')
= —bx(H5+ "E ) (43)

These equations suggest the introduction of a new
variable

K —@+F (44)

so that from (42)—(43) we find the infinitesimal tensor
transformation

)HE= bx H8, aHS= —bx "E. (45)

Since (% is transverse (in either representation), the
notation (44) is consistent as far as E„can now be
regarded as the longitudinal part of K, while apparently

F (46)

Thus the electromagnetic tensor "E, "I in Heisenberg
representation has a longitudinal electric part which by
(6)—(7) is just the coulomb field derived from the field
of charged matter, while only the transverse part of
the electromagnetic 6eld is quantized as a photon 6eld.

In a similar way it is easily shown by (41), (21), (10),
(5), (20), and (44), that

aHS(x) = —J' (b r')("E"V )V (1/4i»r), (47)

which differs from (21) by the occurrence of E instead
of g.

Finally we find from (41), (14), (10), from

[P; p'] = eif 'a(r'), [P; 3']=en/'a(r'),
(48)

[4 V']=el/r, [4" E ]=—e4v'(1/r),

and from (44), that

a"P= —-'b n "P—(e/khc) J'(b.r') {"P"E'

+HE'Hp} V'(1/Si»r)
= —b nHP+(e/4s. ihc) J'b "E' Hil/r

+(e/ihc) J(b'r')H'p' HP/r. (49)

In the last term we used divE= divE„4i»p (by (44),
(6), (7)), and we used (20). In the one but last term,
the special ordening of factors was superfiuous according
to (48).

We conclude that Hf is no undor under Lorentz
transformations, although Hp and Hj defined by (8)
form a four-vector. '6

In order to eliminate E„ from (49) we use

lf'(b ~")"t'/»= J'(b "—/8 r)&' "V'
= (integrating by parts and using (20))

f v'(b'v )(1/4m ») = ——J' HE„"b/4k»rk

'6 A transformation like (49) but with divHK/4' replacing p
is obtained in manifestly covariant (conventional) quantum elec-
trodynamics for the quantity p' =exp(ieL/hc) p, where —QL =AI I.
This p' there replaced 3tt as E is replaced by E—(1/div) (4m p) when
the coulomb interaction is separated and the longitudinal photon
Geld is eliminated by introduction of a new set of canonical
variables. See reference 8.

we find from (51) and (30)

iha"q(t)/at= "q(t)"x(t)—"x(t)"q(t).
In fact,

"x(t)= 'x, (t)

(53)

(54)

follows directly from (52), (37), (34)—(35), and (30).
From (10) and (44) we derive

W= (E'—5')/Sn. —5 j,
so that, by (31) and (52),

(55)

X=f {E'+I'}/Sw —f5 j
+ f'Pt(»»tc't3 i hen V )P——X .. (56)

From (53), (31), (52), (10), (48), (5), (44), (6)—(7),
(2) we find the field equations of motion in Heisenberg
representation, while the identities are the same as
before:

ihaHP/at= (r»tc'P ihcn V —en H5—)HP

+1e(H VHP+ kkpH V) (57)

a"p/cat = —div "j,
a"5/cat= —HS, sothat "E=—V "V—ank21/cat, (59)

divH5= 0, curlH+= "«g,

aHV/cat= div J' d'x' Hj(x')/—r,

a"E„/cat= —4n.Hj „,
a"6/cat =curPI 47»Hj~, —

a"E/cat=curl I 47» j, —

(60)

(61)

(62)

(64)

div"5=0, div K, =div"K=4m "p
divHS = 0, (65)

a"I/cat = —curP(f = —curPE. (66)

Our Eqs. (44), (6)—(7), (56), (57), and (64)—(66) are
equivalent to or are 6eld-theoretical generalizations of

so that

any= {——,'b. n+(e/ihc)b J' "6'/4»cr

+(e/2khc) J'(b r')"t'/r}HP (50)

%e shall need all these equations, when we want to
investigate the covariance of the energy density tensor.

'T. HEISENBERG FIELD EQUATIONS OF MOTION

The equations of motion for 'q(t) or for any function
of the 'q(t) can be written in the form (30). In particular
the Hq(t) are such functions, so that

iha"q(t)/at = "q(t)'X, (t) —'x, (t) "q(t). (30a)

However, we can also write, by (37), (36), and (9),

iha"q(t)/at =U(t). '{iha'—q(t)/at

y q(t)'m(t) —'m(t)'q(t) }U(t). (51)
Putting
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Kqs. (184), (186), (187) or (175), (169), and (172)—
(173), of Pauli's Pandbuclt article, ' so that essentially
we have given a new proof of the intrinsic Lorentz
covariance of Pauli's theory (confirming that E«
should not be quantized as a photon field) . At the same
time, we have shown how Pauli 's theory can be extended
to electron fields quantized according to the exclusion
principle, and also how it can be formulated in inter-
action representation, making possible some unique
covariant kind of distinction between positon and
negaton states.

In some fol lowing papers we shall formulate a co-
variant auxiliary condition stating that al1 photons
present can be regarded as at some time having been

emitted by a source, "we shal 1 discuss the energy density
tensor in gauge independent quantum electrodynamics,
and we shall show how our proof of the integrability of
the generalized Schrodinger equation lends itself to
interesting speculations on how a covariant quantum
electrodynamics freed from self-interactions might be
formulated "

Grateful acknowledgment is made to the Purdue
Research Foundation for a research fel lowship awarded
one of us to make possible this investigation.

"Compare also F. J. Belinfante, Phys. Rev. 81, 307{A) (1951}.
F. J. Belinfante and J. S. Lomont, Phys. Rev. 83, 225 {A)

(1951). See also F.J. 8elinf ante, Prog. Theor. Phys. 6, 202 (1951),
and Phys. Rev. 82, 767 (A) (1951) .
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A Variational Principle for Gauge-Indeyendent Electrodynamics

FREDERIK J. BELINPANTE

Department of Physics, Purdue University, Lafayette, Indians
{Received July 2, 1951)

A new lagrangian for the maxwell field is defined, expressed completely in terms of gauge-independent
transverse field-strengths {5,5) and matter variables (x;, v;, and p; in the classical theory; p and p~ in
the wave-mechanical theory) . The coulomb field is defined in terms of matter variables, and a (solenoidal)
vector potential is defined in terms of the magnetic field strength I. The variational principle gives the
usual equations of motion and field equations. Quantization leads automatically to the formulas of gauge-
independent quantum electrodynamics.

1. CLASSICAL THEORY

HE usual lagrangian of electrodynamics has the
disadvantage of being expressed in terms of the

potentials, which are not uniquely determined and have
no direct physical meaning. However, it is possible to
derive the maxwel 1 equations for the field and the
relativistic equations of motion for charged particles in

the 6eld from a variationa 1 principle, in which only
physically meaningful quantities are to be varied. For
instance, in classical electrodynamics we may put, for
charged particles (point charges) moving in the
microscopic maxwell field with transverse (solenoidal)

part @,5,
2= g +f[m (&'/4xc —(5 +8 )/8 +m'j ——'pv], (1)

with'

divP =0, d ivy =0. (7a-b )

From (7a) and the definition (5b) we deduce the
identities

keeping the variations zero at the limits of integration .
In Eq. (1), p, j, V, 5, and J' are abbreviations for

p(x, t) =P, e,b(x —x;(t)), (4 a)

j(x, t) =P;(e;/c)v;b(x —x;(t)), (4b)

V(x, t) =J' p(x', t)/r,

'g(x, t) =J'[curl'8 (x', t) ]/4 s r, (5b)

f=fd'x, f'=fd'x', r= ix —x'i. (6)

From the de6nition of the electromagnetic radiation
field @,P as being a transverse field it follows that

p; (x" —v;) —m;c'( 1—v '2/c') i (2) curl'g =P, divS =0. (Sa-b)

On account of (Sb), the second term is transverse, while
(3) the first term is obviously longitudinal (irrotational), so

that we may write
bf Zdt =0,

where ' denotes time diBerentiation (5'= 8(f'/R, We shall further define another vector field

x';=dx;/dt); and then vary the functions x;(t), p;(t),
v;(t), and the transverse fields $(x, t) and 8(x, t)
independently in

For a discussion of this form for g see F. J. Belinfante, Phys.
Rev. ?4, 779 {1948). E~~ V V Eg 'I /c E E«+Ei (10a-b-c)


