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Variational Scattering Theory in Momentum Space
I. Central Field Problems
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Variational principles for scattering problems in a central 6eld are formulated in momentum space and
studied in detail. The method allows of generalization to collisions of composite particles, including disin-
tegrations, into more than two end products, which will be discussed in a forthcoming paper.

I. INTRODUCTION

HE variational method has for many years been
a valuable tool for the solution of the Schroedinger

equation in bound state problems. But only rather
recently Hulthen' has pointed out that it may also be
applied to a study of scattering phenomena. Following
Hulthen's work, which dealt with one-dimensional
equations, the method was slightly modified by the
author and extended to more general problems. ' These
included calculation of the scattering amplitude in
three-dimensional collision problems, and of the ele-
ments of the scattering matrix in elastic or inelastic
collisions of composite particles, with the limitation that
no disintegrations into three or more units were ener-
getically allowed.

Such methods were applied by the author' and more
extensively by Verde and Troesch' to the collisions of
neutrons and deuterons, and by Huang' and Massey
and Moiseiwitsch' to the scattering of electrons by a
hydrogen atom.

A diGerent approach, based on an integral equation
formulation of the Schroedinger equation, has been
developed by Schwingers and extensively applied to
collisions of two elementary particles. However, no
useful generalization of this method to yield the ele-
ments of the scattering matrix in collisions of composite
particles has so far been found.

Variational methods have already been so useful in
collision theory that for some time it has seemed very
desirable to generalize them further, so as to cover the
many physically interesting processes in which two
composite particles collide and break up into three or
more units. Examples are the disintegration of a deu-
teron by a fast neutron or the ionization of a hydrogen
atom by a high energy electron. The difhculty in car-
rying out this generalization lay in the fact that when
a disintegration into three or more particles can take
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place, the form of the wave function in the asymptotic
region is very complicated due to the involved corre-
lation of the positions and momenta of the particles.
On the other hand it was to be expected that such a
generalization is in principle possible.

Meanwhile, the clue for overcoming these diHRculties
had been given quite a long time ago by Heisenberg'
in his work on the S-matrix. It was shown there that
the asymptotic behavior of the wave function in coor-
dinate space is reQected in the singularities of the mo-
mentum wave function. Generalizing a result obtained
by Dirac, Heisenberg showed that the asymptotic
behavior of several outgoing particles is described, in
momentum space, quite simply by a singularity of the
form 8+(E Z,pP/2m;), w—here b+(x) = (2xix) '+ ', h(x),-
E is the total energy and p;, m, are the momenta and
masses of the particles.

This suggested investigating the entire variational
theory of collision processes in momentum space. Indeed
it is somewhat surprising that this was not done earlier,
since the momentum representation is probably the
most natural one for a description of scattering.

In bound state problems, one does not fimd any essen-
tially new features by going into the momentum space.
In fact the coordinate and momentum wave functions
have a rather similar character since they are both finite
and both vanish as their arguments approach infinity.

On the other hand, in collision theory the coordinate
wave function extends over infinite regions of space but
is Gnite everywhere, while the momentum wave function
vanishes at infinity but has very significant singularities.
It is not surprising then that the formulation of vari-
ational principles in momentum space di6ers consider-
ably from the corresponding formulation in coordinate
space. In particular, the greater simplicity of the
momentum wave function suggests directly a variational
formulation of disintegration processes.

The present paper introduces the momentum space
method in the simple case of central field problems. Such
problems have been studied in great detail in coordinate
space so that one has considerable familiarity with them.
Just for this reason they a6ord a good practice ground
to get acquainted with the characteristic features of
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variational scattering theory in the somewhat "unan-
schaulich" momentum space. The generalization to
three-dimensional problems and to collisions of com-

posite particles will be given in a forthcoming paper.

II. THE SINGULARITIES OF THE MOMENTUM'
VIVE FUNCTION

It is well known that in the case of a single particle
scattered by a spherically symmetrical. center of force
and in the case of two particles interacting through a
central potential, the Schroedinger equation can be
separated and leads to a radial equation for each
angular momentum, l. For S-scattering, l=0, one ob-
tains the equation,

L
—(d'/Cx')+ V(x) —k2]P(x) =0, (2.1)

where V(x) and k' are proportional to the potential and
total energy respectively. %e shall con6ne ourselves to
the case of /=0 until Sec. VII, when we shall make the
obvious extension to higher angular momenta.

If the potential falls oG more rapidly than x ', the
wave function 1P satis6es the boundary conditions,

P(0)=0, lim1P(x)=sinkx+tanqcoskx, (2.2)

v (P) =&(P k) B(—p)/(—P' k'), — (2.7)

with the understanding that B(p) is free from singu-
larities.

Our previous considerations already indicated that
the phase shift p is determined by the value of 8 at the
singular point p= k. To show this in detail we transform
(2.7) back to coordinate space by means of (2.3), giving

the singularities of p(p) will determine the asymptotic
behavior of P(x).

To examine the singular behavior of y(p), we replace
(2.5) by the integral equation,

1
v (P) = b(P k)— —, V(P P') ~ (P')dP' (2 6)

p' —k'& p

Actually the inhomogeneous term, b(p —k) should be
multiplied by an arbitrary constant; however, choosing
this constant equal to 1 merely 6xes a convenient nor-
malization of the wave function. Now since V(p, p') is
a regular function of p and p', the integral in (2.6) is also
a regular function of p, even though y(p) has singu-
larities. Thus we see that the singular behavior of q (p)
can be described by the expression,

" B(P)
sinpxd p.

p' —k'
where p is the phase shift whose evaluation is the object

1P(x) =sinkx-
of a theoretical scattering calculation.

Passing to the momentum representation, we note
that the eigenfunctions of the square of the momentum We separate out the singular part of B(p)/(p' —k') by
satisfying the 6rst of the boundary conditions (2.2) are writing

sinPx. Hence we expand 1P(x) as

(2 g)

B(p) B(k) 1
-

B(p)
+

P' —k' 2k P—k P' —k' 2k(P —k)
(2.9)

1P(x)= t y(p) sinpxdp (2.3)
For large x the term in square brackets which is regular

wit}1 the understanding that 1f y(p) is singular the gives no contribution, so that we only require the

principal value of the integral is to be taken. Substi- ™ProPerintegral Jo (p —k)- sinpxdp whose PrinciPal

tuting (2.3) into (2.1) and de6ning value approaches x coskx as x—+~. Hence

V(p, p') = V(p', p) =(2/s)) sinp'xV(x) sinpxCx (2.4)
B(k)x

lim1P(x) = sinkx — coskx, (2.10)

we obtain the usual momentum space equation, so that by deanition of the phase-shift q, we 6nd the
required connection,

(P' k')v(p)+) V—(P P')9 (P')dP'=o (2 5)
0

tang= vr B( k) /—2k,

between g and B(k).

(2.11)

where again the principal value of the integral is under-

stood.
We are interested in the behavior of P(x) for large

values of x and therefore must examine how this be-

havior is reQected in the momentum space function

y(p). Now it is well known that if g(p) is a function free
from singularities, then J0"g(p) sinpxdp —4 as x—+oo;

for, due to the highly oscillatory character of sinpx, the
positive and negative contributions to the integral tend
to cancel. It follows that if we transform back from
momentum to coordinate space by means of (2.3) only

III. FORMULATION OF THE VARIATIONAL
PRINCIPLE IN MOMENTUM SPACE

In reference 2 a variational principle for the phase
shift was developed in the coordinate representation.
Calling now g0 the correct phase shift, g the phase shift
of a trial function satisfying the boundary conditions
(2.2), and I the functional

I=— '

1P(x)L—(d'/dx')+ V(x) k' j1P(x)dx (3.1)—
0
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it was found that the expression,

k tango=k tang+I, (3 2)

was stationary relative to variations of P. In other
words the integral I, which vanishes for the correct |P,
plays the role of a first-order correction to the tangent
of the trial phase shift.

It is of course possible to express tang and I in terms
of the momentum wave function. However, because of
the nonintegrability of |P, such a procedure is somewhat
delicate and in fact does not lead to a very desirable
formulation. %e prefer therefore to postpone this
development (see Sec. IV) and meanwhile formulate
variational principles based directly on the Schroedinger
equation in momentum space.

In the case of a bound state problem one knows that
the first variation of the functional

y(p) (P' 'k) y(p)—+ ~ V(P P')y(P')dP' dP
0 J 0

(3.4)

We consider this J as a functional of y(p)'s, whose
singularities are described by the form (2.7). In particu-
lar this includes functions for which 8(k) =0 and which

therefore have only the 8-function singularity.
The integrand in (3.4) contains singular terms. Thus,

to give a definite meaning to the integral, we must agree
on how to deal with such terms. We therefore make the
following conventions:

b(P- k) (P'- k') b(P-k)dP =o (3.5)

I" F(p) . t' F(p) t" F(p)
dp=lim I dp+ dp .

J p2 k2 ~ 0 J, p2 km J p2

(3.5')

Equation (3.5) is obtained when b(p k) is approx—i-

mated by a nonsingular function because of the anti-
symmetry about the point p= k. It is therefore reason-
able to postulate a similar relationship for the b-func-
tions themselves. Integrals of the type (3.5') are
usually evaluated either by by-passing the singularity
in the complex plane, which gives a complex result, or
by taking the principal value. Since our problem is
entirely real we have chosen the latter alternative. %'e

could, of course, have adopted diferent conventions,

f f
y(p) (p' &)y(p)—+ V(P P')y(p')dp' dp (3.3)

0 0

vanishes for the correct wave function and one can use
this fact for a determination of the energy E and the
wave function rp. This is just the momentum analog
of the statement that if P(~) =0 the first variation of I,
Eq. (3.1), is zero. It is thus natural also in the case of a
collision problem, to investigate the expression,

but it should be remarked that they all lead to the same
final results.

Let us now first evaluate J for the correct wave
function, yo(p). Although for this function the square
bracket in (3.4) is zero, we shall see that the corre-
sponding value of J, denoted by J0, does not vanish.
For, substituting for yo(p) on the left of (3.4) the form
(2.7), we find

where
J0 J0(i)+J0(2) (3.6)

b(P —k) (P' —k') yo(P)
0 IW

+ V(P P') «(P')dp' dP (3 7)
J0

t

&O'"=
J

—80(p) yo(p)
0

oo

+, , V(P P')yo(p')dp' dP (37')
0

Now Jo"' contains the term b(p —k)(p' —k')b(p —k)
whose integral we equate to zero. Thus we are left with

&o ' = 80(p)+ V(k p') yo(p')dp'=0 (3 g)

as a comparison of (2.6) and (2.7) shows. On the other
hand, by (2.6), the square bracket in (3.7') equals
b(p —k) so that

Jo——Jo&'& = —80(k). (3.9)

bB(P)
bJ'= 2 — (p' —k') yp(p)

p2

+ V(p, p') yo(p')dp' dp

= —2bB(k). (3.10)

Thus the expression J0, which vanishes in bound state
problems, equals, in the present case, a constant times
tang0.

It is important for our later work to see clearly the
origin of this nonvanishing result. It comes from the
term yo(p)(p' —k') yo(p) in (3.4). The yo(p) on the right
contains a term b(p —k) which when multiplied by
(p' —k') vanishes and hence gives no contribution to
the square bracket in (3.4). However, when this term is
further premultiplied by the factor 80/(p' k'), con--—
tained in yo(p), it becomes —80(p)b(p —k), resulting in
—80(k) on integration.

Next we calculate the first variation of J. Since we
consider only trial functions of the form (2.7), the vari-
ation of y may be written as by(p) = —bB(p)/(p' —k')
and we obtain
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Hence the combination J+28(k) is stationary. This An example of such a regularized function is
means that to the erst order in bp we have the equation,

x.(p) = —Re[8(p)/(p' —k' —oo) 3J+28(k) =Jo+28o(k) =Bo(k)
Next we de6ne

which provides the desired stationary expression for
tango.

As a simple check we can obtain the Born approxima-
tion from (3.11), by setting»(p)=b(p —k) so that
B(k)=0 Th. is gives, correctly,

J'(») =»~(».).
«-+0

(3.17)

J (»p) =Bo(k) = —(2k/or) tani»o, (3.18)

Then, clearly, J'(oo) =J(y)+28(k), so that (3.11) may
be put into the form,

V(k, k) = —(2k/or) tanoto. (3.12)
or in full

When the functional J in (3.11) is written out in full
using the form (2.7) of » (p), one obtains among other
terms

8(p)
2 I

— (p' —k')b(p —k)dp= —28(k)
po —ko

which precisely cancels the 28(k) in (3.11). If we now
for convenience replace (2.'7) by

lim
04

».(p) (p' k')-». (p)

00

+)t V(p, p), ,(p)dp dp

=Bo(k) = —(2k/or) tango. (3.19)

+ x(p)V(p, p')x(p')dpdp'
"0

= —(2k/or) tango. (3.14)

Remarks on Regularization

We have seen that the extra term 28(k) in (3.11) just
removes the contributions to J coming from the
singular point of x(p). It follows that if x(p) is replaced
by a "regularized" function, in which the singularity
at p= k has been smeared out, the term 28(k) in (3.11)
will not occur. This allows one to write (3.11) in a more
compact, though entirely equivalent form.

Thus let us define, corresponding to a function oo(p),
the regularized functions,

».(p) = o(p k)+x.(p), - (3.15)

depending on the parameter e. We assume that for all
nonvanishing values of o, x, (p) is a nonsingular func-
tion; but that as o—4, x,(p) approaches the singular

x(p) in the sense that if F(p) is any smooth function,

lim
I

F(p) x,(p)dp
cmD JD

=principal value of ~t F(p)x(p)dp. (3.16)
0

~(p) = ~(p-k)+x(p) (3.13)

where x(p) may have only a (p' —k') ' singularity,
(3.11) becomes in full

00

~
00

x(p)(p' —k')x(p)dp+ V(k, k)+2 V(k p)x(p)dpJ,

When this is written out in terms of x,(p) and the limit
o-+0 is taken, one is of course led back to (3.14). The
interesting feature of (3.19) is, however, that it shows
that the expectation value of (II F) evaluate—d by
suitable regularization is stationary even in scattering
problems; but in contrast to bound state problems the
stationary value is not zero but a constant times tango.

IV. RELATION TO THE VARIATIONAL
FORMULATION IN COORDINATE SPACE

Both forms in which we have expressed the varia-
tional principle (Eqs. (3.11) and (3.18)j are apparently
not simple transcripts of the coordinate space principle
(3.2). For if one formally expresses I in terms of the
momentum wave function, (3.2) becomes

»(p) (p' —k')»(p)
0

00

+ ~ V(P P')»(P')dP' dP+8(k)=8o(k) (41)
40

It is really not surprising that we seem to have here yet
another form of the variational principle, since by
handling the singularities in different ways we obtained
the two different forms (3.11) and (3.18). In fact we

may already guess that the coordinate space principle
is equivalent, in momentum space, to regularizing just
one of the two wave functions occurring in the func-
tional J.

To clarify this point, let us re-write carefully the
deinition (3.1) of I as

pa - d2
I= —lim I iP(x) — +V(x) —k' iP(x)dx (4.2).

~ao Q dg2
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Passing into momentum space, this becomes and
8J(1, 2) = —bBg(k) —bBp(k). (5.4)

I= —hm dx
Q~OOJ 0 4~

dp dp'q(p) sinpx Hence we have, in analogy with (3.11), the variational
principle,

00

x (P" k')—q(p')+) (P' P")q(P")dP"

Xsinp'x. (4.3)

J(1, 2)+Bg(k)+Bp(k) =Bp(k),

and, in analogy with (3.18),

J'(1, 2) =Bp(k).

(5 5)

(5.6)

The integration over x gives

q.(P') = &(P P')q(P)dP (4 5)

sinpx sinp'xdx

sin(p —p')a sin(p+ p')a'
= 'p~~. (P, P') (4 4)

(P P') — (P+P')

wherefor p, p')0, limh, (p, p')=b(p p')—, i.e., h, (p, p')

is a regularized 8-function. We now conveniently intro-
duce the regularized function,

We may note in passing that the corresponding ex-
pression in coordinate space has the less symmetrical
form,

I(1, 2)+k tansp ——k tanqp. (5.7)

Already, in reference 2, Schwinger's variational
principle was derived in coordinate space from a bilinear
expression such as (5.7). We can also derive it in mo-

mentum space, most easily from (5.5).
For «p&(p) we use any trial function of the form,

q p(p) = ~(p —k) —Bp(p)/(P' —k') (S.g)

The function «p&(p) is constructed from «pp(p) according
to the equation,

Then the variational principle (3.2) can be written as

hm ~ «.(P') (P" k')q(p')—
«i(p) =&(P-k)-

V(P P') qp(p')dP'
Bp(k) &p

P2 P2 ts
00

V(» P') q p(p')dP'

(5.9)

~ 00

V(p' p«)&(p")dp" dp'+B(k) —Bp(k) (46) here Bp(k) is the unknown correct value of B at p=k,
0 given by

which conhrms our expectation that one of the y's is
regularized. The stationary character of (4.6) may also
be checked directly in momentum space.

V. BILINEAR FORM OF THE VARIATIONAL PRINCIPLE;
SCXViVINGER'S VA1UATIONAL PRINCIPLE

IN MOMENTUM SPACE

In our later work, we shall have occasion to use
bilinear forms J(«pr, «pp) in order to discuss transition
between two asymptotic states. It is therefore con-
venient to introduce such forms already in the one-
dimensional case. Moreover, the bilinear forms show

clearly the connection with Schwinger's variational
principle.

We consider then the bilinear functional,
QO

J(1, 2) =J(2, 1)=
J

~ q, (p) (p' —k') q, (p)
0

Bp(k) = V(k, p') q p(p')dp'.

Bp(k) = V(» P)qp(p)dP

It may be seen, from the integral equation (2.6), that if

«pp
——qp, then «p& as defined by (5.9) also equals «pp.

Furthermore, however, q~ has the correct singular
behavior

q (P) = &(P-k)-Bo(k)/(P'-k'), P =k, (5.10)

regardless of the correctness of y2. Thus, in general, if

q» is some approximation to yo, y~ will be a better
approximation, which is the reason for the practical
success of this method.

Using now the fact that B~(k) =Bp(k) and substituting

q» and q~ into (S.S), one obtains after some simplifi-

cation

+ V(P P')q'(P')dP' dP (5 1)

for functions of the form,

'(P) -&(P-k)-B'(P)/(P'- k'), = 1, 2 (5.2)

X ~ q p(p) V(P, P') q p(P')dpdp'
Jo

+ qp(p') V(P' P)(P' —k') '

As before we hand that if qg= q2 ——qo,

Jp(1, 2) = —Bp(k) (5 3)
X V(P, P") (P")dPdP'dP" . (5.11)
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This is just the momentum transcript of the stationary Alternatively, one may of course go back to the coor-
expression for cotp0 given by Schwinger in coordinate dinate space for the evaluation of the integrals. There,
space. calling

VL PRACTICAL APPLICATION

As usual, the stationary expressions which we have
derived enable us to obtain approximate values for the
stationary quantity, tanp0, as well as the wave function
s,(p). Practical procedures for accomplishing this in
coordinate space have been described by Hulthen' and
the author. ' They may be directly taken over into
momentum space and therefore will be only briefly
outlined here.

Following reference 2, we use as trial function a linear
combination of the type,

x(p) sinpxdp=f(x)

one Gnds, the stationary equation,

r
f(x)L (d'—/dx')+ V(x) k'j—f(x)dx

U 0

+2A sinkx V(x)f(x)dx
0

(6.4)

v (P) =A~(p k)+x(—P), (6.1) +A' sin'kxV(x)dx= —A'k tango. (6.5)
0

where x(p) is a superposition of a ffnite number of
functions:

VII. EXTENSION TO HIGHER ANGULAR MOMENTA

The radial Schroedinger equation, corresponding to
angular momentum l, is

The condition that x(p) may only have a singularity of
the type —B(p)/(p —k') means that f(x), if it extends

x(p) =g caxa(p). to inffnity, must be asymptotically proportional to
0 coskx. Incidentally (6.5) may be considered as an alter-

native and perhaps useful form of the variational
Because of the extra factor A in (6.1), comPared to principle (3.2) to which it is equivalent.
(3.13), Eq. (3.14) must be replaced by

d' l(l+1)
+V(*)+ -k ~y(x) =O.

dx' x' )
(7.1)

Xx(p')dpdp'= —(2k/s)A' tangp. (6.3)

The stationary character of this equation may be
directly verified by dividing through by A' and calling
x/A = x', which leads one back to the form (3.14).

The condition that (6.3) be stationary with respect to
variations of the parameters A and cq leads to (m+1)
homogeneous linear equations for the (n+ 1) parameters.
They are compatible only if the determinant of the coef-
ficients vanishes. This determinant is a function of
tan p0 and, as in reference 2, it may be shown that its
vanishing 6xes a unique value for tang0, in contrast to
the (n+1) eigenvalues in bound state problems. The
values of c&/A may be obtained by substituting the
value of tang0 into n of the linear equations for A and
ck and solving.

If one wants to evaluate the integrals of (6.3) in
momentum space it is important to note that, while
the correct xo(p) has a singularity of the type—Bp(p)/(p' —k'), it is not necessary to work with
singular trial x's. For it is clear from (6.3) that slight
regularization of xg(p) does not materially effect the
value of tanq0. This is a fortunate circumstance since
analytical work, with singular wave functions is generally
very diKcult.

There are now two types of "momentum"-represen-
tations to which one may transform. The erst is the
space of solutions of the equations,

L
—(d'/d~) —P%.(x) =o (7.2)

d' l(t+1)—p iy, (x)=o,
)

(7.3)

namely, the functions

4'n(x) = (Px)J~(px).

These obey the orthonormality relations,

(7 4)

f,(x)f„(x)dx = ,'xb(p p'). ——
0

(7.5)

which, in view of the boundary condition f(0)=0, are
just the sinpx considered before. In this case V(x)
+l(l+1)/x is to be regarded as the total potentis, l

V'(x), but otherwise the treatment is exactly analogous
to that of S-scattering.

Alternatively, one may transform to the space of
solutions of the equations,
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Expanding f(x) in (7.1) as

0(x)= I'
r(p)4' (x)dp

4 p

one 6nds the equation,

(7.6)

The rest of the development is entirely parallel to
that of S-scattering.

VIII. DISCUSSIO N

Ke have seen how, in the simple case of scattering
by a central held, a consideration of the basic integral,

(p' —k') v (p)+

where noir
4O

V(p p') ~(p')~p'=o (7 7)
tN 00

~(p) (p' k')v—(p)+)" V(p p')v(p')dp' dp
p p

V(p, p') = V(p', p) = (2/z) x„(x)V(x)p„,(x)dx.

(7.8)

It is easily veri6ed that the function, which in coor-
dinate space has the asymptotic behavior

f(x)~(kx) LJ&(kx) —tang m~(kx)] (7.9)

satis60s the integral equation,

9 (p)=&(p —k) —(p' —k') ' V(p p')9(p')dp' (710)

and that for the correct po(P)

V(k p )pp(p )dp = (2k/1r) tango. ('7.11)

A variational principle for gp ls now established just
as before. Using functions of the form,

(p) = (p-k)- (p)/(p'-k') (7. )

7+28(k) =80(k) = —(2k/x) tango.

and defining J as in (3.4), with the new meaning (7.8)
for V(p, p'), we find, corresponding to (3.11), the
equa tlon)

(7.13)

leads to a stationary expression for the tangent of the
phase shift. To establish this variational principle, it
was essential to know beforehand the form of the
singularities of the momentum wave function. This was
very easy in the simple case considered. But quite
generally it is clear that the form of the singularities is
independent of the details of the interaction, and thus
one expects that it can be established without actually
solving the Schroedinger equation.

This expectation is borne out by the work of Dirac'
and Heisenberg. ~ It enables one to cast more com-
plicated scattering problems, particularly also those
involving disintegrations, into variational form. A dis-
cussion of such problems will be given in a forthcoming
paper.
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Note added in proof: Dr. G. J. Kynch of the University of
Birmingham has informed me that some time ago he has done
similar unpublished work on the two body problem


