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Electron Density Distribution in a High Frequency Discharge
in the Presence of Plasma Resonance*
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In a high frequency discharge plasma resonance maximizes the electric field, thus producing a high
ionization rate in the regions near resonance. The eBect of this on the distribution of electrons and of ioniza-
tion in a parallel plane discharge is calculated and compared with the observation that the light from such
a discharge often is a minimum at the center,

I. INTRODUCTION
' ~T was pointed out by Schumann' that when a high
~ ~ frequency field is applied to an ionized gas of high
electron concentration, the Geld tends to concentrate in
those parts of the discharge where the plasma is near
resonance. ' The admittance of a high frequency discharge
under such conditions was discussed in a recent paper. '
The appearance of a microwave discharge at high
current is shown in Fig. 1 in which the discharge is
taking place between parallel plates at the right and
left of the bright glow, and it is noted that the light
intensity is greatest near the electrodes. It may be
inferred that the Geld is greatest here, and this corre-
sponds, according to Schumann, to regions where the
plasma is in resonance and is shielding the central part
of the discharge. It is the purpose of this paper to
calculate the electron density throughout the discharge
under such conditions, and to show that the ionization
has sharp maxima in the resonance regions.

II. THE IONIZATION FUNCTION

For a given applied Geld of radian frequency, co,

plasma resonance occurs at an electron density, '

n = mepP/de, (1)

where e and m are the charge and mass of an electron,
and &0 is the electric permittivity of free space. It is
convenient to measure electron concentration in terms
of this by the variable,

r = ne'/mrs'pp,

which is unity when the plasma is in resonance. A
damping constant for the plasma is given by

the total current density, including both electron cur-
rent and displacement current is given by Eqs. (5) and

(9) of reference 3. In terms of the parameters defined
above it is

J= [ne'/m(v. +jpp)+j ld pp7E
= [r(p —j)/(p'+1)+j7~p&, (4)

from which the magnitude of the resistivity is

~
E/I

~

= (1/(dpp)(P +1)&[(r—1) +P 7 & (5)

This quantity has a maximum at resonance where r= 1.
The ionization frequency per electron v; depends on

the applied Geld, and over a limited range about a
central value E0 we shall assume, following Berlin and
Brown, 4 that it varies as a power 2o. of the Geld:

v;/v, = iE/E, [".

p= vg/co) (3)

where v, is the average frequency of collision of an
electron with the molecules of the gas. The formula for

*This work has been supported in part by the Signal Corps,
the Air Materiel Command, and ONR.

' W. O. Schumann, Z. Physik 7, 121 (1942).' L. Tonks and I. Langmuir, Phys. Rev. 33, 195 and 990 (1929)' E. Everhart and S. C. Brown, Phys. Rev. 76, S39 (1949).

FIG. 1. Appearance of the high frequency discharge.

4 M. A. Berlin and S. C. Brown, Phys. Rev. 74, 291 (1948)
and Phys. Rev. 74, 910 {1948).Our a is P/2 in their notation.
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r/ ro Equation (9) integrates once to give

(dr q
2

r
"' 2rdr

=k'L'
(du) ", (r' 2r—+1+P')

(12)

«I O

«8/2

I.O

The function L introduced here is proportional to the
electron density gradient and, therefore, also to the
electron diffusion current. A second integration gives
the electron density as an implicit function of position

(13)
FrG. 2. Variation of electron density r across a discharge for

which e=2 in the limit of high pressures for various ratios
s =r0(P'+ y) &.

With the value of E from Eq. (5) this is

v, = vol g/4&~0EOI'~(p +1)~L(r—1) +pj ~. (7)

The ionization rate is thus a function of the electron
density with a maximum at r=1.

III. THE DIFFUSION EQUATION

The distribution of electrons in the discharge is
determined by the production rate nv; in the gas and
diffusion to the walls, and it will be assumed that the
electron density is such that ambipolar diffusion exists.
I imiting ourselves to the case of extended plane parallel
plates perpendicular to the z-axis, the djtffusion equation
is'

d'n/ds'+nv;/D, =0

where D, is the ambipolar diffusion coeKcient. It is
convenient to normalize distance by the variable
u=2s/h, where s is measured from the mid-plane and
b is the plate separation.

After substituting from Eq. (7) we then express
Eq. (8) in terms of r and u:

d'r/du'+k'r/(r' —2r+1+P') =0 (9)
where

jp= LPvo(1+ pm) /4D, ]l
j/M60EO l'~ (10)

is a constant. It is determined as a characteristic value
for Eq. (9) with the boundary conditions:

r=ro, dr/du=0, at u=0
(11)

r=0, at e= &1.
r/r

IO

The characteristic value of k is then given by setting
the lower limit r=0 with 1= 1.

IV. INTEGRATION

The integration in (12) is readily performed for any
integral or half-integral value of a but the integration
(13) causes trouble. We shall carry it out with four
different approximations applicable to di8erent dis-
charges or to diAerent parts of the same discharge.

0 +2
v2%

Fio. 4. Variation of electron density across a discharge
at low pressures.

From these the general form of the solution may be
readily visualized. The four approximations will be:

A: 2r«r'+ 1+p'.

By neglecting the only negative term in the denominator
of (12) all resonance eifects on the electron distribution
are eliminated. This approximation is always good at
high pressures P'))1 and also at any pressure for
electron concentrations not near resonance. The next
two approximations are sub-groups of A.

B: r' 2r«1+—P'

This amounts to neglecting the ac electron current
relative to the displacement current or to assuming a
uniform 6eld. It is good only for electron concentrations
well below resonance or for su%ciently high pressures,

C: p'+1«r'.

-I.O
-5/2

IO

8/2

This approximation neglects the displacement current.
It is good only at electron concentrations above
resonance and therefore never good near the walls.

FM. 3. Variation of electron density r across a discharge.
Limiting form at very high electron concentrations s»1 for
various values of a.

D: P«1.
This neglects the resistive current and is the low
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pressure limit. The eGects of resonance dominate this
approximation.

A: Neglecting the term 2» in the denominator of (12)
the integration yields, for o./ 1,

0.6 I & s

0.4-

0.2-

and for 0.=3
ku= (» '+1+P')E(x P) (16)

kN = (»0'+1+p') &L2E(~/v2, y) F(x/v2, y—)j. (17)

Substitution in (13) then leads to incomplete elliptic
integrals' for all integral values of a. Substituting

g=»o(»0+1+P') ' and cosP=»//»q

we find for 0.=2

Ol
I

EA

O

04
LLj

Ci

Q,I—

004-

002-

»=», cosl kN/(11 P') «')=», oc(ssN2/) (19)

k = (1+P')"m/2. (20)

This is the solution of the simple diGusion equation and
substitution of this last expression into (10) and (7)
leads to the usual equilibrium condition

v, =x'D, /P. (21)

The held and ionization rate per electron are, in this
case, uniform throughout the discharge.

C: The neglect of all but r' in the denominator of
(12) leads to the integral

Curves of »/»0 vs u for n=2 and various values of
»0(p'+1) ~=s are shown in Fig. 2. The two limiting
curves in this case (a=2) are a cosine and a circle, the
effect of increasing electron concentration being always
to increase the concentration near the walls relative to
that in the center.

8: Neglecting»' —2» in the denominator of (12)
leads to elementary integrations,

QQI
I I I I I I I I I

0.6 I.O 2 4 6 IQ

E/p (volts/cm-mmHg)

FIG. 5. Variation of v;/D~ with E/p in helium for large p.

there is a bend in the plot of r vs u. In order to obtain
the value Lo of L at the boundary we may set r=1 in
the numerator of (12) and integrate from zero to
inhnity without appreciable error.

~rp
I

+ 2d»L'= iI

"o I:(»—1)'+P'3 "-- L(»—1)'+P'3

2g~ r(~—1/2)
(23)

p2a —1 p(~)

In the central part of the discharge not near resonance
approximation C holds, so that at the resonance point ui

&r0

km~ ——(n 1)&» —'~' » '(»,' ' r ') &d—». (2—4)—- — —

1

p
9'0

kl = (n —1)&» ' » '(»0' »2 ') &d». (22)—
IC

I I I I I I I

This integration has been performed for a number of
values of n and the results are shown in Fig. 3. For
a=0 the curve is a cosine, for a=2 it is a circle, and
as n—+~ it approaches a rectangular box.

D:The integrand of (12) has singularities at »= 1&jP
but the approximations made in A, 8, and C put these
singularities back on the imaginary axis so that the
path of integration did not go between them. At low
pressures these singularities lie close to, and on either
side of, the real axis and the integration (12) must pass
between them if ro&1. The major part of the integral
then comes, for small p, from the saddle-point region
near»=1. d»/dN, changes rapidly in this region and

~ E. Jahnke and F. Emde, TaMes of Functions (Dover Publica-
tions, New York, 1943), pp. 52-72.
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Fro. 6. Variation of a with pb in helium for large P.
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Curves for this case are shown in Fig. 4. These curves
have sharp bends at the resonance points because of the
approximations made. The lowest curve does not reach
resonance and is a cosine.

V. DETERMINATION OF e

One method of determining n experimentally will be
described to show that at a given frequency there is a
relationship between n and P. The values of a can be
obtained from measurements of the operating field E
at various pressures p when the electron concentration
is kept below resonance but not so small that ambipolar
diBusion does not prevail. Under these conditions E is
constant at a given pressure independent of both dis-
charge current and position. Therefore v;/D, will also
be constant -qual, in fact, to w'/8' as is given by (21).
Data are thus obtained for making a, plot of v,/D~ os

E/p which are the proper variables for the problem as
Herlin and Brown4 have shown. The slope of this curve
on logarithmic paper is 2n —2, from Eq. (6), and thus
a is determined at various electric fields and pressures.

The procedure outlined above is essentially similar
to that of Herlin and Brown who treated the breakdown
condition instead of the steady-state discharge studied
here. They point out further that there is a curve of
v,/D, E' vs E/p for each value of pX, where X is the free
space wavelength of the exciting field, and P=0.013PX
(cm-mm Hg) for helium.

Data for the limiting case of large P have been
obtained for helium and plotted in Fig. 5. The corre-
sponding values of a ns ph obtained from the slope of
this curve are plotted in Fig. 6.

0
Fn. 7. Variation of electron density, electric 6eld, and ionization

rate across the discharge.

Near the walls approximation B holds because r«1.
r

L'= Lo' —) 2rdr =Lo' —r'

1

k(1 —ui) = ~f (Lo' —r')-&dr=sin —'(1/Lo) =1/Lo, (26)
0

because Lo is large when P is small. Equations (24) and
(26) determine k and ui.

These relations are particularly simple for n=2.
Then Lo'= or/Po k=ro(ro' 1)&+1/Lo, —

1—=1+
L oro(r' —1)&

VL DISTRIBUTION OF IONIZATION

The electric field and ionization distribution will be
computed in detail for a particular discharge in helium.
For a value of pb of 23 we find from Fig. 6 that a= 7/2.
Also if PA=77 we find that P=1. We further choose
the electron density at the center of the discharge to
be such that nX'=2. 2X10"/cm so that ro=2. The
curve of electron density vs position for these values is
shown in Fig. 7(a). The variation of electric field across
the discharge is computed from Eq. (S) and shown in

Fig. 7(b). Equation (6) can then be used to compute
Fig. 7(c) which shows the variation of the ionization
rate per electron at various positions across the dis-

charge. The ionization rate will be the product of the
ionization rate per electron by the electron concentra-
tion and is thus the product of the curve of Fig. 7(c)
with that of Fig. 7(a). This is shown in Fig. 7(d). Assum-

ing that the excitation at each point is proportional to
the ionization at that point this should also correspond
to the light intensity emitted by various portions of the
d1$charge.




