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Thermodynamic Properties of a Non-Ideal He'-He' Solution Model
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Deviations from ideality for He3 —He4 solutions are calculated on the basis of a simple real solution
model. Expressions for equilibrium total pressure are derived for situations with and without superQuid He .
EGects of non-ideality on previously reported calculations of lambda-point dependence on He' concentration
are examined, and an equation representing the lambda-points of concentrated as well as dilute He' solutions
is given. The results are used in the comparison of various bases for treatment of the lambda-point shift.
Assumption that the partial molal enthalpy of superQuid vanishes gives more satisfactory results than
assumption of zero partial molal entropy of superBuid.

I. INTRODUCTION

HERMODYNAMIC treatment of ideal liquid
solutions of He' and He4 has been given recently

by a number of investigators. ' ' Previous workers have
pointed out the dependence of theoretical results on
assumption of solution ideality and have indicated the
difhculty of obtaining any precise measure of ideality
deviation from available measurements of solution
properties. Systematic estimation of non-ideality cor-
rections is, therefore, important for the understanding
of real solution behavior. This paper considers the
calculation of corrections for a simple real solution
model and the comparison of model properties with
those of the ideal and actual solutions.

II. CHEMICAL POTENTIALS

At temperatures for which there is no superQuid,
solutions of He' and He4 are two component mixtures.
Interaction of these non-electrolytes gives rise to devi-
ations from ideality conveniently described by the
excess chemical potentials of the substances, that is,
the differences between actual chemical potentials and
values for ideal mixtures. A useful representation of the
excess chemical potential of A in a two-component
mixture, A and 8, is p~B=Q; k;fB' The volum. e frac-
tion of component 8, fB, is defined as

ÃBVB/(IVY Vg+ VBVB) or xB/(xg V++xBVB),

where V; is the molar volume of pure j and X; is the
number of moles of substance j.

Scatchard has considered' the results of non-elec-
trolyte interaction and has shown that, for a simple
solution model, k;=0 for i/2 and

~2 VA(aAA aBB ) g

where —an is the energy of unit volume of pure liquid

j minus that of the same quantity of perfect gas j at
the same temperature. Using this model, one can

' J. W. Stout, Phys. Rev. 76, 864 (1949).' C. J. Gorter, Physica 15, 523 (1949).' O. G. Engel and O. K. Rice, Phys. Rev. 78, 55 (1950).' O. K. Rice, Phys. Rev. 79, 1024 (1950).' G. Scatchard, Chem. Revs. 8, 323 (1931.).

express potentials of isotopic helium solutions as

ps= Ii3'+ET lnx3+ Vsaf4',

@4=p4'+E'llnx4+ V4afi',

where a= (ai3&—a44'*)'. Detailed description of the
solution model, derivation of Eq. (1), and extension of
the treatment to mixtures with more than two com-
ponents has been given by Scatchard. "

One of the chief recommendations for the above
expression for the potentials is that it seems to combine
reasonable approximation with simplicity of mathe-
matical form. More complicated equations have been
used but often the data are not precise enough to
warrant the added terms.

The assumptions on which the derivation rests are
listed in reference 7. The relations of these assumptions
to the validity of the simple equation have been con-
sidered by many investigators. The assumption of tem-
perature independence for the molecular distribution
function and the related ideal entropy of mixing have
been discussed critically for various deviations by
Hildebrand and Wood, ' Guggenheim, ' Scatchard and
Hamer '0 and Hildebrand " K.irkwood' has calculated
the e8ect of sorting on the thermodynamic properties.
Even when the temperature is such as to produce
critical mixing, the correction for the excess free energy
is only about five percent. For isotopic solutions this
correction can be neglected.

In practice, use of a Flory-Huggins excess entropy of
mixing instead of the zero value of the above develop-
ment does nqt seem to be justified until the ratio of
molar volumes becomes greater than 2 to 1; the ratio
for He' and He4 (about 1.4 to 1) makes the use of this
correction inappropriate.

' G. Scatchard, Kemisk 13, 77 (1932).' G. Scatchard, Trans. Faraday Soc. 33, 160 (1937).' J. H. Hildebrand and S. E. Wood, J. Chem. Phys. 1, 817
(1933).

'K. A. Guggenheim, Proc. Roy. Soc. (London) A148, 304
1935)."G. Scatchard and W. J. Hamer, J. Am. Chem. Soc. 57, 1805
(1935)."J.H. Hildebrand, SolNNlity (Reinhold Publishing Corpora-
tion, New York, 1936).

~ J. G. Kirkwood, J. Phys. Chem. 43, 97 (1939).
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Correction for nonzero volume change on mixing' is
a multiplicative term in the excess free energy
1 p—oaf~fq/2 where po is the compressibility of the
isolated components. Even though P for helium is very
large compared with other liquids, the value to be
subtracted from unity is of the order of 10 ', in view
of other uncertainties, the error arising from use of the
zero volume change equation, that is, Eq. (1) can be
neglected.

Use of the geometric mean of a33 and a44 as a rough
approximation for a34, which enables one to obtain the
energy parameter for a mixture from the parameters of
its components, has been discussed by Hildebrand and
Wood' and by Hildebrand "

On the basis of the above treatments, calculation of
a gives a reasonable expression for chemical potential
as a function of composition. The quantity a;; is very
nearly equal to the heat required to vaporize one cm'
of liquid j minus the corresponding external work. In
the following calculations the experimental heats of
vaporization were used and the perfect gas law was
employed to obtain the gas volume portion of the ex-
ternal work. Calculated in this manner, a is 0.1005 cal/
cm'. Densities and heats of vaporization used are those
given by Keesom" for He4 and those given by Grilly,
Hammel, and Sydoriak'4 for He'.

III. SOLUTION VAPOR PRESSURES

Conditions for liquid-vapor equilibrium include the
equality of liquid and vapor chemical potentials. Equa-
tions (2) and (3) with p;P(P, T)+V,~(P P,o) re-—
placing p, P(P, T) can be used for the liquid potentials,
since the liquids can be taken as incompressible without
very great error at the low pressures considered. The
vapor potentials can be easily obtained if the equation
of state of the gas mixture is known. One can use an
expression stopping with terms in 1/V such as

PV = (iV ~+%4)RT[1+ (N~+$4)Bw/V j
where 8„=83y3'+2834/3/4+84/4 8, is the second
virial coefFicient of the gas i, and y; is the gas mole
fraction.

Neither experimental nor quantum-mechanical (com-
puted) values are available for 834, but it seems reason-
able that the value estimated from properties of the
pure gases mill be as good an approximation as the rest
of the calculations. Various rules for obtaining mixture
parameters have been reviewed by Beattie." For the
simple equation of state chosen, probably the best rule
is the Lorentz approximation 8~4= (83&+84~)'/8 which
is obtained by averaging molecular diameters.

The chemical potentials of the gasesi and j of a two-
component system obeying the above equation of state
are given by

g„r(P, T)=p,,o(P„O, T)+RTln(Py, /P o)+B,(P—P 0)+r;,
~ W. H. Keesom, Helium (Elsevier Publishing Company, Inc. ,¹wYork, )942).
"Grilly, Hammel, and Sydoriak, Phys. Rev. 75, 11Q3 (1949}."J.A. Beattie, Chem. Revs. 44, 178 (1949).

where r, =(28;; 8—, B—,)(1 y—,)'P and j refers to the
other component. Equating potentials and remembering
that the sum of y& and y4 must be unity, one has for the
total pressure

P=P40x4 exp {fk4fP+ (V4i 84)—(P P40—) r4]/—RT }

+P4'x3 exp {[kaf4'+ (V3) 8—3)

X (P—P, ')—.j/RT }. (4)

The y, values obtained from a Dalton-Raoult computa-
tion are suKciently close for calculation of the r; since
the r terms are small corrections. By successive ap-
proximations, P can then be obtained for any given
liquid mole fraction from the temperature and proper-
ties of the pure gases and liquids.

Vapor pressures of the pure liquids (as functions of T)
and liquid volumes are given in references 13 and 14;
8 as a function of temperature is available for both
isotope three" and isotope four. " Experimental pres-
sures for testing (4) are not available, but P is known to
be greater than the ideal value. The signs of terms in
the exponentials insure that the deviations calculated
from (4) are in the right direction. It should be noted
that (4) can hold below 2.19'K for a range dependent
on x3 since He' depresses the lambda-point.

For temperatures less than the lambda-temperature,
the treatment must be modi6ed to include the inQuence
of superQuid. Rice and Engel" have proposed correc-
tions for the presence of superQuid. Adding these cor-
rection terms to the chemical potential expressions (2)
and (3) multiplies the nonsuperfluid total pressure by
corresponding corrections so that

total pressure =P.(x~+x4„) '
Xexp{S&Lx4.+in(1 —x4,)j/R(r+1) },

where P, is the right side of (4) with x4„replacing x4,
5& is the entropy at the lambda-point, r is an empirical
constant given in reference 18, n refers to normal Quid,
and s refers to superQuid. It is important to note that
the mole fractions used to evaluate P„as well as the
correction factor, must be calculated from the total
number of moles X3+X4„+X4,. Rice and Engel's have
indicated the use of the equality of normal and super-
Quid chemical potentials for calculation of x4„and x4.,
from the total amount of He4 and the total amount of
He' in a given sample. As it should, the expression for
the total pressure reduces to P, the nonsuperQuid value,
when x4, =0.

IV, LAMBDA-POINTS OF THE SOLUTION MODEL

Thermodynamic investigation of the He' composition
effect on He' —He' solution lambda-points, as described
by Rice, 4 has involved the assumption of solution
ideality. Investigation of the lambda-point-composition
relation for the g.on-ideal model described above can

"van Kranendonk, Compaan, and de Boer, Phys. Rev. 76, 998
(1949)."J.Kistemaker and W. H. Keesom, Physica 12, 227 (1946}."O. K. Rice and O. G. Engel, Phys. Rev. 78, 183 (195Q).
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There remains one further uncertainty concerning the
superfluid term. Previous workers have shown that
either 84.=0, or H4, =0 is a possibility. Assumption of
the former and of solution ideality gives essentially the
results of Gorter, ' while the latter gives those of Rice.4

Starting with either the Gorter or Rice case, one can
distinguish subcases depending on the heat capacity
behavior assumed.

Cases for which 84, ——0

For the Gorter case, Eq. (6) yields the general result,

d Tg/dxa ——D/S4. , (8)

FIG. 1. Lambda-temperature es He' mole fraction. Experimental
points are circled.

point in some measure to the relative importance of the
ideality assumption. The fundamental equation of
Kngel and Rice in the two fluid lambda-point discussion
1s

—Sa., adTa Sa., adTa+ (8Ia—4./Bxa)adxa (5)

where the notation is the same as that of reference 3.
Rearrangement of (5) gives the change of Ta with com-
position as

d Ta/dxa ——(8p4./Bxa)a/(8a —S4,). (6)

Non-ideality eGects for the solution model appear in
the partial derivative in (6), and these eGects are intro-
duced explicitly by calculation of this quantity from
(3). Equation (3) is appropriate since the mole fraction
of superfluid is taken as zero along the lambda-curve.
Noting that xa+xa-—1, expressing fa in terms of mole
fractions and volumes, and taking p4„0, V~, V4, and a
as properties of the pure materials, one obtains by dif-
ferentiation of (3)

(Baaa„/Bxa)g= —RT&,/(1 —xa)
+2V4'Vaja/(xaVa+xa«)a

= —1.987'/(1 —xa)
+152.66xa/(2. 397+xa)' (7)

if Va ——38.86 cm'/mole, Va ——27.42 cm'/mole, and
a=0.1005 cal/cm'.

With the information of (7) available, the problem of
representing T~ as a function of x3 is reduced to that of
representing the partial molal entropies as functions of
T~ and x3. Since the solution model has as one of its
basic features zero excess entropy, the concentration
dependence is simple. The temperature dependence is
more speculative, and each of the possibilities discussed

by Kngel and Rice' for the ideal solution is considered
here.

where D= (BIa4„/Bx—a)a If C. „is zero and, therefore, Sa„a
is temperature independent, S4 = 1.59 R ln(1——xa)
where the experimental value at the normal lambda-
point, 1.59 cal/deg/mole, has been used. Since D is
known from (7), the equation can be integrated. The
results appear as curve E in Fig. 1.

Assumption of a linear heat capacity will make 84„'
equal to AT and S4„AT R ln(1———xa)—. The constant
A is 0.725 cal/deg'/mole since 54„' is 1.59 cal/deg/mole
when T is 2.19'K. The results of this heat capacity
assumption appear as curve F.

The third heat capacity subcase appears as curve A.
Here the heat capacity is assumed to remain equal to its
value of 2.2 cal/deg/mole at 2.19'K for a short interval
and then decrease to zero according to a T cube rela-
tionship, so that there must be a separate discussion for
each part of the C~ curve. The method of determination
of the range for constant C„and for AT' value of C~
is that given by Engel and Rice, ' but the entropy and

enthalpy data are those used by Rice. 4 As a result

C~=2.2 caljdeg/mole, 2.19'K&~ T)~ 1.48'K,

C~ =0.679T' cal/deg/mole, 1.48'K ~&T&~O'K.

For the upper portion of the curve

S4„=2.2 lnT —0.135—R ln(1 —xa),

while for the lower part S4 0.2263T' R ln——(1—xa). —
This modi6ed cubic behavior seems to give the closest
approximation to the experimental values for any of
the S4,=0 cases.

Cases for which H4, —-0

Engel and Rice, in examining ideal solutions, as-
sumed that H4, vanishes, rather than 84„and trans-
formed (6) to read

d Ta/dxa DTa/Ha, a. ——

The problem of determining the lambda-temperature

shift, then, is that of expressing H4 as a function of x3

and Ty.
Scatchard has calculated' for the model solution the
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heat of mixing, a quantity in general diBerent from the
excess free energy because of the volume change on
mixing. Discarding compressibility terms, one has ap-
proximately H~=E„~+V~Tao/P0 where no is the
coefficient of thermal expansion for the isolated com-
ponents. Assuming that oto= n4, the value for He', and
differentiating, one has H4 =H4 '+V4ufs'(1+~4T)
For the very small values of T considered, 0.4 is about
0.03 deg '. Thus it appears that, if one discards the
thermal expansion term, H4 =H4 '+V4afP, and the
excess free energy and the enthalpy of mixing will, for
the special circumstances considered, be alike. This
treatment of the enthalpy is rather rough, and its
best justiication is perhaps the simplicity of the con-
centration dependence. Certainly the assumption of a
zero heat of mixing is no bolder than the above. So both
zero and nonzero heats of mixing are to be considered
along with the three types of temperature behavior used
in the previous section. There are, then, six subcases
under the general case H4~=0.

For the zero heat of mixing and zero heat capacity
H4 ——2.95 cal/mole, the experimental value for H4„' at
the normal lambda-point. Integration of the T& equation
for this value gives results shown as curve A; the
points are not identical with those of the previous
section presented as curve A, but are so close that a
single graph is sufFicient to represent both sets of results.

A linear C„and zero heat of mixing produce H4„
=1.21+0.3625''. Integration of (9) for this set of
assumptions yields the results appearing as curve C.

The modi6ed cubic C„and zero heat of mixing give
H4„=2.2T~—1.868 between the normal lambda-point
and 1.48'K and. H4„——0.1698T)I,'+0.5736 below 1.48'K.
Curve 8 represents the lambda-temperatures obtained.

In order to modify the above enthalpies in accordance
with the nonzero heat of mixing described, one has only
to add to each expression for H4„ the term V4ufP, that
is, 2.76'. The zero heat capacity assumption then will

give curve F. The linear C„will produce curve A,
and the modified cubic results in curve G. Again it
should be noted that the points for C„=O and C„=A T
do not fall precisely on curves F and A, but they
are so close that separate curves are not desirable in
the figure.

Solution of the Differential Equations

Constants of integration appearing in solutions of the
lambda-point shift equations can be determined from
the condition that T~ has its normal value, 2.19'K,
when there is no He', that is, when x3 is zero. Each of the
differential equations was solved by numerical integra-
tion, T~ being determined for 0~&xs~& 1 in steps of 0.02
in x~. The values for curve (8), the closest to the experi-

mental points, are represented empirically by

Tq =2.19/L1 —3.397 log~0(1 —x~) 7
+0.04175xs+0.2195x3'—0.471x3'

for 0~&x3&0.93; the largest deviation of this equation
from the integration values is 0.005'. For solutions
more concentrated than 0.93, the deviations are too
large for use of the equation and integration values are
quoted here as 0.276'K for x3=0.94 and 0.222'K for
x3=0.96, respectively.

V. COMPAMSON OF MODEL AND
EXPERIMENTAL BEHAVIOR

Precise measurement of equilibrium total pressure
considered in Sec. III offers a means of determining the
degree of success of the non-ideality theory without
involving any of the speculations of Sec. IV. If one
could obtain such pressures and vapor compositions,
the actual values of the excess potentials could be found
and could then be used in the solution of problems
appearing in Sec. IV. As it is, one can but check a
number of assumptions at once by examining the experi-
mental Tq vs xe curve. The direction of deviation from
Raoult's law is known and the non-ideality model con-
sidered does o6'er agreement. So the lambda-point
properties of the model mixture can be at least a
general guide to the success of some superQuid property
assumptions in the Tq treatment.

For the model considered, better results are obtained
for assumption of vanishing H4, than for vanishing 84,.
The entire group of 84, curves (E, F, and A) lies a con-
siderable distance to one side of the experimental curve,
while the H4, group in general lies much closer and
provides one member (curve 3) giving an excellent
representation of the experimental points. Comparison
of C„models shows that, for any given situation, the
rnodi6ed cubic behavior gives better agreement than
the linear. The assumption of temperature invariance
for entropy and enthalpy leads to the greatest departure
from agreement for any basic choice. This feature would
seem a considerable improvement over the ideal
treatment in which at least one of the C„=O curves lies
very near the experimental values.

Within the group for which H4, is zero, the results for
vanishing mixing enthalpy of He4 are better than for
the composition dependent value (e.g. , compare curves
3 and G). This fact is a reminder that (2) and (3)
do not provide the whole picture of non-ideality.
Finally, the properties of the simple model considered
here seem to support the idea that, for the actual
solution, the heat of mixing of He' and He4 is very
small, that H4, =0, and that the heat capacity of normal
He4 goes to zero at T=0'K in a manner similar to that
of Engel and Rice's modiied cubic relation.


