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For
~
argz~ &z/2 we use the relation:

erfc(z)=1 —2z l
l exp( —z')dz

z

=1+2z. ' I exp( —z')dz=2 —erfc( —z), (50)

so if z is outside the range of (49), —z whose argument
is m —arg2 will be inside the range, and we have for
~z~~~ that:

erfc(z)~2+z &z ' exp( —z'), if z/2&argz(3z/2. (51)

Thus the asymptotic behavior of erfc(z) is defined in

the whole complex plane.
Now the function x(r, k, t) can be written as:

where z=(2t) &(r—kt) exp( —in/4) .When r/0 and
$~0, we see that ~z~~(2i) &r-+~ and argz~ —z/4.
Applying then (49) we see that for t—&0,

x(r, k, t)—+expi(r'/2t) exp(iz/4)z &r '(2t) 1~0 (53)

for any complex k.
When t~~ we have that ~z~

—
+~kI

(t/2)&~~ and
argz —+~~z+argk. From (49, 51), and using the fact that
the exponential and erfc(z) are single-valued functions,
we have that for t~~:
x(r, k, t)~ (z—k't/2) & exp(iz/4) expi(r'/2i) —+0

if 3z/4&argk(7z. /4,

x(r, k, i)~2 expi(kr ——',k't) (54)
—(~2z.k't) & exp(iz/4) expi(r'/2t)

—&2 expi(kr —-', k't) if —z./4&argk(3z/4.

y(r, k, t) = expi(r'/2i) expz' erfc(z), (52) This result is valid also for r=0.
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In the present paper we propose to develop a quantum-mechanical scheme in Fock space that would
describe interactions that take place through the formation of a compound particle. The discussion will be
restricted to a dynamical system representing a single-level scattering process. The state of this dynamical
system can be found in two stages: initial particles and compound nucleus. The dynamical behavior of this
state will be given in terms of a hamiltonian (that has no classical analog) which will be derived from the
boundary conditions satished by the state. The representation of the dynamical variables, associated with the
two stages of the state, will be discussed, and a complete set of constants of motion of our dynamical system
will be given. The expansion of an arbitrary Fock state in terms of the simultaneous eigenstates of this com-
plete set of constants of motion, leads to the generalized Hankel transforms, used in a preceding article for
the determination of the time dependent states for scattering and disintegration. In a representation in which
the constants of motion are diagonal, the operator representing the relative kinetic energy of the two initial
particles will be nondiagonal, particularly in the neighborhood of the resonance energy. The unitary matrix
connecting any initial Pock state with the corresponding state at time t will be obtained, and with its help
the time-dependent behavior of the Heisenberg dynamical variables of our dynamical system can be derived.

I. INTRODUCTION AND SUMMARY
' 'N preceding articles" a reformulation of the phe-
~ ~ nomenological picture of nuclear resonance reactions
was achieved in terms of a description in Fock space, '
in which interactions took place through appropriate
boundary conditions. This reformulation was shown to
be useful for the description of time dependent states
and, in particular, the time dependent description of a
nuclear scattering process was discussed in detail in (I).

In the present paper we propose to elaborate a

' M. Moshinsky, Phys. Rev. 84, 525 {1951}.This paper will be
referred to as (I).

~ M. Moshinsky, Phys. Rev. 81, 347 (1951).This paper will be
referred to as {II).

3 V. Fock, Z. Physik 75, 622 (1932).

quantum-mechanical scheme in Fock space, that would
describe interactions that take place through the forma-
tion of a compound particle. For reasons of space, as
well as of mathematical simplicity, this scheme will be
developed in connection with the problem of scattering
of spinless particles whose discussion was initiated in (I).
It will be shown though, that the extension of the
scheme to the other types of interaction discussed in
(II) will not present any essential diBicuity.

A scattering process taking place through the forma-
tion of a compound particle could be indicated sche-
matically as:

A+~C,
where A represents the initial nucleus, u the incident
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particle, and C the compound nucleus, all of which mill

be assumed spinless. The description of the scattering
process wiB not be given in the configuration space of
the nucleons present, but in the con6guration space of
the particles present, ' which will be considered as
elementary particles. The scattering process (1) gives
then rise to a dynamical system whose states can be
found in two stages: The 6rst one, in which two particles
A, e are present, the second, where we have a single

compound particle C.
The bra and ket notation of Dirac4 will be used for

the states describing the scattering process (1), and
representations of these bras and kets can be obtained
with the help of an observable that indicates the stages
of the states. The connection between the diferent
representations of these Fock states, i.e., transformation
theory, will be developed, as well as the representation
of linear operators in Fock space.

The dynamical behavior of the state, describing the
scattering process (1), was determined in (I) by
boundary conditions, obtained from considerations of
conservation of probability, connecting the two stages
of the state. In quantum mechanics, the dynamical be-
havior of a state should be determined by the hamil-

tonian, and in the present paper we shall introduce the
hamiltonian for the dynamical system (1), as that linear

operator in Fock space that transforms any time de-

pendent Pock state
~
Qt) into the state i(d

~
Qt)/dl). With

the help of the boundary conditions, an explicit form
for this hamiltonian, in any representation, will be
obtained.

Besides the hamiltonian there are other observables
of the dynamical system (1) such as the relative angular
momentum, relative momentum, etc. , of the two par-
ticles in the 6rst stage. %e shall show how to represent
these observables in terms of linear hermitian operators
in Fock space. As usual, those operators that commute
with the hamiltonian will correspond to the constants
of motion of the dynamical system (1).

e will obtain the eigen Fock states corresponding
to a complete set of constants of motion of the dynamical

system (1). The expansion of an arbitrary Fock state
in terms of these eigenstates, will lead us to the
generalized Hankel transforms (19I), which were used

in (I) for the determination of the time-dependent Fock
states.

Finally, we shall proceed to determine the time de-

pendent linear operator U(t) in Fock space, that trans-
forms any initial Pock state ~Q& of the dynamical
system (1), into the corresponding state

~ Qt) at time t

The linear operator U(t) will be given by a unitary
matrix which satis6es, as usual, ' the equation

i(eU/d&) =HU,

' P. A. M. Dirac, Qsceetem Mechuek's (Clarendon Press, Oxford,
1947},third edition, Chapter III.

~ %. Pauli, Hamfbuch der Pkysik, 2 Auf. Band 24, pp. 138—142;
see reference 4, Chapter V, pp. 108-118.

~ Same units will be used as in {I),i.e., h=c=p=1.

where H is the hamiltonian of the dynamical system (1).
The unita, ry matrix U(t) determines, from a quantum-
mechanical standpoint, the dynamical system (1) com-
pletely, i.e., it determines the time dependent behavior
of all the Heisenberg dynamical variables' associated
with this dynamical system.

.y, (r)-

The two components of the Fock state describe the
fact that it may be found, either in the form of the two
particles 3, a, represented in their relative con6guration
space by f&(r), or in the form of a single compound
particle C represented by f~

It is convenient to represent states of the type (3)
in the bra and ket notation of Dirac, 4 which greatly
simpli6es the following analysis. For this purpose we
introduce an observable which is restricted to take the
values 1 and 2 only, so as to indicate the stage of our
state, i.e., if the observable has the value 1 we have
the first stage where two particles are present, while for
2 we have the stage in which a single compound particle
is present. States of the form (1) would then be denoted
by a ket

~ ), whose representation woulcl be given by
the vector:

«rl )
(4)

The appearance of r in the component (1r~ ) of (4),
indicates that the 6rst stage of our state is represented
in the relative configuration representation.

The bra state ( ~
corresponding to (4), will be repre-

sented4 by the vector:

& I =L& Irl)&12&j. (~)

The scalar product of two states (P ~, ~ Q) will be defined
by:

(Pl Q&= &Pl r»&lrl Q&+ &Pl 2)(21 Q). (6)

where

(Pl r1&&1rl Q&—= "&PI r1&~r&1rl Q&

In the present paper the convention of summation of
repeated indices, will be extended to variables that can

' The Pock state is represented in the center-of-mass reference
frame, and this restriction to states of zero total momentum, should
be kept in mind. It will be removed at the conclusion of this
article.

II. TRANSFORMATION THEORY IN FOCK SPACE

We have shown in (I), that interactions between two
spinless particles leading to single-level S-wave scat-
tering, can be described in terms of a Fock state of the
form 7
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take a continuous range of values, thus:

& lk&dk&kl )
J

(7)

conjugates of the vectors (12). The con6guration repre-
sentation of the kets (12) is obtained with the help of
T ', so we need only to replace b(k' —k") by (r'Ik")
in (12) to have the corresponding vectors.

The unit operator in Pock space I, can be defined
in terms of the basic kets, and in the momentum repre-
sentation it is given by:

(kl r) 0-
I='

0 1

(rl k) 0-

0 1

Thus, the ket (4) in the momentum representation, is
given by'.

&1k I ) &k
I r)(«l )

=TI )=
— (21 & - - (2I &

(10)

The transformation of the 6rst stage (1rl ) of the
ket (4), to the momentum representation (1kl ), can
be achieved with the help of the usuaP transformation
function:

(kl r)=(rlk)*=(2w)-t exp( —ik r). (8)

The second stage (2 I ) of the ket (4) represents a single
compound particle, and it should remain una6ected by
a change of representation for the system of two par-
ticles in the first stage. The transformation matrices I,
T ' which take the ket (4) from the relative con6gura-
tion to the relative momentum representation, and
~ice versa, should have the form:

-S(k'-k") 0-

0
(13)

In what follows we shall indicate by (P I, I Q); etc. ,
the constant states, and by (Ptl, IQt), etc., the corre-
sponding time dependent states, i.e., those time de-
pendent Fock states which at t=0 reduce to (PI, I Q),
etc.

III. THE HAMILTONIAN

We showed in (I) that the time-dependent behavior
of the Fock state, representing a single-level scattering
process, was determined by the Schrodinger equation
(2I) and the boundary conditions (3, 4I). In the nota-
tion developed in the previous section, these equation
and boundary conditions, applied to a time-dependent
ket

I Qt), become:

—i(8(1rlgt&/Bt) =-,'P(1rlgt), for rWO, (14a)

—i(8(2
I
Qt&/Bt)+F0(2

I
Qt) = 27rc'(Br(lr

I
Qt&/&r) „0,

(14b)

C'(2I Qt) = (r(«l Qt)) =o (14c)

Any linear operator F which acts on a Fock state (10)
could be given in the momentum representation by the
matrix:

The ket
I Qt) is determined completely by the relations

(14) once its initial value
I Q) is specified

We can now de6ne the hamiltonian of our dynamical
system (1), as the linear operator in Fock space H that
transforms the ket

I
Qt) into i(d

I
Qt)/dt). To obtain the

explicit form of this linear operator, let us consider the
time derivative of the scalar product (PIQt) of the
form (6), in which (Pl is an arbitrary constant bra
whose component (Pirl) is bounded at r=0, and
vanishes appropriately at r—+~. We have then:

&Ik'IP l2&
p —'

8 8
'—(PI gt) = &P

I
r»' —&1rl g»«+ &PI 2&i—(2I Qt&

dt Bt Bt
(15a)

The component (1r
I Qt) satisfies the Schrodinger

equation (14a) for r&0, so that surrounding the origin

by a sphere of radius ro, we can transform the integral
in (15a) into:

pir ~2'

lim-,'
I r(PI r1&(8r(1rl gt)/Br)

b(k' —k") '

I

k"1)=
0

1

o~ "o ao
(12) —(Br(P I r1&/Br)r(1r I Qt)]„„0sin8dyd8

The action of the operator I' on any ket state, should
be interpreted in the sense of a matrix operation on a
vector with respect to indices 1, 2 and k". The ap-
pearance of a repeated index k" will imply an integra-
tion, in accordance with the convention (7). A similar
remark applies to operations on bra states, and for
products of linear operators.

We shall now introduce the basic ket
I
k"1) to repre-

sent a state in which two particles are present with
relative momentum k",and the basic ket

I 2) to represent
the state corresponding to a single compound particle.
The vectors corresponding to these kets in the mo-
mentum representation are:

The basic bras (1k'I, (2I are given by the transposed

' See reference 4, p. 97.
—

$~ (7'(Pl r1))(irlQt)dr. (15b)
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Since (Pl ri) is bounded at the origin, and (ir l Qt) has a
singularity at r=0 only for the 5-wave component (as
shown in (I)), the first term in (15b) reduces to:

first and second stage of the Fock state, as their expec-
tation values give the probability' of finding the state
in the form of two particles, or in the form of a single
compound particle respectively.

With the help of Ii it now becomes clear what would
be the representation of any dynamical variable asso-
ciated with the relative motion of the two particles in
the first stage. We just multiply the ordinary repre-
sentation of the dynamical variable by II and have its
representation in Fock space. Thus for example, for

f the relative angular momentum
omentum representation a matrix

2m (B—r(P
l ri)/Br) „=0(r(ir

l Qt)) „0. (15c)

Using now the boundary conditions (14b, c) we can
write finally:

i(d(P l Qt)/dt) = —,'k'&P
l
k1)(1k

l
Qt)dk

the zth component o
2irC'L(iver(PI ri)/~r) = &2 I Q~)

+(Pl 2)(Br(irlQt)/Br), oj of the form:

+(Pl 2)2&o'(2
I Q~) =(P I HI Q~) (16)

where the integral stands for the second term in (15b)
expressed in the momentum representation.

For t=0, (16) defines the matrix element of the
hamiltonian H, corresponding to two arbitrary Fock
states (Pl, lQ). As the representative of a bra is the
complex conjugate of the representative for a ket, 4 we
see from (16) that (PlHlQ)*=(QlHlP), and the
linear operator I is hermitian. An hermitian matrix for
the hamiltonian H can then be obtained in any given
representation.

The hamiltonian H defined by (16), has clearly no
classical analog, as interactions between particles in
terms of boundary conditions cannot be formulated in
classical mechanics.

-S(k'-k") 0-
) I2

0

0 0

0 1

The operators II., I2 are projection operators, as they
reduce any ket of the form (10) to the first or the second
stage. Furthermore, II+I2=I where I is the unit
operator (13).

The expectation values of Ii, Iq for a state lQ) are

(Q l
k1)(lk l Q) and (Q l

2)(2 l Q), respectively. The opera-
tors II., I2 are therefore, the ones associated with the

IV. PRO JECTION OPERATORS AND OBSERYABLES

When our dynamical system (1) is in the first stage,
i.e., when the two initial particles are present, there are
dynamical variables such as the relative angular mo-
mentum, position, momentum, etc., of the two particles,
whose expectation values can be obtained from measure-
ments. %'e expect that these dynamical variables can
be represented by linear operators in Fock space of the
form (11), which are furthermore hermitian. Before
giving their explicit form though, we need to discuss
the two basic dynamical variables whose expectation
values give the probability of finding a state in the first
or in the second stage.

Let us introduce the two hermitian linear operators
in Fock space II, I2, defined in the momentum represen-
tation by:

i~;—,ik, '8/Bki'8(k' k"—) 0

in which t.;;& is the usual antisymmetric symbol which
is /0 only if ijl are even or odd permutations of 1, 2, 3,
when it equals +1 or —1 respectively.

The linear operators for the components of the
relative position X; and momentum P; are given in
the momentum representation by the matrices:

X,=i8/Bk Ii, P;=k Ii (19)

The components L; of the vector of relative angular
momentum, are constants of motion of the dynamical
system (1), as we shall show that they commute with
the hamiltonian.

Designating by (Pl, lQ) two arbitrary states, and
defining (P'l,

l
Q') by:

(P'I =(PIL;, IQ'&=L'IQ& (20)

we see from (16) that:

&PIHJ-' —I HIQ&= &PIHIQ') —&P'IHIQ&

= —2irC'L&P
l 2)(Br(ir

l
Q')/Br) „0

—(~r&P'l ri&/~r). =o&2l Q&j, (»)
where use was made of the hermiticity of I; and of the
fact that from (18) and (20) we have (2l Q') = (P'l 2) =0.
The term (1r

l
Q') could be expanded in spherical waves

in which the S-wave would be missing from the defini-
tion (20). As we showed in (I) that there is interaction
between the initial particles only in the S-wave, we
conclude that (1rl Q') is regular at r=0 and therefore:

(Br(1r
l
Q')/Br) „=0——0.

A similar analysis holds for (P'l r1) so that we obtain:

(P l
Hl. , I.~H

l Q) =0, —(22)

and as (Pl, l Q) are arbitary, we see that L; commutes
with H.

The total angular momentum



QUANTUM M ECHAN I CS I N FOCK SPACE 537

V. EIGENSTATES AND EXPANSION THEOREMS

is clearly also a constant of motion, and H, L', Lo will It is clear, therefore, that for /80 the only possible
form a set of commuting constants of motion. solution of the system of Eqs. (25), (26) is:

&1r~Elm)=a& ji(kr)Pi (cos8)e' ", &2~Etm)=0. (29)

We proceed to obtain the simultaneous eigenstates of
commuting set of constants of motion:

8, L2, I.3. (23)

We shall show that this set of constants of motion is a
complete set of commuting observables, 4 and that
therefore, an arbitrary Fock state can be expanded in

terms of the simultaneous eigenstates of this set.
We first notice that if in (16), (P

~

is put equal to the
basic bra (1r

~

defined by:

(1r~ = [b(r—r') 0]
v e obtain

(1ri H
i Qt) = ——,'i7'&ir

i Qt)
—2~C'[Br'b(r —r')/Br']„=o(2

~
Qt). (24)

The term inside the square bracket can be written as:

b(r —r') —r' Vb(r —r'),

which when r'—+0 clearly reduces to b(r). In Eq. (24)
we can thus replace the square bracket by b(r).

We now designate by
~
Elm} the ket which is an

eigenstate of H, I', I.3 corresponding to the eigenvalues
E, l(l+1) and m, , respectively. ' From (16, 18) the
eigenket ~Etm) in the configuration representation
satisfies the equations:

—o~'(«1«m) —2~C'b(r)(21«m) =E(«IEtm), (25a)

—2s.C'(Br(1 r
~
Etm)/Br) „p

+ oi koo&2
~
Elm) =E(2

~
Etm}, (25b)

L'(1x
~
Elm}= l(I+1)(1r

~
Elm), (26a)

Lo(1r
~
Elm) = m (1r

~
Elm). (26b)

In (26) L', Lo stand for the usual differential operators
for the total angular momentum and its projection.

From Eqs. (25a), (26} we see that for r/0, (1x~ Elm)
must have the form:

(1r~ Elm) = [ai ji(kr)+bi Ni(kr)]Pi"(cosa)e'"", (27)

where a~, bg are numerical factors that depend on
k = (2E)&, and as x =0 is excluded, the irregular spherical
Bessel function'o ni(kr) also appears in (27).

If bi WO we have that (1r
~
Elm) has a singularity' of

the order r &'+" when r~0. The singularity in (ir
~
Elm)

for l/0 would be too high to satisfy (25), as we know
that"

We see that the two particles in the first stage of our
dynamical system do not interact if their relative
angular momentum is larger than zero.

The first component of the eigenket ~EOO) is given
by (27) when l, m=0, and it has a singularity of the
order r ' when r~0. Substituting this value of (1x

~

EOO)
into Eq. (25a) and making use of (28) we obtain:

2or[x(1 r
j EOO) —C'(2

~
EOO)]b(r) =0. (30)

This equation implies that the square bracket must
vanish for r=0, so that we obtain the boundary con-
dition:

(r(1r
~

EOO)) „„=C'(2
~
EOO). (31)

(2 i
EOO) = aoo(k)4s C'(ko' —k') (33b)

The set of commuting constants of motion of our
dynamical system is a complete set, 4 as the eigenkets
common to them are determined up to a factor. This
factor should 'be determined by the normalization con-
dition, so as to make the scalar product of two eigen-
states ~E't'm'), ~E"t"m") equal to:

&E'l'm'
~

E"t"m")= b(E' E")bi i b,„—" (34).
We see from (29) and (33) that eigenkets corre-

sponding to different l or m are orthogonal. The
eigenkets corresponding to the same l, m in which l& 0,
form an orthonormal set, if the u& are taken essentially
as the normalization coefFicients for spherical harmonics.
It remains to show that for a convenient value of app(k)
the eigenkets

~

EOO) form an orthonormal set.
In the configuration representation, the scalar product

of the two eigenkets ~E'00), ~E"00) is given by

From (31) and Eq. (25b) corresponding to the ket
~EOO), we obtain:

(r(ir
~
EOO)) „—p

=4s.C'P(koo —ko) '(Br(1r
~
EOO)/Br), p (32)

which is precisely the boundary condition for stationary
states given in (6I).

Equations (31), (32) determine the eigenket ~EOO)

up to a factor, and its components are given by:

(ir
~
EOO) = aop(k) [jo(kr) —4~C"k(kp' —k') 'ep(kr)],

(33a)

'7'r —' = —4wb (r). (28)

'%'e restrict ourselves to a dynamical system (1) for which the
binding energy (see reference 1) EO)0. ln this case, we showed in
(I) that the eigenvalues E are restricted to real positive values."J.A. Stratton, E/ectromegnetic Theory (McGraw-Hill Book
Company, Inc. , New York, 1941), pp. 404-405.

"See reference 4, p. 156.

(E'00
~

E"00)=4 I (1r~ F-'00)*(1r
~

E"00)r'dr

+&2~EOO)*&2iE-00). (35)

Introducing the explicit form (33) of the component of
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these kets, and making use of the relation:"

(2w)-'
J

exp(ikr) dr =b+(k) = -,'I b(k)+ i(irk) —']

we obtain straightforwardly that:

(E 00
I

E"00)= aoo*(k')aoo(k")2w'k' '(k, '—k")—'

X [(ko'—k")'+C'k"]b(E' —E"). (36)

The ket
I
EOO) would be normalized if we give to the

corresponding factor" aoo(k) the value:

From (19) we see that

(E't'm'I ', P-I E'V'm")

2k'(E'i'm'
I
ki)(1k

I
E"t"m")dk. (41)

Making use of (16) in which we put (Pl =(E'l'm'I,
IQ)= IE"t"m"), and of the diagonal form of H, we
obtain straightforwardly that

(E'l'm'I —',P'I E"t"m"
&
=E'b(E' E")b—

~ i"b„.„., (42a)

a»(k) = (2s') ikey(ko' k'—)(ko' k'—ikC—') ' (3. 7) if l'00, or l"Wo, or both l', l"Wo; and that

Kith the coeKcients determined as above, the
eigenkets

I
Elm& form a complete orthonormalized set, '

so that an arbitrary ket
I Q) can be expanded in terms

of them in the usual way:

IQ)=
i Q Q IElm&(ElmIQ)dE.

4 p l.=p m= —t

(38)

If the ket
I Q) corresponds to zero angular momentum,

i.e., I,'IQ)=0, then (ElmlQ)=0 if l/0, and in the
conhguration representation the expansion theorem
becomes

(E'oo
I

—,'P'IE"oo) =E'b(E' —E")

4C"(ko' —k"—k"') (k"k') i+,(42b)
(k ' k"' —ik"C—') (ko' k"+—ik'C')

where E'=-'k" E"=-'k"'-'
In the hamiltonian-angular momentum representa-

tion, the relative kinetic energy of the two particles in
the first stage, is a nondiagonal matrix. From (42) we
see that the nondiagonal terms become particularly
prominent in the neighborhood of the resonance energy
Zp=-', k, '.

(irlQ) i
- (irlEoo)-

(Eoo
I Q)dE, (39a)

-(2IQ) - ~ -(2IEoo)-

(EOO
I Q) =4irJ" (ir

I
Eoo&*(1r

I
Q)r'dr

+ (2
I
Eoo)*(2

I Q). (39b)

If we introduce the values of (1r
I Eoo), (2 I Eoo) given

by (33), (37), and put E= 2k', we see that (39) becomes
identical with the generalized Hankel transforms (19I).
%'e have therefore justihed, from a general quantum-
mechanical standpoint, the mathematical developments
introduced in (I), which were used for the time de-
pendent description of the scattering and disintegration
processes.

With the help of the eigenstates IElm&, given by
(29), (33), any observable F could be expressed in the
hamiltonian-angular momentum representation, i.e.,
we could find the matrix elements:

(EVm'I Pl E"t"m"& (40)

The operators 0, L', L3 are, of course, diagonal in this
representation, and it is interesting to obtain the repre-
sentation of the relative kinetic energy operator

lpga lpp2

"%.Heisenberg, Z. Physik 120, 519 (1943).
'g The normalization condition (36) determines aoo{k) only up

to an arbitrary phase factor, but this phase factor does not aGect
the form of the expansion theorem (38).

VI. THE UNITARY MATRIX U(t)

%e want now to obtain a linear time dependent
operator in Fock space U(t), that transforms any initial
Fock state into the corresponding state at time l'. For
any ket

I Q) we have then:

IQt)=U(t) IQ). (43)

Introducing this relation into (16), we obtain im-

mediately that:

i(«PI~IQ&/«)=(Pl&UIQ& (44)

for any two arbitra, ry Fock states (Pl, IQ), so that
U(t) satisles (2).

The simplest way of obtaining U(t), is to solve (44)
in the hamiltonian-angular momentum representation,
in which H is diagonal, so that U(t) in this representa-
tion, which at 3=0 reduces to the unit matrix, becomes

(E't'm'
I
U

I

E"l"m")
= exp( iE't)b(E' E—")bi i .b .„—. (45).

The matrix U(t) is unitary in this representation, a
property which is clearly maintained in any other repre-
sentation as well. '

Using (45), any time dependent state could be ex-

pressed in the form,

I Qt) = U(t) I Q&

P I
Elm& exp( —iEt)(Elm

I Q)dE (46).
p

l=p m= —L
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&Ik'I UIk" 1)= &k'I r) &lr
I
UI k"»,

(48)

If we express the
~
Qt) and the scalar product (Eb22~ Q)

in the configuration representation, we obtain precisely
the procedure followed in Secs. II, III of (I) for the
determination of any time dependent state. When we
equate ~Q) to thebasickets ~k"1), ~2) of (12),we obtain,
respectively, the time dependent states for scattering
and disintegration 42(k", t), 0 2(t), given by (23, 27I).
In the configuration representation we have, therefore,

&IrlUlk"1)=~»(r k" t) &IrlUI2)=&»(r t)
(47)

&2I Ulk" I)= A2(k", t), &2 I Ul »= 62(t).

If we want to express U(t)in a pure momentum
representation, i.e., to have it in the form of the
operator (11), we apply the transformation matrix T
to (47) and obtain

we conclude that the unitary matrix U(t) is symmetric"
in the momentum representation, i.e. , U'(t) =U(t)

With the help of U(t) the Schrodinger dynamical
variables given in the momentum representation in
Sec. IV, could be transformed into the corresponding
Heisenberg dynamical variables, in terms of the usuaP
relation:

F(t) = U*'(t)FU(t), (51)

where U*'(t) stands for the conjugate transposed" of
U(t), and the matrix product should be interpreted in
the sense of (11). In principle, the time dependence of
all Heisenberg dynamical variables associated with the
dynamical system (1) can be determined.

An interesting application of (51) is that the com-
mutator of the relative momentum and position of the
two initial particles is not a constant of motion. In fact,
from (19, 51) we have:

X;(t)P,(t) —P, (t)X,(t) = ib;,l, (t) = ib„[I—I,(t)], (52)

where in the momentum representation I2(t) is given by:

(53)

while (2~ U~k"1), (2( U~2) remain unaffected.
In the appendix we evaluate the Fourier transform

of the function r X(r, k, t) which appears in f», $22. (Ik'~ U~2)*&2IUlk"I) (1k'~ UI2)*&2~ U~2)
~ ~ I2(t) =Usrng thrs result, we can evaluate the Founer transforms

(48), and obtain the following explicit form of U(t) in
the momentum representation

(1k'
( U

~

k"1)= b(k' —k") exp( —i-', k"'t)

6 t 6
- —I

+(C2/22r2) Q ~ k; g'(k, —k,) Xo(k;, t) t, (49a)
i=1 j=l

(1k"
i

U
i 2) = —C'(2/2r) &

4 4

XP k; II'(k;—k,) x,(k„t)

VII. CONCLUSION

%e have assumed in all the preceding developments
that the dynamical system (1) was described in the
center-of-mass frame of reference. It is clear that in
arbitrary frame of reference, our states ~Q) would be
characterized also by the total momentum x of the
system. The unitary matrix U(t) of the previous section,
would just have to be multiplied by the factor '

=$22(k", t)=(2i U~k"1), (49b)
b(x' —x") exp( —ix'"t/2222) (54)

(2I UI2)=4 (t)

(k& k2) [k2XO(kb t) k2XO(k2& t)]. (49c)

In (49), ki, k2 stand for the poles of the scattering
matrix S(k) of (15I), while k2 ——k", k4 ———k", and.
4=4', 4= —O'. The terms

to apply to states in an arbitrary frame of reference.
The developments of the present paper were restricted

to the dynamical system (1) representing a single-level
S-wave scattering process. We have obtained in (I )
boundary conditions for the description of the many-
level elastic scattering process, as well as for two-
particle nuclear reactions, which could be indicated
schematically as:

'(k; —k,), g'(k; —k, )
A+a~~

C
(55a)

mean products in which the factor j=i has been
omitted. The function Xo(k, t)=X(0, k, t), so that for
any complex k it is given by:

Xo(k, t) = exp( i-,'k't) erfc[ ——(1—i)k(t/4) &], (50)

where erfc(s) is the error integral function of (25I).
The component (1k'

~
U

~

k"1) is symmetric with
respect to k', k" as can be seen from (49a) by writing
out explicitly the coefticients of the go's. Furthermore,
from (49b) wesee that (1k"

~
U~2)=&2~ U~k"1), sothat

and
A+ a~~C~~B+ b, (55b)

respectively. The procedure followed in the present
paper suggests how to formulate the states of the dy-
namical systems (55) in Fock space, and also how to
obtain the corresponding hamiltonians from the bound-

'4 In the present notation, F' means that we take the transposed
of the 2&2 matrix {1j.), and also interchange k', 4".

"m stands for the sum of the masses of the two particles in
the 6rst stage, in units of the reduced mass.
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i—(k&k') ')—t exp[i(k&k')r]
0

&&exp( u'—)[2x t(1 i)—(4t) &]dr (.58)
APPENDIX

ary conditions. We expect, therefore, no essential dif- Integrating by parts we obtain:
ficulty in the generalization of the present developments
to the dynamical systems (55).
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We shall evaluate here the Fourier transform of the
function:

r 'x(r, k, t) =r ' expi(kr —-', k2t) erfc(u), (56)

where

t

erfc(u) = 2s i exp( —s')ds, u= (1—i)(4t) '*(r—kt),

and k is an arbitrary complex number.
As x depends only on the magnitude of the position

vector, we have:

When r~~, erfc(u) —+0 as shown in Appendix 2 of (I),
so that the erst parenthesis reduces to its value at r=0.
Denoting by u+' the expression:

u~'= (1—i) (rak't) (4t)-*'

we can reduce I+(k, k', t) to the form:

I~(k, k', t) =i(krak')-' erfc[—(1—i)k(t/4):$

i(k&—k') ' exp[i(k' —k")(t/2) j

I(k, k', t) = (2m) &~ exp( —ilr' r)r 'x(r, k, t)dr
The term in the curly bracket can be written as:

= (2/x) lk' —' I x(r, k. t) sink'rdr
0

f
27r ~

~

exp( —u")du'=erfc(V+),
4y~

(61)

= (2/m) '(2ik') ' exp( —2-k2t)

I+(k, k', t) = I exp[i(k&k')r] erfc(u)dr.
0 where go(k, t) is given by (50).

where V~= a (1—i)k'(t/4) &.

Using (57, 60, 61), we can write finally:
[ +( 1 t ) —( i ~ )ji ( )

(k k/ ) (2/ )$( 2 k/g) y ( )

+ (2/7r) &(2k') —'(5 —k') 'xo(k', t)
—(2/z)~(2k') '(k+k') 'yo( —k', t), (62)


