
P H YS I CAL R EVI EW VOLUME 84, NUMBER 3 NOVEM 8ER 1, 1951

Boundary Conditions and Ti~e-Dependent States

MARcos MosHINsKY
Institutos de Ilisicu y de Geofzsicc, Uni~ersidad de Mexico, Mexico, D.F., Mexico

(Received July 11, 1951)

In a previous paper, a phenomenological description of nuclear reactions by means of boundary conditions
was introduced. These boundary conditions that connect the several stages of the reaction {initial particles,
compound nucleus, etc.) apply to time-dependent, as well as to stationary states. It is possible to discuss
then the time development of any state specified initially. In the present paper a time-dependent description
is obtained for the single-level S-wave scattering of two spinless particles, and for the process of disintegration
of a compound particle. The only parameters on which this time-dependent description depends are the
poles of the scattering matrix. The connection between the position of the poles of the scattering matrix in
the complex plane, and the time-dependent behavior of the scattering and disintegration processes, is dis-
cussed. The form of the transient scattered current is also obtained. The generalized Hankel transforms on
which the present developments are based, will be shown in a following paper to be a consequence of the
expansion theorems for states in Fock space.

I. INTRODUCTION
' 'N a previous article' a phenomenological description
- ~ of nuclear reactions was introduced, in which the
several stages of the nuclear reaction were described in
an appropriate Fock space. ' It was shown there that
the boundary conditions imposed on the components
of the Fock wave function lead, for stationary states, to
the same dependence of the cross sections on energy
as would be obtained from any of the usual formula-
tions of resonance reaction theory. '

An advantage of this description is that the boundary
conditions obtained hold for time dependent states, as
well as for stationary states. We can then deal, not only
w'ith such problems as the dependence of the cross
sections on energy, which are of an essentially stationary
nature, but also with problems such as the time develop-
ment of a state specified at a given initial time.

Ke propose to discuss in this paper, the description
in time of a scattering process, and the process of disin-
tegration of a compound particle. Ke shall show the
dependence of this description on the position of the
poles of the scattering matrix. ' The present develop-
ments will have then, a bearing on the connection of
causality with the position of the poles of the scattering
matrix, recently discussed by Schutzer and Tiomno. '

Kith the help of the time-dependent state for a scat-
tering process, we will also obtain the transient scattered
current that appears before stationary conditions are
established,

our aim in the present paper is to obtain a set of
basic time-dependent wave functions, with the help of

' M. Moshinsky, Phys. Rev. 81, 347 {1951).This paper will be
referred to as "previous note. "

~ V. Fock, Z. Physik 75, 622 (1932}.
3 E. P. Wigner and 1.Eisenbud, Phys. Rev. 72, 29 {1947);G.

Breit, Phys. Rev. 69, 472 (1946); Feshbach, Peaslee, and Weiss-
kopf, Phys. Rev. 71, 145 (1947).' J. A. Wheeler, Phys. Rev. 52, 1107 (1937);%. Heisenberg, Z.
Physik 120, 513, 673 (1943); E. P. Wigner, Phys. Rev. 70, 15
(1946).' W. Schutzer and J. Tiomno, Phys. Rev. 83, 249 (1951).I am
indebted to Drs. Schutzer and Tiomno for a copy of their paper
prior to publication.

which we shall discuss, in a following publication, the
description of interactions through boundary conditions
in Fock space, from a general quantum-mechanical
standpoint. Ke shall show there that a time dependent
matrix U(t) can be introduced, which provides all the
information concerning our states and the observables
associated with them that is of relevance in quantum
mechanics. The interactions through boundary condi-
tions in Fock space will be seen then to give as complete
a description of the interaction process between par-
ticles as could be obtained if they interacted through a
potential.

While the present discussion is nonrelativistic, it is
hoped that the restriction of the interactions to the
point of coincidence' of the colliding particles, will

permit a comparatively simple extension to the rela-
tivistic range.

In the previous note, boundary conditions were ob-
tained for several types of scattering and reaction
problems, but in order to keep mathematical compli-
cations to a minimum, we shall restrict the discussion
in this, and the following paper, to the interactions
between two spinless particles leading to single-level
S-wave scattering. The extension to other, more com-

plex, types of interactions will be presented in a later
publication.

According to what was said in the previous note, the
state representing a single-leve1. scattering process
could be found in two stages. gn the first stage, two
particles of masses ns1, m~ are present, while in the
second, there is only a single compound particle of mass
M. If we choose the center-of-mass frame of reference,
the 6rst stage is represented by the wave function
f,(r, t) where r is the relative position vector of the two
particles, while the second stage is represented by the
wave function $2(t). The Fock wave function for the
state is then

y, (r, t)
4 (t) =

— 4"(~)-
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i(~A—/~i) = p~V~ (2)

and that the boundary conditions that determine the
interaction are

i(BP—p/8t)+Epgp 27rC——'(Bring/Br), o, (3)

C'6= (&A).-o (4)

In (3), Ep=(3E (m&+—mp)j stands for the binding
energy of the compound particle, and C' is a coupling
constant whose physical significance will be given
below.

We could eliminate fp between (3) and (4) and
obtain a boundary condition in terms of f~ alone, having
the form:

—i(8rfq/Bt)„-o+Eo(+i)~-o= 2+C"(Br/~/Br), p. (5)

For a stationary wave function

P~(r, t) =f(r) exp( iE"l)—

the boundary condition reduces to the familiar form

(rP), o = C'(kp' —k'")—'(Br//Br) „p, (6)

where' C= (4pr) &
~

C'
~,

E"= ok"', Ep= p'ko'. This condi-
tion determines completely the scattering problem, as
the stationary tf must be given by a plane plus a scat-
tered wave, and the scattered wave must be an 5-wave
since otherwise rP would be singular at r=0. The coef-
ficent of the scattered wave is determined by (6) and
so P(r) takes the form:

P(r) =exp(ik" r)+C'(ko' k'" i—k"C')—'r 'exp(ikr).
(7)

The total cross section is then given by the usual

single level formula:

p.= (4pr/k'") PL(Eo—E")'+I'j ', (8)

where I'= Fp(k /kp) and I'p ———', C'kp. This correlates the
magnitude of the coupling constant C' with the width
of the energy level at resonance Fo and, as will be shown

'I The units for time, length, and mass are then k(~') ', h(~) ',
and p,, respectively. All quantities that appear in the following
developments are therefore dirnensionless.

7 In this article we consider that ia/at is the operator for the
kinetic energy alone, i.e., we have eliminated a phase factor
exp/ —i(mr+my)tg from the formulation of the previous note.
The coupling constant C~g of the previous note will be assumed
real and denoted by C', while C&& will be taken as zero, so that
there is no direct coupling between the two particles in the first
stage.

8 E. P. Wigner, Phys. Rev. 73, 2002 (1948).' We shall designate by E" the relative kinetic energy, and by
k" the corresponding momentum of the two particles, as this
would be appropriate in the bra and ket notation, to be introduced
in the following article.

To simplify the notation, ' we now choose our units so
that A= I, c= 1 and the reduced mass

p = (mgmp) (mg+ mp)-'= 1.

%e have from the previous note, that for r&0,
P&(r, t) satisfies the free ps.rticle Schrodinger equation:

and according to what was said above, we have that
for t=0:

exp(ik" r) 0
e,(k", 0) = (2pr)

—' +p(0) = . (10a, b)
1

We will show in what follows, that the Eq. (2) and
the boundary conditions (3, 4), satisfied by the com-

ponents of the time-dependent Fock wave functions,
determine these wave functions completely, once the
initial form of them is given. In the next section, we

will discuss a mathematical preliminary which is neces-

sary for this determination.

H. GENERALIZED HANKEL TRANSFORMS

Any wave function P&(r, t) representing that stage
of our state in which two particles are present, can be
developed in spherical waves according to well known
rules. " As the boundary conditions (3, 4) allow only
S-wave scattering, it is clear that we can restrict our
discussion of time-dependent wave functions to the
6rst term in the spherical wave development, i.e., to
I=O. The terms in the development of P&(r, t) corre-
sponding to relative angular momentum higher than 0,
will behave as free particle wave functions.

IO A. G. Webster, PartiaI, Differentia/ EIuati ons ie Mathematical
Physics (G, E. Stechert 8t Company, New York, 1933), second
edition, pp. 124-129.

"N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Clarendon Press, Oxford, 2949), second edition, p. 22.

later, with the probability of decay of the compound
system.

At 6rst sight, one would be inclined to think that the
generalization of the boundary condition (6) for sta-
tionary states, to time-dependent states, could be
achieved in terms of a single wave function f&(r, t)
satisfying (2) and (5). The discussion of the ms, ny-level
scattering process in the previous note, as well as the
form of similar vibration problems, "show though, that
the generalization should be made in terms of the formu-
lation (1)—(4) in Fock space.

Having now the information concerning stationary
states that our interactions through boundary condi-
tions can provide, we want to investigate the behavior
of time-dependent states. Vile shall discuss, in the
present paper, two time-dependent states. The 6rst one
will be the state which initially is found in the form of
two particles with relative momentum k", so that its
development in time mill provide a causal description
of a resonance scattering process. The second, will be a
state which initially is found in the form of a single
compound particle, so that its development in time will

provide a causal description of a disintegration process.
The Pock wave functions corresponding to these two
states, will be designated by 0&, 42, where:

4(,k, t) 4( ~)

e,(k", t)=, e,(I)=, (9a, b)
fp&(k", t) fop(~)
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Before we attempt to obtain the explicit form of the form:
time-dependent Fock states, let us look at the well-

known procedure one follows in the case of two non-

interacting particles. Let us assume that in the center-
of-mass reference frame, we have two noninteracting
particles with zero relative an ular momentum re re-
sented
transfor

kC' (cosk«k, '—k' sink«y-

4'(k) = ko' —k' i—kC' ( k«kC' k«j . (16)
+

4x.C'(ko' k—' i—kC') '

(«)
(17)

2

P(«)=(2/m)& F(k)(k«) ' sink«k'dk (1.1b) The scalar product (C, +) of the two Fock states is,
0 according to the previous note, given by:

g p
at t=0 by the wave packet p(«) T.he Hankel f.et us now designate by 4 any other Fock state in

m corresponding to this wave packet is: which in the 6rst stage, the two particles have zero
relative angular momentum, so that at t =0, 0' has the
form:

F(k)=(2/w)& ~ P(p)(kp) 'sinkp p'dp, (11a)
J,

With the help of (11),the time dependent wave function
can then be explicitly obtained in the form: (c', +)= 4»'0i«+ A'6

P(«, t)= (2/s)" f F(k)(k«) ' sink«exp( i ', k—'t)k-'dk

(12)

The relations (11) are, of course, connected with the
expressions in transformation theory, that take us from
the con6guration to the energy-angular momentum
representation of the state. The transform F(k) can
also be expressed as an integral over all of configuration
space, in the form:

F(k) = (2x) & I (k«) ' sink«P(r) «, (11c)

.4, (k, «)-
c(k) =

&2(k)
(13)

The component Q&(k, «) of (13) is defined so as to satisfy
V'P~+k'&~=0 and the boundary condition (6), and to
reduce in the absence of interaction (i.e., C=0) to
(k«) "sink«. For @q(k, «) we have then:

pq(k, «) = (—2ik«) '[exp( —ik«) —S(k) exp(ik«)] (14)

where S(k), the single component of the scattering
ms, trix, ' is determined by the boundary condition (6),
so that it becomes:

5(k) = (k ' k' ikC')—'(k—o' k'+—ikC')— (l5).
The component &2(k) of (13) is determined by the
boundary condition (4), so that C'(k) takes finally the

i.e., as (2w) & times the scalar product of the two wave

functions in the integrand.
From the above, we see that the explicit form for

time-dependent Pock states could be found, if we had
an appropriate generalization of the Hankel transforms
(11). For this, we introduce a stationary Fock wave
function corresponding to zero relative angular mo-

mentum for the two particles of the form:

We can now give a formal generalization of the Hankel
transforms (11), in terms of the relations:

F(k)=(2s) '(C', +)=(2/~)'J 4i*(k n)A(n)u'dn
0

+(2s) &42*(k)$2, (19a)

4i(«) t" 4i(k, «)= (2/~) ~ F(k) k'dk. (19b)
"0 - 4~(k)-

In the absence of interactions, i.e., when C=O the
relation (19) reduces to (11).A justification of the rela-
tion (19) from a quantum-mechanical standpoint, will
be given in a following paper in which the C (k)'s are
shown to be the eigen Fock states of a complete set of
commutaing observables, including an appropriately
de6ned hamiltonian, as well as the relative angular
momentum operator. The relation (19) indicates that a
Fock state 0 corresponding to the same relative angular
momentum eigenvalue 1=0 than C(k) does, can be
expanded" in terms of the basic eigenstates 4 (k) cor-
responding to eigenvalues E= ~k' of the hamiltonian.
A rigorous mathematical derivation of (19) can also be
given with the help of the functional methods developed
by Kneser, "Hilb and others, and it will be presented
elsewhere.

With the help of (19), we obtain the explicit form of
the time dependent Fock state +(t) corresponding to the
initial value (17), which is given by:

4 («, ~) ~" 4 (k, «)
+(t)= =(2/—w) & F(k)

- A(~) - "0 - 42(k)-
)&exp( —i-', k't) k2dk (20)

where F(k) is defined by (19a).
"P. A. M. Dirac, Quantum Mechanics (Clarendon Press, Oxford,

1947), third edition, Chap. III, p. 64.
"A. Kneser, Die Integralgleichungen used ihre Anmendung in

der mathematischen Physik (Vieweg, Braunschweig, Germany,
1922), second edition, Chapter VI, p. 236.
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From (20) we see that the components of %(t) satisfy
the boundary condition (4), as [rpi(k, r)],=s=C'ps(k)
from definition. Furthermore, we see from the form (16)
of Ci(k), that the components of 4'(t) will satisfy the
Schrodinger equation (2) and the boundary condition

(3), in case we can interchange the differentiation
procedures involved with the integral sign in (20).

III. TIME DEPENDENT STATES FOR SCATTERING
AND DISINTEGRATION

tA'e shall 6rst determine the time-dependent state
4'i(k", t) which gives a causal description of the
resonance scattering process. Its initial form is given

by (10a), which may be written as:

where for any complex k, we have:

x(r, k, t) =expi(kr ——',k't)

Xerfc[(1—i)(4t)-i(r —kt)], (24)

and erfc(s) stands for the error integral function defined
by .14

erfc(s)=2sr '* t exp( —s')ds=1 —erf(s). (25)

The only parameters that appear in the wave function
(23) are ki, ks, which correspond to the values of k at
the poles of the scattering matrix (15). Accordingly,
k1, k2 are the roots of the equation:

(k"r) ' sink "r
(2sr) 4 i(k", 0)=

0

ko' —k' —ikC'= 0

and so, take the values:

(26a)

exp(ik" r) —(k"r) ' sink"r
(21)

k1 = ks{+[1—(C'/2ks)']1 —i(C'/2ks) I. (26b)

The second summand, when expanded in spherical
waves, " represents a superposition of states for which

the relative angular momentum /&0. According to the
remarks of the previous section, we see that the second
summand represents a noninteracting system of two
particles, and the corresponding time-dependent be-
havior is obtained by multiplication with exp( —iE"t).

The time-dependent state represented initially by the
first summand of (21), can be obtained with the help of

(19a, 20), and if we designate the first component of

this time-dependent state by Pi(r, k", t), we can write:

(2~)tit„(r, k", t)

= [P,(r, k", t) (k"r) ' sin(k"—r) exp( —i-,'k'"t)]

+expi[k" r——,'k"'t], (22a)

(2sr)&itsi(k", t) = (1/C')[rPt(r, k", t)], s =.(22b)

The last relation coming from the 6rst, when we apply
the boundary condition (4).

The time dependent state %i(k", t) is completely
determined once Pi(r, k", t) is known, and this, in turn,
is given by (19, 20) of the previous section, if we

introduce therefor , the initial state, the form its(r)
= (k"r) ' sink"r, Ps ——0. The calculations are carried in

Appendix 1, and with the help of the results obtained
there, we can write the first component of 4't(k", t) in
the form:

(2sr) tg„(r, k", t) =expi[k" r—-', k"'t]

C kix(r, ki, t) ksx(r, ks, t)+, -,r (kts —k"')(ki —ks) (kss —k"')(ks —ki)

The second component of %i(k", t) can be obtained
from (23) with the help of the boundary condition (4),
so that we have:

(2sr) &it „(k",t) = —4siC' { },=s, (23a)

lgss(t) = (ki—ks) '[kiz(0, ki, t) —ksx(0, ks, t)]. (27b)

We have obtained in this section the explicit form of
the time-dependent states Vt(k", t), 4s(t), repr'esenting
the causal description of the process of resonance elastic
scattering, and disintegration, respectively. In the fol-
lowing section, we will show that the components of
these states satisfy Eq. (2) and the boundary conditions
(3), (4), as well as the initial conditions (10a, b). We
shall also discuss the asymptotic behavior of these
time-dependent states when t—+~, as well as its de-
pendence on the position of the poles of the scattering
matrix, which are the only parameters present.

where the terms in the bracket are those inside the curly
bracket of (23) evaluated at r=0.

The time-dependent state %s(t), which gives a causal
description of the disintegration process, is given ini-
tially by (10b), so its explicit form can be obtained from
(19, 20) if we put there its(r) =0, Ps ——1. For the cal-
culations we again refer to Appendix 1, and we have,
for the first component of %s(t) the form:

it rs(r, t) =C'r '(ki ks) '[—ktx(r, ki, t) —ksx(r, ks, t)].
(27a)

For the second component of 4's(t) we use the boundary
condition (4), and we have:

rk" t r —k" t '4 E. T. Whittaker and G. N. Watson, Modera Arsalysts (Cam-
bridge University Press, New York, 1943), American edition, pp.
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IV. PROPERTIES OF THE TIME-DEPENDENT STATES

Using the definition (24) of x(r, k, t) we can easily
check by direct substitution that:

,'(a'x/—ar') = i(—ax/at) (28a)

It is clear therefore, that r 'x(r, k, t) satisfies Eq. (2)
for any complex k. We see from the forms (23) (27a) of
the first components of 0'i(k", t), +2(t), that they satisfy
the time dependent Schrodinger equation (2) for r&0.

The components of %i(k", t), +2(t) must satisfy the
boundary conditions (3, 4), and since (4) is always valid,
as seen in (20), we can reduce the boundary condition
(3) to the form (5) in which only the first component of
the Fock state appears. Again, we need a property of
the x(r, k, t) which from its definition (24), is seen to
satisfy the relation:

—i(ax/at), =,+-,'k, '(x)„=,——,'C'(ax/ar) „,
=-,'(koP —k'-—ikC')(x) 0+(4mt) 1(1—i)(C' —ik). (28b)

Making use of (28b), which is valid for any complex k,
and of the fact that ki, k2 are the roots of Eq. (26a),
we can prove by direct substitution that P,i(r, k", t)
and P»(r, t) satisfy (5).

Finally, we want to show that +i(k", t), 42(t) reduce
at t=0 to the initial values (10a, b). This is achieved
with the help of the properties of x(r, k, t) First, if.

r&0 and t~0, x(r, k, t) 4, becau—se the factor,

erfc[(1—i)(4t) l(r —kt)f~erfc[(1 —i) ~ j~0,
as seen in Appendix 2. From this we see immediately
that for t~0, Pii(r, k", t)~(2') expik" r and Pi2(r, t)
~0. Now, if r=0, then

x(0, k, t) =exp( —i-', k't) erfc[ (1 i—)k(t/4)'$—,

which from the definition (25) of erfc(s) takes for t=0
the value x(0, k, 0)= 1. Accordingly, P»(k", t) reduces
to the sum of the coeScients of the y's contained in the
curly bracket of (23), which is seen to be zero, so that
/~i(k", 0) =0. From (27b) we see also that $22(0) =1,
so that the initial conditions (10a, b) hold.

The above analysis is seen to be independent of the
position of k~, k2 in the complex k-plane, so long as kI,
k~ are roots of Eq. (26a).

V. ASYMPTOTIC BEHAVIOR

We are interested now in the asymptotic form of our
time-dependent states 4'i(k", t), 4'2(t) when t~~, as
this form should be the one corresponding to stationary
states for scattering and disintegration, respectively. As
the only parameters that appear in the explicit ex-
pressions of these states, are the poles of the scattering
matrix, we see that these asymptotic forms will depend
on the position of k~, k2 in the complex k-plane.

As ki, k2 are roots of (26a), we see that their values
depend on those of the binding energy Ep ———,'kp' and the
coupling constant C'. From the previous note, we see
that C' must be real and positive if conservation of

probability holds. The binding energy Ep must be real,
but it can be positive or negative. We see from (26b)
that if C')0, Eo)0 and (C'/2k') (1, then ki, k~ are
in the lower half of the complex k-plane symmetrically
situated with respect to the imaginary axis. If (C /2ko)
)~ 1 then they are both on the negative imaginary axis.
In case Ep(.0, i.e., kp=iKp where Kp is real )0, then k~
is on the upper and k2 on the lower imaginary axis. For
any physically signidcant case, the poles of the scattering
matrix are then, either in the lower half of the k-plane,
or on the imaginary axis, and the general character of
this result has been shown by Schutzer and Tiomno. '
We shall also investigate the possibility that the poles
of the scattering matrix are on the upper half of the
k-plane, to see how the causal description is affected.

To obtain the asymptotic behavior of our states, we
need to know the asymptotic form of x(r, k, t) for a
given r and complex k, when t—+~. In Appendix 2 we
show that when t +~ we have:

Q2

(2~)'*Pii(r, k", t) &expik" r+-
kp' —k"'—i'k "C2

expik"r
X exp( —i-', k"'t). (30a)

The same result is obtained in the first case (i) because
though x(r, ki, t) has then the asymptotic form (29a),
the imaginary part of ki2 is negative and exp( —i2i ki't)~
when t +~.

For binding energy Eo)0, the Fock state 4'i(k", t)
tends asymptotically to the stationary state (7) cor-
responding to the resonance scattering process.

It is of interest to consider the asymptotic form of
the Fock state for disintegration 4'2(t), in the physically
important case, when the width of energy levels at
resonance is much smaller than the separation of the
levels, which in this case means (1'0/Eo)«1. From (8)
we have that (C /ko) = (I'0/Eo)«1, and from (26b) we
see that case (i) holds. From the expression (27b) for
ik»(t) we see that its asymptotic form is:

2ki(ki —kg) ' exp( —j-', ki't). (30b)

x(r, k, t)—&2 exp[i(kr ——,'k't)] when ~i ~ (—argk (-,'ir,
(29a)

x(r, k, t)—&0, when 43m (argk ((7~/4). (29b)

These relations hold also for r=0.

(a) Binding Energy Eo) 0

We saw that in this case kI, k2 are in the lower half
of the k-plane. Now we consider two separate possi-
bilities, (i) -', w & argki &0, (ii) —-', n. & argki( ——,'m. .
In the second case (ii), we have that —k", k&, ki are
in the range indicated in (29b) so that the corresponding
x's—+0, and in (23) we are left only with x(r, k", t),
whose asymptotic form is given by (29a), so that finally:
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According to the interpretation given to the com-

ponents of a Fock state in the previous note, we see
that fo,*(t)f»(t) represents the probability of observing
a state originally in the form of a single particle, still
in that form at time t F.rom (30b), and the fact that
k~ ~kp —iC'kp, we see that this probability is given by:

const exp( C—'k, t) (30c)

and so, the width I'p=~C'kp is related with the prob-
ability of disintegration of the compound particle, as
one should expect. "

(b) Binding Energy E,&0

In this case, kI is on the upper and k2 on the lower

imaginary axis, and therefore, —k", k2 have their
arguments in the range (29b), so that the corresponding
x's—4, while the y's corresponding to k", k~ have the
asymptotic form (29a). It is clear then, that the asymp-
totic form of (2or)&f»(r, k", t) is given by (30a) plus
the term:

2C2&,(&,2+k 2)
—1(&1+&2)

&([r-' exp( —xqr) exp(ioxgt)], (31)

where k~=i~I, k2= —if(:2, and ~~, ~~ real &0.
The term in the square bracket of (31) is seen to

satisfy Eq. (2) and the boundary condition (5), and
it goes exponentially to zero when r—+~, It represents
then a bound state corresponding to the negative

energy Ej= —~f1,~', and its appearance in the stationary
state for scattering just tells us that for Ep&0, i.e.,
M((m~+rlo), a stable bound state can be formed as a
result of the collision. Because of its behavior when

r—+~ this bound state does not change the dependence
of the cross section on energy, which continues to be
given by (8).

From (27a) we see that when t~~, f»(r, t) tends,
except for a constant factor, to the form (31).The Fock
state 0'o(t) tends then asymptotically to the above

bound state of negative energy Ei.

(c) Poles of the Scattering Matrix in the Upper
Half-Plane

As the poles of the scattering matrix k~, k2 are roots
of Eq. (26a), they can be in the upper half-plane (ex-
cluding the imaginary axis), only if we aba, ndon the
restriction that O', Ep are real and that C'&0. We
cannot though give arbitrary complex values to Ep C'-

as the fundamental properties" of the 5-matrix for
real k:

S(k)S(—k) = 1, S~(k)S(k) = 1

must be preserved. To satisfy this restriction, we see

that Eo, C' in (15) must remain real and we have only
the freedom of taking C'&0. In this case the poles k~, k2

when outside the imaginary axis, will be situated in the

upper half-plane symmetrically with respect to this axis.

'g E. Fermi, nuclear Physics (University of Chicago Press,
Chicago, 1950), revised edition, p. 154.

'I Ning Hu, Phys. Rev. 74, 132 (1948).

P,(r, k", t) = C'r 'P A x(r, k;—, t), - (32)

where k», k2 are, as before, the poles of the scattering
matrix, k3= k", k4= —k" and the A s are the coefficients
of the corresponding x's in (23).

The scattered current j is expressed in the usual
form in terms of the Pa, and the flux through an element
of area dS, subtending a solid angle der at a relative
distance E, is given by:

F(R, k", t)doo =(r 'r j)„ad—S
= (2i) '[(r4'a)*(~re/~r)

—(rPa) (Br/a/Br) j„adrs (33)=.
From the de6nition (24) of the functions x(r, k, t)

it is easily seen that the flux per unit solid angle at a
relative distance R, becomes:

F(R, k", t) =ReC' Q 2;x(R, k„ t)

where Re stands for real part of the expression (34).

We indicate by k~ the pole in the first quadrant, and
by k& the pole in the second. Now, if (3or/4) &argk&(a
the corresponding y goes to zero, while in case
(or/2) (argk& &&(3or/4) the x has the asymptotic form
(29a) but this, in turn, goes to zero when t~~ because
k22 has a negative imaginary part. We need to concern
ourselves only with the x's in (23) corresponding to
k", k&. The asymptotic form for x(r, k&, t) is given by
(29a), artd it goes to oo when t +oo —because the imaginary
part of kP is positive. The wave function P~&(r, k", t)
will go then to ~ when t~~.

For poles in the upper half-plane (excluding the
ima, ginary axis), it is not possible to give a causal
description of the scattering process in terms of a wave
function f»(r, k", t), connecting the initial plane wave
with a final plane plus scattered waves. This is in line
with the general results of Schutzer and Tiomno. '

VI. THE TRANSIENT SCATTERED CURRENT

In a scattering process, our main interest lies in the
determination of the scattered current, which is
directly connected with the cross section. As in the
present analysis we have obtained a time dependent
state P~, (r, k", t) for the description of the scattering
process, we see that we are in a position to determine,
not only the stationary scattered current that is
established when t—+~, but also the transient scattered
current that appears between the initiation of the
phenomenon and the establishment of stationary con-
ditions.

From (23) we see tha, t (2a.)&P»(r, k", t) is given by
a plane plus a scattered S-wave, which we shall desig-
nate by Pe(r, k", t), and whose form is:
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From the properties of the x's given in Secs. IV, V, Cauchy's principal value, "as it can be written in the
we see that at t=0, F(R, k", 0) =0, while when t +—~, form:
the Aux F tends to:

F(R k" t) +C-'k [(ko'—k'")'+C'k'"] —' (35)

so that the total cross section for the stationary state
is given by (8).

The expression (34) for the transient scattered Qux

simpli6es somewhat, in case the relative distance is
large, i.e., if R &)

~

k"
~

—',
~

k2~ '. In this case, it is seen
that for any positive time t) 0, z(R, k2, t), z(R, —k", t)

0, so that the summation involved in (34) can be
restricted to the values i = 1, 3 of the indices.

It is a pleasure to acknowledge the support given to
the present research by the Instituto Nacional de la
Investigacion Cienti6ca.

(wjkr) '~l (k"2—k2) ' exp(ik"r)k"dk",

and the principal value of this integral, which is gi
times the sum of its residues at the poles k"= —k',
k"=k, is just (kr) ' coskr. We have then for F(k) the
form:

F(k) =
ko' —k'+ ikc' k

1 kp' —k'
+ 5(k"'—k') . (38)

m (k' —k"') kC'

APPENDIX 1 Introducing this F(k) in (20) we obtain the 6rst com-
In this appendix we shall obtain with the help of ponent of the time dependent function:

(19, 20) the time-dependent wave functions corre-
sponding to the initial states:

(k"r) ' sink" r
and

'0
(36)

k "C'(ko' k'")—cosk "r ko' k"" sin—k"r-
+

(ko' —k"')'+ k"'C' k"r k "C' k"r

For the 6rst of the above states, we have that the
components of (17) are f~(r) = (k"r) ' sink"r and f~——0,
so that the corresponding transform F(k), given by
(19a), is:

kC' p" (coskr

kn-'' —k'+ikC' & 0 E kr

kp' —k' sinkr ~
sink"r

r'dr . (37)
kC kr ) k"r

The part of (37) inside the curly bracket is clearly the
ordinary Hankel transform (11) of that part of the
integrand inside the round brackets. To evaluate (37),
we just need the Hankel transforms of (kr) ' sinkr and

(kr) ' coskr We assert. that these Ha, nkel transforms
are (2m)&k 'b(k'" —k') and —(2n)&Lx.k(k' —k"')] ' re-

spectively, and because of the reciprocal relation (11b)
that holds for Hankel transforms, our assertion will be
valid if we can prove that:

(2/w)& it [(2x)&k 'b(k"' —k')](k"r) '
0

Xsin(k"r)k"'dk"= (kr) ' sinkr,

(2/m)& ~t (2w)&Lmk(k"' —k')] '(k"r) '

0

&(sin(k"r)k"'dk" = (kr) ~ coskr.

The erst equation is obviously true, and the second
will be valid if we interpret the integral in the sense of

t."2k'C' exp( —i-,'k't)
&(exp( —Pk"'t)—

(k '-k~)2+k~C4

coskr kp' —k' sinkr kdk
x + (39)

k. kC- kr ~(k2 —k"2)'

where the integral must be interpreted in the sense of
Cauchy's principal value. "

To evaluate the integral in (39), we 6rst simplify
it by using exponential functions and extending the
range of integration from —~ to ~, so that it becomes:

Qo 4
- —I

C'(~ir) 'P ~~ k g(k —k,) expi(kr —-', k't)dk, (40)
oc

where P stands for principal value of the integral, and
k, , j= 1, 2, 3, 4 have the same meaning than in Sec. VI.
%e shall furthermore assume that the binding energy
Ep&0 and that the coupling constant C' is small enough
so that k~, k2 are in the lower half of the k-complex plane,
and k~ is inside the wedge as in Fig. 1. This restriction
is just for the purpose of simplifying the calculation, as
the 6nal results are shown in Sec. IV, to be valid inde-
pendently of the position of the poles of the scattering
matrix.

We now consider the path in the complex k-plane
shown in Fig. 1. As on the arcs of circle represented by
dotted lines in Fig. 1, k has a negative imaginary part,
we see that the integrand vanishes exponentially for
large values of

~
k~ on them. Also inside the contour,

(which includes the circle around k~) the integrand is a

"See reference 14, p. 117.
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analytic function of k, so using Cauchy's theorem we

obtain:

=zi Res(k= k—") z—i Res(k= k")

(g—i) ac

—2zz Res(k=ki)+ t, (41)
~ —(I—i)

where Res(k= —k"), etc. stand for the residues of the
integrand at those values of k.

In the integral on the right of (41) we decompose the
rational part of the integrand into partial fractions, so
we have:

form:

F(v, X, z,)=exp()iz; —vzg)7ri

X }erfL(2iv&) '(X—2vz ))W1} (44)

where the + sign is used when the imaginary part of
z;)0 and the —sign when it is (0.The function erf(z)
is the error integral of (25).

With the help of (44) we can evaluate (43) using
the + sign in (44) for the poles k", ki, and the —sign
for —k", k2. From (43) and the values of the residues
of the integrand in (41), we obtain 6nally:

Pi(r, k", f) = (k"r) ' sink "r exp( i ~zk—'"t)

4

k g(k —k,) =Q A;(k —k;) ' (42)
C'r 'P —A;x(r-, k;, t), (45)

where Ai ——ki[(ki —k2)(ki —k~)(ki —k4)]—', etc. Further-
more, we introduce a change of variable z= k exp(iz/4)

/
/

I
/

I
l

I

I
I

I
I

l

/

where x(r, k;, t) is the function defined by (24). Intro-
ducing this value in (22a), we obtain the expression for
the 6rst component of %(k", t) given by (23).

If we now consider the second state in (36), we see
that for this state the components of (17) are fi(r) =0,
P&=1 so that the corresponding transform F(k) is by
(19a) just:

F(k) = (2/z) ~C'(k(P k'+ik—C') ' (46)

The first component of the corresponding time de-
pendent function, which is now P»(r, i), is obtained by
introducing (46) in (20), and we have:

p" k'C4 exp( —i ',k9)-
&,2(r, t) = ( 2'zC') —'

~~

(ko' —k') '+ k'C4

coskr ko' —k' sinkr &

&& + — kdk. (47)
kr kc' kr

FIG. 1. Integration contour.

and we have for this integral:

This integral has a form similar to the one that appears
in (39), except that the factor (k' —k'") ' is not present,
so that there are no poles at k= &k".The evaluation of
(47) can be made along similar lines than in the pre-
ceeding case, and we only need to eliminate the indenta-
tions of the contour at k= +k", as there is no need to
consider principal values here. The result of the inte-
gration is given in (27a).

—=PA,F(., z, z,), (43)

where X=r exp(iz/4), i =(t/2), z, =k, exp(i z4/) Now, .
the functions F(i, li, z,) de6ned by the integrals in (43)
can be easily evaluated, either by diGerentiating them
with respect to X and solving the differential equation
that appears, or with the help of a table of Fourier
transforms. " The function F(v, lj,, z,) takes then the

"G. E, Campbell and R. M. Foster, Fourier Integrates for Prac-
tica/ A pplicatioes {D.Van Nostrand Company, Inc. , New York,
j.948), Formula 728.5.

APPENDIX 2

%e shall summarize here some of the asymptotic
properties of the error integral function erfc(z), and
derive from them the asymptotic behavior of x(r, k, f)
de6ned by (24), when i~0 and t~~.

It is known" that the error integral can be expressed
in terms of confluent hypergeometric functions in the
form:

erfc(z)=(z-z) & exp( —. ziz')W y, y(z') (4g)

and from the asymptotic behavior of these functions"
we can obtain directly that for

~
z~~~,

erfc(z)~z ~z ' exp( —zz), if —z/2 (argz (vr/2. (49)


