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E shells at the iodine nucleus is 0.116."To obtain the
ratio of Ly to E captures, this value must be multiplied

by the square of the ratio of neutrino energies for II
and K capture, (Err/Err)'. The binding energies of K
and I.g electrons in iodine are 33.20 and 5.20 kev
respectively; therefore, if the measured ratio of I.y to
E captures is taken as 0.30~0.15, and if E is the decay
energy, then 0.30&0.15=0.116L(E—5.20)/(E —33.2)j'.
From this, one obtains E=80+~j~s kev. The log(fl)
values corresponding to decay energies of 62, 80, and
240 kev (and to the corresponding Lr/K capture ratios)
are 4.9, 5.1, and 6.0. According to the analysis of
Feenberg and Trigg, " the first two of these values
definitely fall in the range of allowed transitions, but

"M. E. Rose and J. I . Jackson, Phys. Rev. 76, 1540 (1949)."E. Feenberg and G. Trigg, Revs. Modern Phys. 22, 399
(1950).

log(ft) should probably be no larger than 5.8, which
would correspond to an upper limit of about 180 kev
for the decay energy. The proposed decay scheme is
shown in Fig. 3.

In a paperi4 published after the completion of the
present investigation I. Bergstrom reported finding I.
and M conversion lines of a 35.5-kev gamma-ray in an
aged sample of 18-hour Xe"', and concluded that they
arose from the decay of I"' through the 35-kev level of
Te"'. He also reported the absence of conversion lines
of the 109-kev gamma-ray in the Xe"' sample. Thus,
Bt.'rgstrom's results are in accord with the conclusions
drawn in the present paper.

Miss K. Wilson gave valuable aid in some of the
measurements. The authors are indebted to Dr. M.
Goldhaber for helpful discussions.

"I.Bergstrom, Phys. Rev. 82, 111 (1951).
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The Slater and the configuration perturbation parameters were evaluated for configurations of Pb III by
fitting the calculated to the observed term values. The wave functions of 52 levels were determined in
terms of the (LS) functions, and for many of the levels were found to be linear combinations of the (LS)
functions of two or more configurations. The g-values, hyperfine structure interval factors, and isotope
shifts evaluated from the precise wave functions are in excellent agreement with the observed values.
Thus the theory gives an internally consistent explanation of the spectroscopic properties. Since the isotope
shifts were calculated as a field effect the agreement shows that the specific mass effect is relatively unim-
portant for heavy elements, The values of the shift and hyperfine structure interaction constant for the
6s electron obtained from this analysis are 0.50 cm ' and 2.60 cm ', respectively.

I. INTRODUCTION

'ANY calculations have been performed to test
~ ~ Slater's' theory of complex spectra for unper-

turbed conhgurations. The Slater method gives expres-
sions for the energies of the levels arising from a given
electronic configuration in terms of parameters which
are integrals of the radial parts of the wave functions.
The standard procedure is to evaluate these parameters
from the observed energies of some of the levels and
check them by calculating the energies of the other
levels of the configuration. In a number of cases a more
complete check has been e6'ected by using these param-
eters to calculate the wave functions and from these
wave functions evaluating other spectroscopic observ-
ables. ' ' In those cases where the calculated values did

' J. C. Slater, Phys. Rev. 34, 1293 (1929).
~ D. R. Inglis and N. Ginsberg, Phys. Rev. 43, 194 (1933).' M. F. Crawford, Phys. Rev. 47, 768 (1935).
4 A. T. Goble, Phys. Rev. 48, 346 {1935).' J. S. Green and B. Fried, Phys. Rev. 54, 876 {1938);and

others.

not agree with the observed values the discrepancies
were attributed in general to configuration interaction.

The theory of configuration interaction was formu-
lated by Condon, ' and UAord and Shortley. ' For the
electrostatic interaction they have shown that, in an
(LS) representation, there are o6-diagonal matrix ele-
ments only between those levels of configurations of
the same parity that have the same term-type L,, the
same multiplicity 5, and the same J. In the case of
perturbed configurations there are an increased number
of parameters and it becomes much more important to
check the theory by calculating other spectroscopic
observables. Little has been done in the way of definite
and detailed calculations of these e6ects.

Bacher used numerical wave functions to calculate
the o8-diagonal matrix elements between the p' and sd
configurations of Mg I and showed that the configura-

~ E. U. Condon, Phys. Rev. 36, 1121 (1930).' C. %. UBord and G. H. Shortley, Phys. Rev. 42, 167 (1932).
~ R. F. Bacher, Phys. Rev. 43, 264 (1933).
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tion interaction was adequate to account for the anoma-
lous distribution of the sd levels. Ufford, ' Marvin, "
Many, " and Rohrlich" have performed calculations
and each noted that consideration of the configuration
interactions improved the general agreement between
their calculated and observed energies. Marvin" calcu-
lated wave functions for Co I and from these deter-
mined the effect of the perturbations on the Zeeman
g-values. However, in Co I the coupling is near (I.S)
and since perturbations only occur between similar

(1-5) terms the g-values are not sensitive to configura-
tion interaction.

A more critical test of the theory would be a detailed
calculation for a spectrum in which there are strong
configuration interactions, in which the coupling is
such that the spectroscopic observables are sensitive to
the interactions and finally for which the experimental
values are known for comparison with the calculated
values. Pb III is such a spectrum. Both its even and

odd levels are highly perturbed. A fairly complete
term analysis has been made for the spectrum, " and
other spectroscopic observables are known for most of
the levels. The hyperfine structure interval factors and

isotope shifts have been measured by Crawford, McI.ay,
and Crooker" and the g-values by Green and Loring. "

II. DETERMINATION OF THE PARAMETERS

A. Unyerturbed Configurations

To evaluate the parameters appearing in the energy
matrix from the observed energies of the levels of an

unperturbed configuration the procedure is: (1) To set
set up the energy matrices for the configuration in

terms of the parameters (one matrix for each J value).

(2) To equate the sum of the diagonal elements of each

of these matrices to the sum of the observed energies of

the levels with the corresponding value of J and obtain
a set of linear equations for the parameters.

If there are more equations than parameters, a least-

square method can be used to find the best values of

the parameters. If the number of equations equals the
number of parameters, the solution is direct. If there
is one less equa, tion than parameters, all parameters
can be expressed in terms of one independent parameter.
This independent para, meter is then varied until the
best fit between predicted and observed energies of the
levels is obtained when the complete secular equations
are solved. For unperturbed configurations the evalu-

ation of the parameters is direct even for complicated
configurations.

C. W. UBord, Phys. Rev. 44, 732 (1933).
' H. H. Marvin, Phys. Rev. 47, 521 (1935).
"A. Many, Phys. Rev. 70, 511 (1946).
' F. Rohrlich, Phys. Rev. 74, 1372 (1948).
"Crawford, Mcl.ay, and Crooker, unpublished data; Phys.

Rev. 54, 313(A) (1938).
'
A. M. Crooker, Can. J. Research A14,

115 (1936}."J.3. Green and R. A. Loring, Phys. Rev. 43, 459 (1933).

B. Perturbed Con6gurations

If the observed energies of the levels do not fit the
energy matrices for each configuration separately a
perturbation between configurations is indicated. The
procedure for eva, luating the parameters is the same as
for unperturbed configurations except that the matrices
for all configurations involved in the perturbation must
be considered together, with the proper off-diagonal
elements between them. The number of parameters
will be the same as for the individual configurations
without perturbations plus the off-diagonal parameters
between levels of the same term-type and multiplicity.
However, the number of diagonal sums is sharply
reduced, by a factor of two or more, since all levels
with the same J from all perturbing configurations must
be included in one sum where before there were as
many sums as configurations. In this case the number
of linear equations is considerably less than the number
of parameters. Thus there are an increased number of
independent parameters. These independent parameters
must be varied by successive approximations until the
best fit of calculated and observed energies is obtained.
This process of successive approximations is extremely
complicated. In the Pb III spectrum there are two
independent parameters for the even terms and six for
the odd terms.

%hen it is necessary to use the method of successive
approximations, often a good first approximation can
be obtained by using the unperturbed values of the
parameters. When this first approximation is not good,
as is the case when the perturbation is appreciable,
better estimates of certain of the parameters can be
obtained from unperturbed levels of other configura-
tions of the same spectrum or from data for configura-
tions of other-stages of ionization of the same element.
However, these roughly estimated values of the pa-
rameters must be improved before any measure of the
perturbation can be obtained.

For two perturbing configurations it was found con-
venient to split the diagonal sum equation for a given
J value into two equations, each corresponding to the
diagonal sum of an unperturbed configuration, and to
correct these two parts by adding a parameter I' to one
equation and subtracting it from the other. In this

way the diagonal sum for both configurations together
is unchanged, while the sum for the individual con-
figurations is altered due to perturbation. This "pertur-
bation parameter" P is a measure of the off-diagonal
element between configurations and replaces it as one
of the independent parameters in the calculation. This
can be extended to the case where more than two

configurations are involved. For the odd terms there
was a large amount of work in each approximation
since it was necessary to expand a fifth- and a sixth-
order determinant and solve the resultant secular equa-
tions for the energies of the levels. Thus it was impor-
tant to gain from each calculation as much information
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TABLE I. 6snd configurations. TABLE IV. Energies for 6p .

Fg
Energy levels J=2
calc. obs. diff.

calc.

183024

obs.

178432

diff.

6 155055 —3297 604 151758 151884

158050 157925
160224 164818

188615
7 202512

8 221662

9 232295

726 259 201597 201597

203302 203302

220 158 221301 221307

221944 221938

123 102 232075 23209?

232464 232442
22

136382 142551
6170

the values of 5" that are observed energies of the levels.
These "perturbation diagrams" are useful in deter-
mining the direction in which a parameter must be
changed to improve the agreement between the calcu-
lated and observed va1ues of the energies, and can be
plotted from very approximate values of the parameters.

as possible to permit the choice of an improved set of
parameters for the next approximation. This was
accomplished by leaving the oQ'-diagonal elements be-
tween configurations as parameters in the numerical
matrices even though, inherently, they were fixed by
the choice of "perturbation parameters" P. The matrix
then was converted to a secular determinant by intro-
ducing fV into the diagonal terms and was expanded

III. ENERGIES ON LEVELS NEGLECTING
CONFIGURATION INTERACTION

The energy matrices for the configurations of Pb III
are given in Condon and Shortley's Theory 0f Atonic
Spectra. "For sl configurations the formulas are

'«+t=Ft —Gr+stai

TABLE II. 6snp configurations.

Fy Gg

82960 10183

ap

Energy levels J=1
calc. obs.

12380 63965 64391

75765 75340

diff.

8 208400

664 3400 171290 171081

176970 177181

283 1409 206968 206979

209329 209318

210

into several parts, namely, the unperturbed part (i.e.,
the determinant without contributions due to the
presence of the ofF-diagonal elements between con-
figurations) and parts in which the oB-diagonal elements
appeared as coefIicients. These parts were plotted
qualitatively against 8' to show the signs of the contri-
butions of the various parts to the value of the determi-
nant. The resu1tant of these graphs should be zero at

sL( r=F( G( sr(l+—1)ar.—

The matrices for the other configurations can be ob-
tained from the matrices in Table VII by neglecting
the oft-diagonal elements between configurations.

In evaluating the parameters some levels are fitted
exactly while the entire error is forced into the remaining
levels. For example in the sl configurations the levels
with the highest and lowest J-values are fitted exactly.
The energies of the levels are relative to '50 of the
5d"6s' configuration as zero and are those given by
Crawford, McLay, and Crooker. " Tables I to V give
the parameters and the calculated and observed energies
of the levels which are not fitted exactly. The units
are wave numbers (cm ').

The results in Table I show good agreement between
calculated and observed energies for 6s7d, 6ssd, and

TABLE V. Energies for Sd'6s'6P.

1353

TABLE III. 6snf configurations.

Energy levels J=3
calc. obs.

40 190279 189785

190407 190901

diff.

calc.

197100
183750
175200

198800
177650
174600
154550

obs.

197319
184268
174600

199344
177906
173986
154494

diff.

—200—500
+600

—500—250
+600
+ 50

201 15 214455 214477

214868 214846 "E.U. Condon and G. H. Shortley, Theory of Atom& Spectrg
(Cambridge University Press, London, 1935),
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Than VI. Energy matrices for Pb III.

Level
SD3

J=3
'DS(sd)

p~ —G~+a~
Level

'D1
SP

J=1
'D (sd)

Fg —Gg —(3/2) ag

Even leveisa

p (p)

Rrf —8Re—gap

Level
SP
1S
lS

'Po(P')
Rg —gR, —a„

'S (P')
—Ka„

Rg+ (10/25)R,

'Sp(6s7s)

Level
SPS
lDs
lD
8Ds

3P (PQ)

Rg —gR,+~sap

J=2
ID2(P2)

(1/v2)a„
R,+(1/25)R,

D2(sd)

A
Fg+Gg

SD,(sd)

(3/2) &ay

Fg —Gd —-', ag

Odd levelsb

Level
3P

'po

J=O
'Po(d'P)

—Fp-7F2
+ (3/2) ay+ $a

'Po(sP)
B

Pp-G„—asap

Level
SF4

'F4

J=4
'F4(d'P)

—Fp
—2Ps—ay+-,'ap

SP,(sf)
C

Ff Gf+ (3/2)af

Level

lp
3P

1P

Level
SP
1P
3P

1P

'P (sP)

'FS(sf)
Ff—Gf —ya

1P,(sp)
sayp

Pp+G„

'FS(sf)
oaf

pf+ Gf

J=1
'PI(d'P)

B

'PS(&P)
C

J=3

—Pp —2ps
+ aa —-a

—Fp —7ps
+4ag+ gap

'Pi(d'P)

Bl
—,'@fate —~442a p

—Fp
—7F2+20G1

'F3(d'P)

C'
(2/&) a~+(1/&) a

—Fp —2F2
+90GS

'DI(d'P)

——,'v3aq —~4V3a p

(-'v'6) .-(-'V6) .—Fp+7F2
+(5/4) ag ——,'a„

'DS(d'P)

—(V2/3) ag —(V2/3) a„

(1/'/6) ad+ (1/V 6)a

—Fo+7F2—(5/6) ad+ -',a„

Level
3P
SP~

8D2

lD
SPS

'p (sP)
Fp —G„+)asap

'P (d'P)
B—Fp —7F2

+(3V'5) (—3d' —P')

J 2
SD,(d P)

9+3(—d' —P')*

—po+7FS
+(v'~)(5d'-P')

ID,(d P)

9'(—d'+P')

(v'30) (5d'+P')

'F2(d'P)

(447)(-d'-P')
—(2+42) (—d'+P')

—Fp
—2Fs—(8v'5) (—2d'+P')

SF-(sf)

pf —Gf —2af

& In the matrices for the even terms, ps refers to configuration Sdte6pe, sd to configuration 6s6d, aa =aaa and aq =aej.
b In the matrices for the odd terms sp refers to the 6s7p configuration, sf to the 6sSf configuration, and d'p to the Sd'6se6p configuration, ap =aej, aa =ace,

and af ~aef.
4' Note d' =(1/12 +5)aa, p' (1/12 QS)aej.

6s9d. tA'e conclude that these levels are not perturbed.
The agreement for the levels of 6s6d appears fairly
good, but Bacher has shown that a negative value of
Qd is not probable. A strong perturbation is thus
indicated.

Table II shows that the 6s6p and 6sjp configurations

are perturbed. The 6sgp levels are not appreciably
perturbed.

Table III shows that the 6s5f levels are strongly
perturbed since a negative value of G~f is not accep table.
The agreement for the 6s6f levels is fair, but from the
detailed analyses of the other configurations there is
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YAM.E VII. 6sns configurations. 7=term value relative to
ionization. e*=effective quantum number.

'S1 sequence
n 1' Obs. (n —n+)

7 107438 3,967
8 59629 3.930
9 38178 3.914

10 26568 3.903

~SO sequence
T Obs. (n —n*) T calc. de. (Te —T'o)

103739 3.913 102640 —1100
58121 3.877 58270 + 150
37612 3.875 37612 0
26278 3.871 26278 0

evidence that the J=3 levels are displaced to higher
term values by about 22 cm '. Assuming this displace-
ment the parameters are a6~=15 and 66J ——180. This
perturbation of the J=3 levels has no appreciable
eBect on their wave functions.

The parameters calculated for the 6p' configuration
are R~=170,287, —,'R, =6767, up=16, 176; and for the
Sd'6s'6p configuration are —Ji 0= 176,786, j"g——510,
Gi ——586, pep ——12,800, lsd, = 8840.

Tables IV and V show that both the 6p' and Sd'6s'6p
configurations are highly perturbed. The J=3 levels
for Sd'6s'6p have not been calculated since there are
insufficient experimental observations.

A. Even Levels

The levels of 6s6d, 6p', and 6s7s perturb each other.
If the "perturbation parameters" P are added to the
diagonal sum equations for these configurations we
obtain 7 linear equations in 9 unknowns. Thus we have
two independent parameters which must be varied
until the best fit of all calculated and observed energies
is obtained. Fortunately a good estimate of one pa-
rameter can be made by examining the perturbation
of the 'So and 'Si levels of the 6ses series. The Rydberg-
Ritz relationship e—n~=u+bT predicts that a plot of
T, the term value relative to ionization, against (n m), —
the quantum defect, should be a straight line for an
unperturbed sequence. A plot of the data in Table VII
shows that the 'Si sequence is unperturbed, but that the
'So sequence is perturbed by a level between the n = 7 and
e= 8 members. Considering the n=9 and n= 10 mem-
bers of the ISO sequence as unperturbed and drawing a
straight line through them the unperturbed positions
of the n= 7 and n= 8 members can be estimated. Since
the displacement of the n= 8 member from its unper-

IV. ENERGIES CONSIDERING PERTURBATIONS

The energy levels of configurations that are shown by
the calculations in the previous section to be perturbed
are recalculated taking configuration interaction into
account. The o8-diagonal elements were calculated
explicitly in terms of the integrals of the radial parts
of the wave functions. However, it is not necessary to
know the exact form of these elements unless they are
to be evaluated absolutely, as Bacher' did, from central-
field wave functions. Hence in the matrices of Table VI
the o8-diagonal elements between configurations are
merely written as parameters A, 8, C, etc.

turbed position is very much less than the displacement
of the m=7 member, as seen from Table VII, the
perturbation calculation was simplified by including
only the n=7 member.

The one remaining independent parameter was then
varied and the best fit was obtained with the following
values of the parameters: R~=167,047, —,'R, =6367,
up= 10,500, I'6g ——159,555, 66'= 1201, a6g= 605, and
F7 +G7 154,983. The oft-diagonal elements are
2=10,300 and a=10,210. The energies and wave
functions calculated using these values of the param-
eters are shown in Table VIII. All levels which were
perturbed have been brought into agreement with the
observed values to within an average error of 100 cm '.
For the unperturbed calculations the average error was
3600 cm '. This improvement in the agreement is a
good confirmatioh of the theory of configuration inter-
action, but a more complete check will be efI'ected by
using these wave functions to compute the g-values,
hfs interval factors and isotope shifts in Sec. V.

B. Odd Levels

The unperturbed calculations for the odd configura-
tions 6s6p, 6s7p, Sd'6s'6p, and 6sSf indicate a mutual
perturbation of their levels. It would be extremely
difficult to handle a calculation if all four configurations
were considered at one time. Only the mutual perturba-
tion of Sd'6s'6p, 6s7p, and 6sSf was considered. It was
possible, however, to make approximate allowances in
this calculation for the effect of 6s6p on the other three
configurations. This was accomplished by examining
the perturbation of the 6snp series using the Rydberg-
Ritz relationship. From this relationship the approxi-
mate unperturbed positions of the 6snp levels were
determined and a set of parameters fitted to these
values. The Rydberg-Ritz relationship showed that for
6s6p the J=O level is perturbed relatively more than
the other levels. Accordingly only the J=O level of
6s6p was included in the diagonal sum equations of
6s7p, Sd'6s'6p, and 6s5f. The calculated energies and
wave functions of the 6s6p levels listed in Table VIII
are obtained from the parameters &6p 83 100 Gt;p
=9900 and a6p 12,000; in addition for the J=O level
a displacement of —700 cm ' arising from the pertur-
bation by 6s7p and Sd'6s'6p is included.

When the perturbation parameters P were included
in the unperturbed diagonal sums there were 7 equa-
tions for 13 parameters (i.e., 6 independent parameters).
The value of the magnetic parameter a7p was estimated
from u6p and a» to be approximately 3100. The value
of a~~ to be used for the Sd'6s'6p configuration was
known from other configurations to be between 12,000
and 13,000. Liberal use was made of the perturbation
diagrams described in Sec. II in arriving, after many
trials, at the final set of parameters. The parameters
are —Ii 0= 176,926, F2= 572, Gi= 578, aep= 12,900,
a~d= 8780, G7„=1100, F7p= 175,050, a7p ——3100, and the
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TAax,z VIII. %'ave functions, calculated and measured observables.

Level& Calc.

Even levels

%'ave function
g-Value

calc. obs.
hfs int. factor
calc. obs.

Isotope shift
calc. obs.

20

31
4o

So

6g

?l
8o
93

)op
)io
12o
13y
14o
)SAN

)6p
)?p
182
25(
26'
2?p
28'
351
36'
3?g
38'

142545
150084
152045
153785
155432
157444
1S8070
1589S7
164325
1?8615
188615
197893
1992SO
201399
20159?
202047
2033Q2
221205
221301
221600
221944
232019
232075
232274
232464

142551
150084
151885
153783
155432
15?444
157925
1589S7
164818
178432
188615
197893
199401
201399
201597
202047
203302
221205
221307
221600
221938
232019
232097
232274
232442

+6
0

-160
—2

0
0

-145
0

+493
—183

0
0

+151
0
0
0
0
0

+6
0

-6
0

+22
0

-22

+0.832(pPppp) +0.429('Soph) —0.351(~So6s?s}
+1.00(PS&6s?s)
-0.323 (3Popo} +0.605(iDopp) —0.723{iDosd) +0.089{3Dosd)
—0.433 (oPop&} +0.105(&Sopo) -0.895(~Sp6s?s}
+1.OO( P&po}

+1.00(ID&sd}
-0.070{~PoP~}+0.07?(~DHAPP) -0.032{'D2sd) —0.993(3D2sd)
+1.00(PDosd)
-0.828(3Pqpo) +0,)?9(~Dip&) +0.528('Dqsd} +O.Q63 ('D lsd}
+0.452(PPqPo) +0.772 {iDpPo} +0.446(iDssd) +0.014{'Dosd)
-0.346{3Popo}+D.898(~Soph) +0.2?2(~So6s?s)
+1.00(pS&6s8s)
+1.00(~So6s8s)
+1.00(3Di6s?d)
—0.187{iDo6s?d) +0.982(&Do6s?d)
+1 00(pD36s? d)
+0.982{~Dz6s?d) +0.)87(PD26s?d)
+).00(&D&6s8d)
-0.318(~Dg6s8d) +0.949(3D26s8d}
+).00(PDp6s8d}
+0.949{iD&6s8d) +0.318(&Do6s8d)
+1.00{PD&6s9d}
-0.344('D26s9d) +0.93?(PDp6s9d)
+1.00{3D,6s9d)
+0,93?(~Do6s9d) +0.344(PDp6s9d)

Odd levels&

2.00
1.05

1.98
1.06

1.50
0.50
1.16
1.33
1.34
1.10

0.50
1.15
1.33
1.40

0.50
1.16
1.33
1.00
0.50
1.15
1.33
1.02
Q.SQ

1.14
1 I33
1.02

0.50
1.16
1.33
0.98

2.00 2.00

0
1.54
0.09
0

—0.0?
-0.65

0.18
0.43

—0,02
0.00
0
1.44
0

—0.65
0.40
0.43

-0.19
—0.65

0.52
0.43

-0.30
—0.65

0.53
0.43

—0.3)

0
1.53

0

-0.62
0.29
0.44

).43

—0.68

0.45
—0.19

-0.45
+0.06
-0.24
—0.10
—0.50

0
0
0

—D.36
-0.40
-0.46
+0.03
+0.03

0
0
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

—0.4
+0.06
-0.25
—0.10
—0.44
—0.06

0.00
0.00

—0.32
—0.40

+0.03
+0.03

0.00
0.00
0.00
0.00

0.00

Level Calc. Obs. %'ave function
g-Value

calc. obs.
hfs int. factor
calc. obs.

Isotope shift
calc. obs.

0

2 ~o

3oo

4P
5 0

60500
64650
792QQ

95550
154480

60397
64391
78985
95340

154494

—100
-250
-200
—200
-14

6p
0

8P
1?1022
170945

1?0917
171081

—105
+136

9~0

10oo
173330
174080

173329
173986

) 1&o 174630 174601

12' 176100 176023

13) 177130 17?181

14oo 177950 177906

)Sop

)6p 184260
178957
184268

)750

8' 190260
189785
190288 +28

19'
20po
21oo
22po

23@

190430

1926?5

19?470

190429
190901
192880
196847
197319 —151

25p~
&0

2?oo

28@
29'~
30po
3)go
32$

206809
206968
208922
209329
214434
214455
214486
214824

206809
206979
208922
209318
214434
214477
214486
214846

0
+11

0
—11

0
+22

0
+22

24~O 199240 199344 +104

+0 996(aPp6s6p} -0 083('Pp6s? p)
-0.282 {&Pg6s6p) +0.905{oPy6s6p}
+1.00{'Po6s6p}
+0.905(~P&6s6p) +0.282 {3P&6s6p)
—0.063(pPasp} +0.805(oPpd'p} +0.501('D~dpp)
-0.268(~DzdoP) +0.155(&FpdoP}

No wave function calculated
+0.080{pPp6s6p) +0.993(&Pp6s?p) 10,080(oPodop)
—0.884{pPisp}+0.380(iPisp) +0.239(3Pidpp)
+Q.Q32 {'P)dop} +0.127(3Didpp)
+0.996{3F4dpp} +0.083(&F4sf)
+0.510{pPosp}-0.424{3Pqd p} +0.374{D&dop)
—0.360(&D&d p) +0.538(pF d'p) —0.020(&F&sf}
—Q.O?1( P sp'} -0.564( P sp) +0.635('P d'p)
-0.388(iP sdop) +0.354(pD&dop)
-0.834('P esp) —0.268(3P2d'p) +0.155{'D2d'p}

0 0??(iDodsp) +Q 445{pF~dpp) 0 063{oFosf)
+0.460{3Pisp) +0.619(IPisp} +0,486{pP&d'p)
+0.07) (~Pgdop} +0.412(&Dgd p)
+0.138{3P2sp)+0.200(pP2dop} -0.) )4{~D2dop)

+0.728{~Dad p) +0.629(oFzdop) 0 022(sposf)
No wave function calculated, mainly (d'p)
-0.063(pPisp) -0.336(iP&sp) -0.032(pP&dpp)

+0.840(iP gdop) +0.421 (pD&dop}

No wave function calculated, mainly (sf}
0.020(pP'ldop} +0.045 (pD2dop) +0.045 ( Dodop)

+0.077(oFpdpp) +0.994(pFpsf)
+0.996(pFaf} -0.083(&F4d p)
No wave f'unction calculated, mainly (sf)
+0.996{3Podop) —0.083(pPp6s7p}
No wave function calculated, mainly {doP)
+O.)oo('P esp) —0.579 (pP idop} —0.362(~P idop)

+0.725 (3Dgdop)

+0.235 (apzdop) -0.752 (&Dzdop) —0.490{&D2dpp)

+0.366(oFodoP) +0.055(3Fosf}
+).00(oPp6s8p)
+0.877(~P16S8p) -0.480(~P16ssp}
+).00{PPr6s8P)
+0.480(3P&6s8p) +0.8?7(~Pi6s8p}
+),00(oFp6s6f}
+1.00(3Fo6s6f}
+1.00(3F46s6f)
+).00(~F36s6f}

136 0 06 a ~ ~ +0 49 ~ ~ ~

1.42 1.38
0 0 0 00
1.19 1.23 +0.04 +0.05

1.25 ~ . .
1.14 0 97

Q Q8 0 ~ ~ +0 50 ~

0.30 0.23 +0.37 +0.46

1.14 1.135

1.32 1.34

Q.03 0.00 +0.34 +0.35

0.51 0.55 +0.15 +0.12

1.14 1.15 —0.32 —0.38 +0.20 +0.20

0.90 1.08 0.12 0.16 +0.48 +0.46

0.92 0.96 0.10 Q. 10 +0.44 +0.45

1.25 1.25

091

0.32 0.31
0.09

0 0

Q )4 ~ ~ ~

Q.OQ

+0.50

+0.49

0.0
+0.04

+0.50

1.07 ~ ~ . Q 21 ~ ~ ~ +0 So ~ ~ ~

0.0
0.67 0.67 —0.42 —0.40 +0.01 +0.06

~ The level numbers are not those given. by Crooker (reference 13},but can be correlated by their term values.
'p The asterisk indicates that the measurements show that the hfs interval factor is smail.
b In the table for the odd levels sp refers to the 6s?p configuration. sf to the 6sSf configuration. and dpp to the Sdp6sp6p configuration.
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oB-diagonal parameters 8= j 700, 8'= —3000, C= 1400,
also Fsy —G5f—2ugy= 190,150.

An approximate calculation was carried out for the
J=3 levels, but since the 63 level has not been located
the calculated values of the energies are much more
uncertain. On this account, the wave functions were

not calculated for the J=3 levels. The 63' level would

have largely 5d'6s'6p character and thus the only

strong transitions would be with Sd'6s'6d levels. These
transitions would be in the ultraviolet and thus dificult
to observe. The other J=3 levels from the d'p configura-
tion have more of the 6s5f character. It is because of
this that their combinations with levels of sd character
were sufficiently strong to be observed.

Although these calculations for the odd levels were

extremely complicated the agreement as shown by the
energy diGerences in Table VIII is excellent. The error
for the perturbed levels has been reduced from an
average of approximately 400 cm ' in the unperturbed
calculation (Table V) to an average error of less than
100 cm ' in the perturbed calculation. This final error
is well within the limit of accuracy of the numerical
solution of the determinants. This does not appear to
be a large correction, but since the odd configurations
overlap each other this perturbation of the energies
represents a large perturbation of the wave functions.
Thus we have an appreciable intermingling of the
character of the interacting levels. The wave functions
of the levels can now be calculated from the numerical

energy matrices as linear combinations of the (LS)
wave functions of the mutually perturbing configura-
tions. The coupling coeScients in the linear combina-
tions are the elements of the transformation matrices
which will convert the energy matrix in the (LS)
representation to the intermediate system, that is, will

diagonalize the energy matrix. 4

V. CALCULATION OF THE OTHER SPECTROSCOPIC
OBSERVABLES

The wave function of a given level is expressed as a
linear combination of the (LS) wave functions by
means of the (LS) coupling coefficients K or as a linear
combination of the (jj) wave functions by means of
the (jj) coupling coeScients C. From these coupling
coeKcients the other spectroscopic observables can be
calculated. The values of the wave functions in (LS)
representation, and the calculated spectroscopic ob-
servables (g-values, hfs interval factors and isotope
shifts) appear in Table VIII. The observed values are
listed in the table for comparison.

A. g-Values

The Zeeman g-values can be calculated simply from
the (LS) g-values and the (LS) coupling coefficients of
the levels. "The calculation of the g-values using the
wave functions determined from the energy levels does

'6 J. 3. Green, Phys. Rev. 64' 151 (1943).

not involve the introduction of any additional experi-
mentally determined quantity. This is a good inde-
pendent check of the wave functions because in Pb III
where the coupling is not near (LS) the g-values are
sensitive to the perturbation.

For the most part the calculated g-values are in
excellent agreement with the observed g-values. There
seems to be a slight discrepancy in the values for the
102o and 142' levels. The g-value for the former is too
high and the latter too low by approximately the same
amount. The calculation for these levels is extremely
sensitive to the perturbation and it is possible that the
evaluation of the intermingling of their characters is
slightly in error.

B. Hyper6ne Structure Interval Factors

The hyperfine structure (hfs) interval factors of the
various levels of the configurations can be calculated
by the method of Breit and Wills'~ as functions of the
hfs interaction constants of the valence electrons and
the coeflicients, C's, of the (jj) wave functions. The
hfs interval factor a(J) of a level of a many-electron
configuration is a function of the one-electron inter-
action constants a(j). The formula for a non-s electron
as given by Goudsmit' is

Avl(3+1)K(j, Z,)g(I) =u' for j=l+$
~(j)= , „ . , (2)

Z;j(j+1)(l+2))(l, Z,)1838=a" for j=l—l.
For an s electron the interaction constant is

8Ra'Z, ZO'K( ,', Z;)g(I)-
a(s) =

3m*31838

The symbols are defined by Goudsmit. If two configura-
tions interact the wave function for each level is
expressed as a linear combination of the (jj) wave
functions of all levels with the same J. Thus the hfs
interval factor of a given level can be written in terms
of the one-electron interaction constants and the (jj)
coupling coeKcients for that level. The C's are calcu-
lated from the (LS) coupling coeKcients K by means
of the (jj)~(LS) transformation matrices. "The a(j)'s
can be calculated from Goudsmit's formulas (2) and (3)
if g(I) is obtainable from an unperturbed J level.

The hfs formulas for the P', sf, sd, sP, and nse's
configurations are given by Breit and Wills. '7 The
formulas for a d'p configuration are the same as for a
dp configuration and have been calculated for this
work. They are

A(J=4) = ', ag'+-,'a, ', -
"(~=3)= (I/24)ci'(1&ud'+&~y')+-, 'Ci'(ag"+ up')

+sc '(5~.'+u.")+(1/3)~C,C,~."'
—(5/9)&c c

"G. Breit aIId L. A. Wills, Phys. Rev. 44, 470 (1933).
'8 S. Goudsmit, Phys. Rev. 37, 663 (1931) and 43, 636 (1933).
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where the C's are de6ned by the relation,

(3)g= Cr(5/2, 3/2)+Cm(3/2, 3/2)+Cg(5/2, 1/2),

in which (3)g symbolizes the wave function of a state
with 5=3, m=3 in intermediate coupling and (5/2, 3/2)
symbolizes the (jj) wave function of the state l=3,
m =3 arising from the (5/2, 3/2) jj-sub group, and so on.

A (J=2) = (1/12)CP(11«+a„')+-',C2'(a, '+«")
+6C3'(7«' &—")+4C4'(3«"+on")

+(7/3) &CgC2«'" —(14/9) 'CgCsa, "'
—v2C2C4u, + (2/3) &CIC4«

where

(2)2
——Cg(5/2, 3/2)+ C2(3/2, 3/2)

+C3(5/2, 1/2)+C4(3/2, 1/2).

A (J= 1)= ~~CP(7«' 3u~'—)+-,'Cg'(«"+u„')
+-'C '(5«"—a„)—(3/5) &CgC2«'" —v3'C2Cso~"',

where (1)q
=C~(5/2, 3/2)+Cp(3/2, 3/2)+Ca(3/2, 1/2).

A value of a6, =2.60 cm ' is obtained from the

hyperfine structure of the 'D& and 'D3 levels of 6s6d
and 6s7d. These levels are unperturbed and independent
of coupling and give the value of a6, to within 4 percent.
Using this value of ae, and Goudsmit's formulas we

can calculate the values of the interaction constants
for the other electrons. 'From the term value of Sd"6s
of Pb IV n~=2. 265 for the 6s electron, Z;= 78, Zo ——4.
Thus we obtain from Eq. (3) a value of g(I) =0.99(4).
Substituting this value in Eq. (2) and using for the p
electron Z;=78 and hv6~=18, 000 we 6nd ag„"=0.52
and a6„'=0.05. Using also hv7„= 4000 we obtain
a~„"——0.13 and av„'= 0.01. For the d electron an

approximate value of Z;=70 was used. " Thus Dvsd

=22,000 gives a~q" ——0.21 and a~q'=0. 09. The other
interaction constants a6„"', a7~"', a~~'", a6~', a6~", and
a6~"' are all negligible. These values show that the
contributions of the 6p and Sd electrons to the hfs

interval factor of a level cannot be neglected relative
to the contribution of the 6s electron. However, since

in general they are appreciably smaller than az„ they
need not be known to the same precision. Hence, the
approximate values calculated here are adequate.

Even Levels

The calculated hfs of all the levels are in very good
agreement with the observations. For those levels for
which the hfs has been resolved the quantitative agree-
ment is quite satisfactory. For those levels whose

hyperfine structures have not been resolved the agree-
ment is also satisfactory in that the theory predicts
small interval factors.

Odd Levels

The calculated values of hfs interval factors are in

good agreement with those measured by Crooker except

"E. Fermi and E. Segrh, Z. Physik 82, 729 (1933).

in two respects: Firstly, the values for the 10&' and 142'
levels indicate that there is a slight error in the wave
functions for these levels as evidenced also from the
calculation of their g-values. Secondly, the interval
factor given by Crooker for 16~', designated c8~' in his

paper, is ~—0.2 cm ' compared to the predicted
value +0.1. Crooker inferred a negative interval for
this level because no Pb'" component was directly
observable in the patterns of 32384 cm ' (42—16&')
and 30485 cm ' (5~—16/), indicating that the stronger
Pb'" components were merged with the Pb"' and Pb'"
components. This single discrepancy suggested that
possibly Crooker's conclusion was in error. Accordingly
the structures of these two lines were re-examined with
a Leeds and Northrup microphotometer and their
density contours reduced to intensity contours. The
contour of 32384 cm ' showed that the two clearly
resolved components had an intensity ratio equal to the
relative abundance of Pb"' and Pb"', and that between
these two components there was the intensity contri-
bution expected for the Pb"' components. The intensity
between these two components cannot be ascribed to
lack of resolution since on the same plate another
two-component pattern with smaller separation showed
a much deeper minimum. The hfs separation of 16~'
then must be normal, and smaller than the separation
of the level 42 since a well-dehned Pb'" component was
not observed between the even isotopic components.
An analysis of the intensity contour of 30485 cm '
confirmed this conclusion. Thus the interval factor of
16/ is +0.10 cm ', in agreement with the calculated
value.

This comparison forms an independent check on the
validity of the wave functions determined from the
multiplet structure since eGectively only one observable,
namely a6, =2.60," has been used in addition to the
wave functions determined from the energies. The
values of the hfs interaction constants of the other
valence electrons were calculated by the approximate
formulas of Goudsmit. ' Undoubtedly, by making a
slight adjustment in these interaction constants a
closer agreement between predicted and observed values
could have been obtained. However, the consistency
of the theory is more cl.early illustrated by using the
minimum number of experimentally determined quan-
tities.

C. Isotoye Shifts

The theory of isotope shifts in heavy elements was
developed by Bartlett, " Rosenthal and Breit,""and
Racah. '4 According to their theory the levels of the
lighter isotope will be slightly more stable than the

'0 This value leads to a nuclear magnetic moment in good
agreement with that obtained by the induction method. Schawlow,
Hume, and Crawford, Phys. Rev. 76, 1876 (1949).

~' J. H. Bartlett, Nature 128, 408 (1931).
~ J. E. Rosenthal and G. Breit, Phys. Rev. 41, 459 (1932).
'3 G. Breit, Phys. Rev. 42, 348 (1932}and 44, 418 (1933).~ G. Racah, Nature 129, 723 (1932).
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corresponding levels of the heavier and the shifts be-
tween corresponding levels will depend on the type of
valence electron, decreasing in order of ns, npi~~, ep3~2,

nd@2, etc. , with the shift due to the- s electron being by
far the largest, and decreasing with increasing n for all

types of electrons. The shifts for all levels of an unper-
turbed configuration will be approximately the same
since they are due principally to the 6s electrons.

%hen two or more configurations A, 8, C, etc. ,
perturb each other the isotope shift of a perturbed level
can be calculated as follows. "Neglecting the contribu-
tion to the isotope shift (I.S.) of all except the 6s
electrons, the I.S. of all levels of A without perturbation
would be (I.S.)~, where (I.S.)~ depends on the number

of 6s electrons in the configuration; likewise for con-
figurations 8, C, etc. Then the isotope shift of the
perturbed level is given by

(I.S.) =/It '(I.S.)g+Qlts'(I. S.)ii+.
where E~ is the (1$) coupling coeKcient of a level of
configuration 3 in the wave function of the perturbed
level, and so forth. Since the E~'s and K~'s, etc. , have
been determined from the energies of the levels, the
isotope shifts can be calculated if the shift per 6s
electron is known.

The datum for isotope shifts of Pb III in Table VIII
is zero shift for the Sd"6s configuration of Pb IV.
Relative to this datum the configuration Sd'6s'6p has
one extra 6s electron, and 5d"6p' is short one 6s elec-
tron. The configurations 6snp, 6snd, 6snf. and 6sns
have the same number of 6s electrons as 5d"6s. Taking
the isotope shift per 6s electron to be 0,50 cm ' the
unperturbed isotope shift is +0.50 cm ' for each level

of the configuration 5d'6s'6p, —0.50 cm ' for each level

of the configurations Sdi06p', and 0 cm ' for the 6sut
configurations. For the 6sns configurations there will

be a small positive shift due to the ns electron.
The excellent agreement between the observed and

calculated values of the isotope shifts is perhaps the
most direct confirmation of configuration interaction,
since without interaction all shifts would be either
+0.50, —0.50, or 0 cm '. Errors of the order of 5
percent are introduced by neglecting the shift due to
the 6pi~p electron, 2' but in general this is smaller than
the experimental errors in the measured shifts. The
observed isotope shift of a level gives very directly a
measure of the perturbation of the level by levels of

25 M. F, Crawford and A. L. Schawlow, Phys. Rev. 76, 1310
(1949)

other configurations, This calculation also shows that
the isotope shifts in Pb III can be quantitatively
accounted for on the basis of the field theory alone, and
is the best evidence to date that the specific mass eGect
is relatively unimportant for the heavy elements. "

VI. 6sng CONFIGURATIONS

The levels of the even isotopes for the 6sng configura-
tions have anomalous distributions. %olfe's equations, "
which involve an additional parameter can, of course,
be fitted to the levels, Using one of the two sets of
parameters obtainable by fitting Wolfe's equations the
hyperfine structures due to the odd isotope were
consistently explained. In this calculation it was neces-
sary to work directly with the F matrices, because the
multiplet and hyperfine structures are comparable.
However, the values of the parameters required to
account for the observed hyperfine structures appear
to be anomalous on the basis of the simple theory, since
the spin-other orbit parameter is positive and appreci-
ably larger than the spin-orbital parameter which is
negative. The negative value of the latter suggested
that perturbations by levels of configurations in which
a core electron is excited should be considered. " An

approximate calculation of the perturbations by levels
of 5d'6s'6d indicated that they are not the cause of the
anomalous distribution. It may be that the anomalous
parameters obtained with Wolfe's equations are the
result of neglecting the spin-spin magnetic interaction. -"

If the latter is included in the formulas a direct com-
parison cannot be made since there are more parameters
than observables. A test would require the evaluation
of some of the parameters from numerical wave func-
tions.

VII. CONCLUSIONS

This calculation shows that the theory is capable of
giving an internally consistent explanation of multiplet
structure, hyperfine structure, isotope shifts, and g-
factors; and that remarkably good agreement can be
obtained if one is willing to spend sufhcient time on the
evaluation of the parameters. In principle the theory
could be further checked by calculating relative in-

tensities, but this was not done since relative intensities
in Pb III have not been measured.

"H. C. Wolfe, Phys. Rev. 41, 443 (1932).
» M. Phillips, Phys. Rev. 44, 644 (1933).
28 H. H. Marvin, Phys. Rev. 71, 102 (1947).


