
PH YSICAL REVIEW VOLUME 84, NUM BER 3 NOVEM BE R 1, 1951

On the Theory of Coherent Scattering Processes in Liquids*

Lovrs Gox.osTFIN
University of California, Los A/amos Scientific Laboratory, Los Alamos, Em Mexico

{Received May 29, 1951)

The coherent scattering structure factor of liquids for x-rays and slow neutrons are shown to determine
completely both the correlation function and the direct local interaction function of liquids, which quantities
are the only operating elements of the general static liquid model of Ornstein and Zernike. Of these functions
only the former has been derived so far from the data accumulated essentially on the coherent scattering
of x-rays by liquids. It is shown that the directly available experimental structure factors completely
determine the even moments of these molecular distribution functions. The zerotb moment of the correlation
function augmented by unity is essentially the liquid concentration fluctuation which determines its iso-
thermal compressibility. These quantities become thus directly derivable from the structure factor measure.
ments without any arbitrary and uncertain manipulations In tertns of the model, a straightforward method
leads, with the empirically obtainable total cross section, to the total incoherent slow neutron scattering
cross sections in liquids. These should yield information on their energy spectrum not available through
other types of scattering processes, such as x-rays, for instance.

(O.Z.) liquid model is founded on the assumed existence
of a direct intermolecular interaction function whose
range would be expected to be of the same order of
magnitude as that of the elementary intermolecular
forces. This direct interaction function determines, in
turn, an indirect interaction function which enters into
the de6nition of the two-atom or two-molecule radial
distribution function. The latter expresses the proba-
bility of 6nding a molecule in a volume element whose
center is at some specihed distance from a molecule
chosen arbitrarily. As far as we are aware, the funda-
mental relation of the O.Z. liquid model which is
actually the definition of the indirect interaction func-
tion in terms of the direct interaction function has been
left partially out of account in x-ray work. It is one of
the main points of this work to redirect attention to the
possibility of a complete veri6cation of the O.Z. liquid
model through a fuller exploitation of the experimental
data already accumulated on the coherent intensity
structure factor of a number of monatomic or molecular
liquids. The interest in the O.Z. static liquid model has
been further widened recently through a study of the
analogies existing between the molecular distributions
of this model and that of ideal Bose-Einstein Quids

undergoing condensation in momentum space, whose
complete and rigorous formalism is based on Grst
principles. ' Also the possibility of using slow neutrons
in the investigation of the coherent scattering by liquids
n the critical region may lead to a further verincation
f the O.Z. theory in this region. "Furthermore, the
asis of the model has been broadened somewhat
hrough a new derivation of its central relation. '

The general coherent scattering properties of this
odel will of course be valid both for x-rays and slow

I. INTRODUCTION

'HE knowledge of the distribution of the atoms or
molecules, around one chosen arbitrarily, in a

liquid in statistical equilibrium enables one to evaluate
rigorously the intensity of coherently scattered waves
of any type by this liquid. According to statistical
mechanics, the knowledge of the intermolecular forces
leads formally to the spatial distribution function of
the liquid molecules which determines completely its
coherent scattering properties. In practice such a pro-
cedure founded on drst principles has not as yet led to
delnite results of a general character because of its
analytical complexity. ' In view of this complexity it
was natural that a number of attempts shouM have
been made in order to derive semi-empirical liquid
models. ' Among these the one suggested by Ornstein
and Zernike' in connection with a possible solution of
the critical opalescence problem of visible radiation
appears to be quite general. As a matter of fact, one of
the two operating elements of this liquid model, the
two-atom or two-molecule spatial distribution function
was shown to be directly accessible to experiment
through the coherent scattering structure factor of
x-rays and recently also of slow neutrons. ' Since the
derivation of this result, practically all work on the
coherent scattering of x-rays by liquids culminated in
the empirical determination of the local molecular or
radial distribution function. ' The Ornstein-Zernike

James, Digraction of X-rays (Bell and Sons, London, 1948). For
the neutron experiments see O. Chamberlain, Phys. Rev. 77, 305
(19503.

s L. Goldstein, Phys. Rev. 83, 289 (1951}.
~ L. Goldstein, Phys. Rev. 81, 326(A) (1951).

M. J. Klein and L. Tisza, Phys. Rev. 76, 1861 (1949).

~ The abstract of this paper has appeared in Phys. Rev. 83,
225(A) (1951). 0

' J. E. Mayer and M. G. Mayer, Statistkal Mechanics (John
Wiley and Sons„ Inc. , New York, 1941), where the theory of the
equation of state of vapors illustrates the difFiculties alluded to.

3 J. Frenkel, Theory of Liquids {Oxford University Press,
London, 1947).

'L. S. Qrnstein and F. Zernike, Amsterdam Proc. 17, 793
(1914); F. Zernike, Amsterdam Proc. 19, 1520 (1916); L. S.
Ornstein and F. Zernike, Physik. Z. 19, 134 (1918) and 26, 761
(1926).

4 F. Zernike and J. A. Prins, Z. Physik 41, 184 {1927).
~ N. S. Gingrich, Revs. Modern Phys. 15, 90 {1943);A. H.

Compton and S. K. Allison, X-Rays in Theory and Experiment
{D. Van Nostrand Company, Inc., New York, 1935); R. W.

466



COHERENT SCATTERING PROCESSES I N L I QU I DS 467

neutrons and for visible radiation, in transparent
liquids, in the limit appropriate to the latter case.

A second major point, although quite qualitative, of
this work turns out to be the recognition that the
experimental investigation of the slow neutron inco-
herent scattering processes might yield important
information on the energy spectrum of liquids. While
their coherent scattering phenomena is determined by
the spatial distribution of the liquid molecules, whereby
an averaging over all the possible states of l.iquid
motion is automatically performed, the slow neutron
incoherent processes associated with both energy and
momentum exchange of the neutrons with the liquid
as a whole appear to provide a unique set of information
on the motions of the liquid as a whole in a relatively
wide energy interval. This type of information is not
available through x-rays.

It seems of interest to outline first the main features
of the O.Z. static liquid model. We should like, in doing
so, to go somewhat beyond the original presentation. '
This will be attempted in the next section. The subse-

quent sections will then be devoted to the study of the
general coherent scattering properties of this liquid
model and to a qualitative discussion of the possible
importance of the slow neutron incoherent scattering
phenomena for obtaining information on the energy
spectrum of a liquid as a whole.

II. THE LIQUID MODEL'

Let the probability of finding a liquid molecule in a
volume element dw(r) whose center is at a distance r
from the center of a molecule situated at the origin be
given by

P(r)dv [1+Q(r)]du/V, (1)

where P(r) is the probability density a.nd V stands for
the total volume of the liquid. The mean number of
molecules in de(r) is

dn(r)= (X/V)de+(X/V)Q(r)dv. (2)

where X is the total number of molecules in V. The
accidental deviation of the concentration from its mean
is thus,

de(r)/ds —S/V= b(r)= (X/V)Q(r). (3)

In order to derive the average deviation from the mean
concentration at a point, chosen arbitrarily within the
liquid to be the origin of the coordinate system, it will
be assumed that this deviation is a linear superposition
of the deviations in all neighboring volume elements.
Adopting a continuum representation, one has thus

b(o) = ' b(r)f(r)ds(r) = (&/V) Q(r)f(r)dv (4)
J~ ~Jp

The direct influence function f(r), depending only on
the length of the radius vector r, is determined by the
intermolecular forces and its range should be about the

range of these forces. Hence, the integration in (4) may
be extended over the volume V or even the whole space.

Assuming throughout central forces, the function

Q(r) appearing in the two-particle probability density
P(r), Eq. (1), should depend only on the length ~r~.
Furthermore, the presence of a molecule at the origin
cannot very much aGect the probability to find another
one at a great distance from it. Hence, the function

Q(r) should tend to vanish for large values of its argu-
ment or the mean concentration shouM prevail at large
distances from a molecule chosen arbitrarily within the
liquid. Surface eGects will be omitted throughout this
paper. On the other hand, the strongly repulsive char-
acter of the intermolecular forces at small separations
will prevent two molecules from approaching each
other, so that the probability (1) should tend to vanish
at small distances.

Consider the problem of finding the mean deviation
from the average concentration at some point r, as
caused by the indirect action of a given deviation at
some other point, which may be chosen to be the origin
of the coordinate system. This indirect action may be
seen to come about through the local or short range
interactions between the molecules situated in the space
surrounding the one at the origin and the other at the
point r. Through these interactions any deviation from
the average concentration b(0), at the origin, will affect
the deviation b(r) at the point r, no matter how large r
is. This indirect action is already expressed by the
function Q(r) defined by Eq. (3). It may be redefined
more completely in the following way, as shown by
Ornstein and Zernike. ' Let

b(r, 0) =g[r, b(0)dw(0)]; r) 0, (S)

and, hence,

b(0, r') = g[r', b(r')dv(r')$, r')0. (Sb)

The preceding relation may now be used on the left-
hand side of Eq. (4), while (Sa) or b(r, r') may be used
for b(r) in the integral on the right-hand side of Eq.
(4). We thus obtain,

g[r', b(r')de(r')]= t g[~r —r'~, b(r')d (r's))f(r)d (r)v

The second term on the right-hand side originates in
that Eq. (Sa) is not valid at r=r' and the right-hand
side of Eq. (4) has to be completed by the direct action
f(r). Since the preceding equation cannot depend on
any particular choice of b(r')dv(r'), one should have

g[~, bmdv(~)l=g(~)b(~)d~(~), (7)

express the assumption that the deviation at r is some
function of r and b(0). This is equivalent to the following

more general relation

b(r, r') =g[~ r—r'~, b(r')dv(r')], rWr', (Sa)
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and, Eq. (6), becomes, switching primes,

g(")=J g(lr r'l)f(r')dv(r')+f(r). (8)

lim 5g( —b2)dv —&e')A„dv= (A'/V),
dv-+0

(13)

and Eq. (11) becomes, with Eqs. (3), (3), and (9),
&g(r)8(r'))A„——(X/V)g(r r') = (X/V)'Q(r —r'). —(l4)

In a large volume, the accidental excess or defect in the
total number of molecules may be written as

hE = Jtb(r)dv,

andq

&61V')A, = Jt )t&b(r)2),gv(r)dv(r')

+Jt Jt&8(r)h(r')) gv(r)dv(r')

I=E 1+(N/V)J' Q(r)dv,

This states that the indirect interaction or correlation
between a molecule at the origin and one at a distance
r is equal to their short-range interaction f(r) augmented
by the sum of the correlations of all those molecules
which have a direct or short-range interaction with the
one at the origin. This relation has been obtained
recently in a more direct way by Klein and Tisza' in
their discontinuous transcription of the D.Z. continum
liquid model.

We may write Eq. (5) in the following form

~( )=g(r)g(0)d (o), (9)

which, when multiplied by h(0) and taking averages,
over the liquid volume, leads to

&b(r) 8(0))A,——g(r)(b(0)')A+v(0). (10)

But this equation is evidently independent of the choice
of the origin of the coordinate system, and one has to
have also

&~(r)b(0))A =g(r)&g(r)')A dv(r) (11)

Equations (10) and (11) impose that

&h(0)')„gv(0) = (5(r)2)~,dv(r) = ~ = constant. (12)

This constant may be obtained approximately in the
following way. Since (1V/V) is the mean concentration
of the molecules in the liquid, in a volume element dv,
there are, on the average, (1V/V)dv molecules. If dv is
small enough, then there will be either one or no
molecule in dv. The deviations from the mean number
of molecules, in the two eventualities, are, according to
Eq. (3),

8idv=1 —(E/V)dv; b~dv= —(1V/V)dv,

respectively. Hence,

a relation which was proved rigorously in the statistical
mechanics of ideal symmetric fluids where the correla-
tion is strictly a quantum efI'ect. '

While Eq. (8) cannot give the indirect interaction or
correlation function g(r) unless f(r), the possibly short-
range direct interaction function, is known, it leads to a
satisfactory determination of its asymptotic expression
as shown by Zernike. '

Let

F= Jr f(r)dv; rr'= If(r)r'd =ve', (16)

P is the space integral of the short-range direct inter-
action function and ~' is the mean square of its range.
The quantity (e')& is of the order of magnitude of the
range of the intermolecular forces. At all distances r))~
where f(r) is vanishingly small and provided that p) e

one finds

g(r) = [3F/(2v e') je "'r/r; r&)e,

p'= e'/6(1 F)—
(17)

&DAl')A„/X=1+ tg(r)dv=1+G. (21)

But in a large volume and as long as the state of the
fluid is diiferent from the critical state, &EX)A„/X is
determined by statistical thermodynamics' to be

&61P)A /X= XkTxr/V, (22)

the fluid having temperature T, k denoting Boltzmann's
constant and xz the isothermal compressibility in this
state. Multiplying both sides of the integral equation (8)
by dv(r) and integrating over the whole volume V or
the whole space, one obtains

G(1—F)=F, 1+G=(1 F) '=1VkTgr/V —(23).
~ M. v. SmohIehowski, Ann. Physik 25, 205 {1908).

%ith e being about the range of the intermolecular
forces e' is, approximately, the volume per molecule
V/X, and

g(r)~». = (3F/2v e')e 'r/(r/e)

=(1V/V)(3F/2v)e "'I'/(r/e). (18)

The correlation function is thus, in this approximation,

Q(r)~». =(3F/2n)e '~&/(r/e), (19)

and the two-particle probability density defined by
Eq. (1) becomes, asymptotically,

F(r)r»c= (1+Q(r))/V
=[1+(3F/2v)e "~&/(r/e) jV '. (20)

The latter, of course, has the required form, tending
toward the constant limit t/" ' at large separation r.

It is of interest to consider more closely the range p,
Eq. (17), of the correlation function Q(r) or the indirect
interaction function g(r) which is proportional to it.
According to Eq. (15),
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Hence, the range p of the g-function, or the correlation
function Q(r), is, according to (17),

(p)'= (c'/6) (1+G)=Nk Txro'/6V . (24)

The space integrals F, G, together with the functions f
and g are, of course, temperature dependent.

In normal. liquids at temperatures T small in com-
parison with the critical temperature T„(AN')A„/N or
(NkTxr/V) may be small in comparison with unity.
Hence, at these low temperatures,

—1&G(T«T.) (0, F(T«T,) &0,
~
F(T&&T.) ~

)1. (25)
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At such temperatures the range of the g-function is thus
small compared with the range e of the f-function.
Under these conditions with the molecular distribution
function, Eq. (1), being

dn(r)/do=»P(r) = (»/V)+(N/V)Q(r)
=(»/V)+g(r), (26)

- I.OO 100 200 400
c

FIG. 1.The space integrals (F,G) for liquid water, and (FH„GH,)
for liquid helium as a function of the temperature. The lower
abscissa scale in 'C (water) and the upper in 'K (helium).

We have represented, in Fig. 1, F(T) and G(T) for
water and liquid helium. The over-all similarity in the
behavior of these so difI'erent liquids with respect to
the space integrals of their direct and indirect inter-
action functions is evident. The radical change in the
behavior of g(r, T) at temperatures T) T; is clearly
exhibited by these curves. The ) -anomaly in liquid He
appears through the slight discontinuity in F(T) at the
)-point. This indicates already that any experimental
data which may yield F(T) or some quantities closely
connected with it cannot show but a small temperature
eGect in crossing the X-point. This is so because the
spatial arrangement of the atoms in liquid helium,
associated with a complete averaging over the states of
motion of the liquid as a whole will likely change only
slightly in crossing the 'A-point. It is to be noted that
the water curves refer to the saturated liquid, while the
helium curves correspond to slightly compressed helium.

g(r) vanishing at small distances already, this function
or Q(r) has to be negative essentially over the interval
r~ p&&e. This is of course necessary for the probability
density P(r) has to become small at small separations.

As the liquid temperature increases, the right-hand
side of Eq. (23) increases, both G and F increase
algebraically and vanish when the classical value of the
fluctuation (6N')A„ is reached from below. That is,
when classical or ideal conditions prevail, at some
temperature T;,

and
(p)'r, = e'/6, (2g)

the two functions have about the same range. The fact
that the space integrals increase indicates that with the
g-function becoming necessarily negative at close dis-
tances, there is a distance interval r over which g(r, T)
becomes positive so as to compensate for the negative
portion of the space integral. The oscillatory character
of g(r, T), and also of f(r, T) may thus be safely inferred
from these general results.

At temperatures T) T;, both G(T) and F(T) become
positive, with F(T) tending toward unity and G(T)
toward large positive values as the temperature ap-
proaches the critical temperature T,. Simultaneously
the range of g(r, T) becomes very large, of the order of
magnitude of the linear dimensions of the vessel
containing the liquid. One thus obtains

III. THE COHERENT SCATTERING STRUCTURE
FACTOR OF LIQUIDS

It is easy to prove that the liquid coherent scattering
cross section per atom or molecule, per unit solid angle,
1s

ol, (X, 8) = o(X, 8)Fz'(X, 8), (31)

where o(X, 8) is the individual bound atom coherent
scattering cross section and F~'(X, 8) is the coherent
intensity structure factor of the liquid. The structure
factor FI.' is the same for all types of waves. The
speci6city of the liquid cross sections for the diGerent

types of waves is included into o (X, 8). For unpolarized
incident electromagnetic waves, o(X, 8) is supposed to
include the polarization factor -,'L1+cos'(28)$, beside
the elementary atomic cross section. In the case of
molecules it is assumed to include also the elementary
intramolecular structure factor. For an unpolarized
beam of slow neutrons incident on a monatomic liquid

g(», T)
r&&4, T~T4

(29)

i.e., the correlation density function becomes the long-
range (1/r) function. Explicitly, one has thus

(30)lim G(T)&)1, lim F(T)=1.
Z +T4 Z +T4

(&N')A./N =NkT'xr/V = 1; T;= (V/Nkxr, ), .

G(T,)=F(T;)=0,
(27)
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pL() 8)/p(X 8)=1+1V 'Qg cosLhk (fi—rj)j;

[ Dk[ =2~ 4[ sin8= (4pr sin8)/X,

h is the propagation vector and 28 the scattering angle.
In monatomic liquids, with a single isotope with spin
or several isotopes, one finds, for slow neutrons, with
O.„denoting the bound atom elastic cross section per
unit solid angle, averaged over the diferent isotopes
and spin configurations and o., the bound atom coherent
scattering cross section averaged again over the diferent
isotopes and spin configurations of the neutron and
scattering nuclei,

pg(g& 8) N N

=1+»1V 'PP cos[1tk (rj—rj)],
i ji'

r=cr, /p &1,

showing that the right-hand side contains the ratio of
the cross sections r and ceases to be a purely kinematical
quantity.

In terms of the continuous two-atom distribution
function, Eq. (1),

&("-,T) = V-'[1+Q(»-, T)]
the liquid structure factor per atom may be written as

FI.'(hk T)=1+1V 'PP t cosLhk (r,—r )j
m m4

Explicitly,
XF(r„„,T)dv„d.„. (35)

S
Fr,'(Ak, T)=1+—~~ cosLhk (r, r)]dv„dv-„

y2$

S (+—
~l cos(r M)Q(r, T)dv. (36)

yd

The second term on the right-hand side yields the
uncorrelated or ideal Quid structure factor, which is
extremely small for all scattering angles and Ak values,
with the exception of the immediate vicinity of the
forward direction or almost completely vanishing b,k
values, it shall be omitted henceforth. Hence, the liquid

of a single isotope with vanishing nuclear spin,

a (X, 8) = p „=p, (1+A ')', (32)

A being the mass number of the liquid atom and 0.,the
free solitary atom slow neutron scattering cross section
per unit solid angle. This is (v&/4pr), p~ being the total
free atom slow neutron scattering cross section, which
is an energy-independent quantity. In these monatomic
liquids, one has

structure factor (36) becomes

FL,'(lk, T)=1+~Ig(r, T) cos(r dk)dv, (3&)

In the limit of small hk, one obtains, at once,

But the right-hand side is, according to the properties
of the liquid model, (21Vp)A„/1V, Eq. (21). Hence, away
from the critical state of the Quid,

lim Fl,'(Dk, T) rr. r,= (61V')A /1V =1trkTgr/V. (40)
ak —4

The very small angle coherent scattering structure
factor is independent of the details of the scattering
process, that is Ak or sin8/X, X being the wavelength of
the incident waves in the medium surrounding the
scattering liquid. The structure facor in this limit
depends only on the over-all statistical properties of
the liquid, the molecular concentration (1V/V), the
temperature and the isothermal compressibility in the
state of equilibrium under consideration. The general
result (40) has been first obtained by Brillouin" in his
investigation of x-ray scattering in Quids using the
method of Einstein" elaborated in his theory of scat-
tering of visible radiation arising from density Quctua-
tions in a Quid in statistical equilibrium as suggested by
Smoluchowski. ' Again for x-rays, using a diGerent
approach, the result (40) has been given by Zernike
and Prins. 4 The same result obtains in the coherent
scattering of slow neutrons with vanishing momentum
change and for atoms with zero spin nuclei. "One
obtains at once for bound scatterers, whose elastic
scattering cross section is diGerent from their coherent
scattering cross section, using Eq. (34) together with

(36),

hm Fl.'(hk, T)z'sr. =1+»G(T)= (1—r)+ r(51V')Av/1V

= (1 r)+ (1VkTxr»/—V) (41).
Here r is the cross-section ratio n, /z„defined in
connection with Eq. (34).

%'e should like to investigate further the complete
structure factor formula (37). If the indirect interaction
or correlation interaction g(r, T) or Q(r, T) were known,

' L. Brillouin, Ann. Phys. 17, 88 (1922}.
"A. Einstein, Ann. Phys. 33, 1275 (1910).

according to the definition of the indirect interaction
function g(r, T) in terms of the correlation function

Q(r, T), Eq. (14). Integrating over the angles, one finds

t "sin(rAk)
Fr,'(5k, T) = 1+4v ~' g(r, T)r'dr. (38)

& p (rd, k)
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the structure factor would be completely determined.
This is, however, not the case. %e may now express
the structure factor (38) in terms of the direct inter-
action function f(r, T) of the liquid model. To do this
we have to use the integral equation (8) connecting
f(r, T) and g(r, T). Multiplying both sides of this
equation by cos(r hk) and integrating over the liquid
volume or the whole space, we obtain

the structure factor (45) becomes, with (22) a,nd (23),

(gk)2))r 2))
~
—1

Fr,'(», T) = 1 F(—T)+ Q (—)"+'
(2n+1)!

= [(»')A„/N j 1+((»')a,/N)

where"

G(~k, T) =F(hk) T)L1—F(», T)1 ', (42)
(gk)2))r 2)) -I

XP(—)"+' (49)
(2n+1)!

G(hk, T)=~' cos(r hk)g(r, T)dw(r),

F(bk, T) =
) cos(r ak)f(r, T)dv(r).

Clearly, in the limit Ak—4,

Again, denoting by rz'" the 2n-th moment of the g(r, T)
function, one obtains, with (43) and (45), another
expression for the structure factor,

43
Fr,'(», T)

t sin(»r)
=1+4~ ' g(r, T)r'dr

b,kr

lim G(hk, T)=G(T), lim F(hk, T)=F(T), (44)
Ak~ Ak~

and, in this limit, Eq. (42) reduces to Eq. (23). The
structure factor (37) becomes thus

FI.'(~k, T) =1+G(~k, T) = 51—F(hk) T)1 ' (45)

= +G( )+2(—)"(~k)'" 0'"/(2n+1)!
1

= L(»')A./N o+2(—)"(»)'"«'"/(2n+ 1) ' (5o)
1

and for the cross-section ratio (34) different from unity, where use has been made of Eq. (23) and where
in the coherent scattering of slow neutrons,

FI,'(», T) = 1+rG(hk, T) =
1—(1—r)F(», T)

(46)
1—F(», T)

Integrating over the angles in F(hk, T), one obtains

t sin(»r)
F(», T)=4', f(r)r2dr.

(akr)
(47)

If we denote by r&'", the 2n-th moment of the direct
interaction function f(r, T), we find, expanding
sin(Akr)/»r and integrating term by term,

(gk)2))rr2))
F(» T)=Z(-)"

(2n+1)!
(48)

rr~"=
~l r'"f(r, T)4rrr'dr; rr' ——F(T).

Writing F(hk, T) in the form,

(»)2))r 2))

F(», T) =F(T)++ (—)"
(2n+1)!

~ The P(hk, T) integral should not be confused with the liquid
structure factor FL~(hk, T) which we always write as a square
with the subscript I..

ro' G(T) ——rg'"=, r "g(r T)da n&~1. (50a)

The structure factor formulas (49) and (50) are, of
course, rigorous within the formalism of the liquid
model. However, the model does not determine f and

g, but operates only with these quantities. It is, how-
ever, of interest to discuss these structure factors in
terms of what is known of the f and g-fu-nctions.
Assume 6rst that hk is quite small or that the series in
the denominator of (49) or (50) may be neglected in
comparison with (»')A, /N. Then one sees that the
very small angle coherent scattering structure factor
will vary with the liquid temperature so as to increase
with it. This point was discussed in detail in an earlier
paper. '

Consider the liquid at some low temperature T& T;,
T; being the characteristic temperature defined above,
Eq. (27). And assume further that the first term in the
infinite series appearing in (49) is large enough to be
included in the structure factor, for small hk values.
At low temperatures, we have seen that the space
integral of the f-function is large and negative; see
I'ig. 1 for the case of water and l.iquid He, for instance.
This makes it likely that r I' is also negative, so that
for small but 6nite b,k values the structure factor will
tend to increase from its minimum value at the limit»—)0. Or, using (50), inasmuch as at low temperatures
G(T) is again negative of the order of (—1), one might
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The difhculty associated with this limit has been pointed
out previously' and will not be discussed here.

In the critical region, which has been discussed in

some detail, ' in particular for small angle scattering,
we see at once from (49), remembering that the space
integral F(T) tends toward unity as T +T„ that—

lim Fr,'(Ak, T)

g( )ii+1(gk)2nr 2%/(2yg+1) [ (51)

For small Ak values the preceding structure reduces to
the one given previously. ' The singular character of
this formula in the limit of Ak—+0 does not seem to
create any particularly great difhculties, on account of
the necessarily finite solid angles at which the observa-
tions are made. However, this structure factor may
become quite large for small Ak values, a result which

agrees qualitatively with the experimental data avail-
able in a very few cases, such as argon, nitrogen, "and
ether. '4

We may add here that the oscillatory character of

F(hk, T) or G(hk, T) make it evident that the liquid
structure factors should exhibit the same type of
behavior. Since the f and g-functions -are unknown,

we close this discussion of the structure factors based
on the rather meagre information available on these
functions and turn rather to the problem of their
determination through the experimental investigation
of the coherent scattering properties of liquids for
x-rays and slow neutrons.

"See the review article, quoted in reference 5 and the exhaustive
work on argon, both liquid and vapor, by A. Eisenstein and
N, S. Gingrich, Phys. Rev. 58, 307 (1940), and 62, 261 (1942).
See also the recent work on nitrogen by R. L. Wild, J. Chem.
Phys. Is, 1a27 (1950)."F.H. W. Noll, Phys. Rev. 42, 337 (1932).

expect ra' to be also negative on account of its very
short range at these temperatures. This again would

tend to indicate, as in Eq. (49), an increase of the
structure factor with increasing hk-values, for small Ak.

At high temperatures, T& T,, approaching the critical
region, both F and 6 are positive. One then finds at
once that for small hk values the structure factor
decreases from its limiting value for vanishing Ak, that
is from (6V')A, /X or (EkTxr/V). At T& T, and for hk
values where only the first term in the series appearing
in (49) or (50) may be considered to be significant,
these results are seen to be rigorous. For small Ak

values the theory gives a good qualitative account of
the observed structure factors in liquids, "particularly
at higher temperatures.

It is of course visible in (37) or (43) that in the limit

of Ak becoming large,

lim FI.'(hk T)=1.
Ak -+large

IV. THE DETERMINATION OF THE DIRECT (f) AND
INDIRECT (g) INTERACTION FUNCTIONS

The experimental data on the coherent scattering
structure factor allow one to obtain the indirect inter-
action function f(r, T) in addition to the correlation
density g(r, T) which alone was, so far, the ultimate
goal of most experimental work on the coherent scat-
tering of x-rays by liquids. The molecular distribution
function

dm(r)/de= (X/V)(1+Q(r, T))= (N/V)P(r, T)
= (~~/V)+g(r T) (3)

is of course one of the important quantities character-
izing a liquid, and the preceding definition may be
looked upon as being quite general and independent to a
large extent of any liquid model. It is thus justified to
attempt to derive, from the experimentally determined
coherent structure factor, the distribution function (3).
One finds at once, using Eq. (38),

sin(Ak, r)g(r, T)rdr = [FI.'(hk, T) —1j(hk/47r), (52)
0

and, by Fourier's theorem,

g(r, T) = (1/2' r)~t [FI,'(Dk, T) 1$—
0

)& (Ak) sin(hkr)d(hk), (53)

a relation first obtained by Zernike and Prins. ' By
Eq. (46) and for slow neutrons in liquids with the cross-
section ratio r or (0,/0„), assumed to be known, one
has to divide the right-hand side by r. A normalization
relation" resulting from the definition of the distribution
function may be of interest here. Since the probability
density, Eq. (1)

P(r, T) = [1+(V/1V)g(r, T)]V—'

has to vanish at very small separations, g(r, T) has to
tend toward (—.V/V) and (53) yields

S
lim g(r, T)= ——

1
(ak)'[F,'(ak, T)—1)d(ak). (54)

2Q

Again, for slow neutrons, the right-hand side is to be
divided by v. if the latter is diGerent from unity.

The knowledge of the correlation density g(r, T)
enables one to determine the f-function according to
the central theorem of the liquid model expressed by
the integral equation (8). While an analytical discussion
of this equation would be dificult because of the fact
that the g-function resulting from the measured struc-
ture factors, according to Eq. (53), becomes available

"See the last work quoted in reference 5.
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only in tabular form, nevertheless numerical methods
applied to Eq. (8) should lead to the determination of
the function f(r, T). This procedure may, however, be
avoided. Indeed, Eq. (45) yields

I'" sin(hkr)
1—F(hk, T) =1—4s f(r, T)r'dv

(Akr)

=Fz '(Ak, T), (55)

if verified with the g- and f-functions may indicate
that the mean square Quctuation so obtained could
yield a fair value of the compressibility.

The experimental data on the coherent structure
factor of liquids may be further exploited since they
give rise to a more complete determination of the direct
and indirect interaction functions of the model. Equa-
tion (49) gives, indeed

or

sin(Akr)f(r, T)rdr= L1—Fz '(5k, T)](hk/4n),

(gk)2ar 2n

—F(T)+Q(—)"+' =Fz '(Ak T) 1. —(58)
(2m+1)!

and, using again Fourier's theorem,

j(r, T) = (1/2x'r) [1—Fz
—'(b, k, T)j

X (ak) sin(Akr) d(hk). (56)

In the case of slow neutrons and with 7 /1, one finds

1 " Iir,'—1
f(r, T) = (Ak) sin(dkr)d(hk). (57)

2x'r 0 Fl.' 1+r—
Hence the numerical analysis which has to be applied
to the experimental data in order to derive from them

g(r, T), leads equally well to the determination of
f(r, T). One has thus the following result: the coherent
scattering structure factor of a liquid completely deter-
mines the molecular type of interaction functions g(r, T)
and f(r, T) which are the basic elements of the liquid
model. The theory can now be directly checked by a
substitution of these functions into the integral equa-
tion (8).

Another method can, however, be followed here
leading directly to the value (51P)A„/X at the tempera-
ture or temperatures at which g(r, T) and f(r, T) have
been determined. The mean square fluctuation (A1P)A„/S
or (NkTxr) may or may not be known, depending on
the knowledge of the compressibility pz. In general the
latter quantity is unknown. A rather good check on
the f and g-funct-ion may be obtained by evaluating
their space integrals, F(T) and G(T), respectively. Then,

1+G(T)= L1—F(T)] '= (nkTxr) (23)

the erst equation is fully equivalent to the integral
equation. While the knowledge of G(T) and F(T) leads
to (hN')A, /X or the compressibility zr. It seems that
the preceding method of obtaining the compressibility
is of interest insofar as it should yield values whose
precision is closely connected with the one reached in
obtaining G(T) or F(T) This method doe.s not involve
any particu1. ar uncertainties such as the one associated
with obtaining the extrapolated structure factor in the
forward direction from the small angle coherent scat-
tering structure factor."Also, the first equality in (23),

'6 See J. Yvon, J. phys. et radium 7, 201 (1946), and the recent
work of Wild quoted in reference 14.

1+rg' 1+G
r(P = rp' —r p' rp'(nkTxr)', —— —

1—rp' 1—Ii
(59)

where use has been made of the definitions (48) and
(23). One then finds in a similar way the following
general relation between the even moments of these
functions,

—2~ 2'"
p n q ~e—2X~

s-0 2K+1 (2X) E p )
2n 2x 2pr 2x+2p (60)

Since F(T) is the zeroth moment of the f-function,
Eq. (48), the left-hand side contains all the even mo-
ments of this function. Now, in the limit of very small
Ak values the moments r~'" (n& 1) do not contribute at
all. As the value of hk increases the higher order
moments become operative. Suppose now, that one
chooses a series of hk values, which are rather moderate
so that all terms beyond the i'th in the infinite series
may be neglected. Then with (i+1) different hk values
and the associated structure factor values, one may
set up a system of (i+1) linear equations in the un-
knowns F(T), rp', rq', rr". Hence, these moments
of the f-function may be obtained with an accuracy
depending on the choice of the Ak values beside that
of the FL,'-values. But the larger ~ is, the better is the
accuracy of the moments. Hence both (61P)A„/X or
(mkTxr) and the moments of the f-function are obtained
directly from the structure factor, without taking its
fourier transform which is a cumbersome procedure.
Clearly if the f-function itself has been obtained with
Eq. (57), its moments may be evaluated and compared
with the ones derived with Eq. (58). This affords a
further check on the degree of validity of keeping only
a finite number of terms in the moment series in Eq.
(58). Similarly, Eq. (50) yields, with a similar treat-
ment, the even moments of the g-function.

It is now necessary to compare the moments of the f-
and g-functions. We have multiplying both sides of
Eq. (8) by r' and integrating over the whole space,
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Kith the preceding relation one obtains for the fourth
and sixth moments, denoting by v(T) the quantity
(ekTxr),

rg4= v'[r v4+ (10/3) (rv')'v];

rv' —v '[r—g' -(10/—3v)(rg')'];

rg' = v'[r v'+ 14vr v'r v'+ (70/3) (rv')'v'];

r v' ——v '[rg' —(14/v) rg'rg'+ (70/3v') (rg')'].

The relations between the higher order moments
increase in complexity, but can be obtained without
any difEculty. The moments rv'" and rg'" (2N=O, 2, 4,
~ ~ ~ ) obtained directly from the structure factors have
to satisfy the preceding relations. A direct check on
the liquid model is thus obtained again.

V. REMARKS ON THE SCATTERING OF SLOW
NEUTRONS BY LIQUIDS

A rather important and difhcult problem arises now
in connection with slow neutron coherent scattering,
namely the problem of their incoherent scattering. The
incoherently scattered neutrons are, of course, observed
simultaneous1y with those scattered coherently. %hile
in the x-ray case the incoherently scattered radiation
intensity can be evaluated and the observed scattered
radiation corrected for it, ' in the case of slow neutron
scattering the incoherent process associated with the
exchange of both energy and momentum between the
neutrons and the liquid as a whole appears to be
considerably more complicated than in x-ray scattering.
In solids the slow neutron incoherent scattering may be
described as a process of energy and momentum ex-
change described with the help of a model of 3X
harmonic oscillators, for a solid formed of E atoms for
instance. The corresponding problem in liquids has not
even been set up because of a complete lack of a
satisfactory molecular liquid model.

There appears to be a possibility of obtaining some
information on the incoherent scattering of slow neu-
trons by liquids. One may indeed evaluate the total
coherent scattering cross section, within the framework
of the present liquid model, by the use of Eq. (45).
The coherent scattering cross section per atom, in a
monatomic liquid, and per unit solid angle is

or,,(hk, T) = o„FI.'(6k, T)= o [1+G(hk, T)], (61)

with the cross-section ratio v supposed to be unity.
The total coherent cross section beconms

x/2

or, ,(k, T) =2~jt ol.(hk, T) sin28d(2tt)

~4„o[(a )S.„2/ ]S

00 (2k)2"rgm"+2(-)" ~ (62)
(@+1)(2ej1)!l

e being independent of the scattering angle. In a
molecular liquid the situation is more complicated since
the angular integration involves also the coherent cross
sections of the molecule per unit solid angle depending
on hk because of intramolecular and elementary
intermolecular interference effects."

The preceding total coherent cross-section formula is
of interest insofar as it may yield the moments rg'".
Indeed, at small neutrons. energies where the total
incoherent scattering cross section should be small in
comparison with the total coherent one, or with x-rays,
a series of transmission measurements as a function of
the wavelength of the incident waves leads to a system
of linear equations in the moments rg'".

The moments rg'", and also (6S')A„/S, may be
evaluated from the structure factor according to the
procedure described above. In order to minimize the
intervention of the incoherent scattering, which is
unknown, it would be necessary to derive them from
those structure factor values which correspond to peak
values or from regions in the vicinity of peaks. It is
indeed reasonable to assume that the intensity of the
incoherently scattered neutrons near the coherent
peaks, and particularly near the main peak, would be
relatively smaller than in other regions. Then, with the
moments so derived, Eq. (62) enables one to obtain a
fair value of the total coherent cross section. Slow
neutron transmission measurements at the same
temperature yield (oI.,+oi;), the sum of the total
coherent, or,„and total incoherent, 01.;, cross sections
per liquid atom. "It is hereby assumed that the pure
absorption of the slow neutrons is completely absent or
that the absorption cross section is quite smaB in
comparison with the smaller of the two scattering
cross sections 01., and OL,;. The difference between the
scattering cross section resulting from the transmission
measurements and the one computed by (62) is the
total incoherent cross section per liquid atom. It
should be noted that (62) cannot be used in the critical
region, although it should be valid close to it.

One would expect that the incoherent cross section be
smaller for heavier than for lighter liquids, in a way
similar to the case of solids. Here, at neutron energies
small in comparison with the Debye energy kO, 0
being the characteristic temperature of the solid, a
practically rigorous evaluation of the incoherent cross
section per solid atom is possible. "In general, however,
the evaluation of the solid incoherent cross sections
appears to be extremely laborious. But since the total
coherent cross section may be obtained rigorously, it
is seen that this result combined with transmission

"That the elementary molecular cross sections multiplying
the difFuse coherent structure factor term, unity in Eq. (61), and
the normal interference term, t"(dk, T), were different for x-rays
already has been shown by P. Debye, J.Math. Phys. 4, 153 (1925).

'8 In a detailed investigation of crL, s the spin and isotope inco-
herence should be separated from the direct momentum-energy
exchange eSect.

'9 See A. Akhiezer and I. Pomeranchuk, J. Exp. Theoret. Phys.
17, 77O (1947).
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measurements might again yield the unknown solid
incoherent cross section. The latter of course should
become identical, at higher neutron energies with the
free atom scattering cross section, both in solids and
liquids. Here the following rather interesting problem
automatica11y suggests itself. This is a comparative
study of the solid and liquid incoherent cross sections
per atom, for the same element. Because of the temper-
ature and. structure diGerence existing between the two
phases, one would expect that the incoherent cross
sections be different. The incoherent cross section of
the solid or liquid is indeed a measure of the probability
for the slow neutron to exchange energy and momentum
with the solid and liquid as a whole. There is therefore
no reason, a priori, that these cross sections, or their
detailed behavior with the neutron energy be similar.
On the contrary, one might expect to obtain from the
variations of the incoherent cross section in monatomic
liquids, as a function of the neutron energy and liquid
temperature, some pertinent elementary information
which may prove useful for the understanding of the
possible states of motion of liquids.

The total slow neutron coherent scattering cross
section may also be obtained directly from the experi-
mental data. If the data are uncorrected for incoherent
scattering, one may obtain by a numerical or graphical
integration the total scattering cross section. Slow
neutron transmission measurements should then check
these results.

In the only systematic experiments on the coherent
scattering of slow neutrons on liquid sulfur, lead, and
bismuth by Chamberlain, ' the incoherent cross sections
of these elements have been determined by identifying
the observed diBerential cross section at the smallest
value of the parameter sin8/X with the differential
cross section per unit solid angle of the incoherent
process. This appears to be justiled in these cases
because the limiting forward coherent scattering struc-
ture factor (nkTpz), which we have evaluated only

approximately because of lack of data, leads for these
liquids to a very small forward differential coherent
cross section. Even though in liquid lead and bismuth
the sma, liest (sin8/P) values at which observa, tions
have been made are not so small, one finds that by
taking into account approximately the first term in the
infinite series in the denominator of the right-hand side
of Eq. (49), using for ~rp'~ the value rc~ebe, ing the
approximate concentration, the omission of the coherent

scattering at small angles appears to be justified. The
observed small angle scattering cross section may thus
be ascribed to the incoherent process. Assuming further
approximate angular independence of the incoherent
scattering cross section per unit solid angle, a correction
for this process may thus be performed. Difhculties
may arise in liquids and under conditions where (ekTyr)
is large, as it certainly is above the temperature T;,
defined by Eq. (27), and also at temperatures T not
too small compared with T;. It should be noted that if
the incoherent scattering has been taken into account
correctly, the new coherent structure factor should lead
to correct moments r p'" and r0'" independently of the
choice of the parameter (sin8/X), that is, structure
factor values near the coherent minima shouM then
yield the same moments as those near peaks.

A final remark may be of interest here. We have
assumed throughout this work that the coherent and
elastic free or bound atom cross sections were known.
It is seen that in those liquids where x-ray structure
factors are available, a measurement of the slow neutron
coherent cross section per liquid atom, under the same
temperature and pressure conditions as the x-ray
measurements, could yield the free or bound atom cross
sections averaged over the diferent isotopes. The same
remark applies to molecular liquids, although here
conditions become considerably more complicated and
a careful evaluation of the molecular coherent scattering
structure factor is indispensable.

In conclusion we rpay then say that the coherent
scattering data in liquids determine both the correlation
density function g(r, T) and the direct interaction
function f(r, T) of the Ornstein-Zernike static liquid
model. A direct use of the experimental coherent struc-
ture factors allows one to determine with a fair degree
of accuracy the mean square Quctuation of the concen-
tration and with it the liquid compressibility in the
thermodynamic state under investigation. The difEcult

problem of disentangling the coherent from the inco-
herent scattering process in the case of slow neutrons
has been shown to be soluble in terms of the total cross
sections associated with these processes. Simultaneously,
it is shown that the experimental investigations of the
slow neutron incoherent scattering in liquids may yield
information on the energy spectrum of liquids, whose

knowledge might be helpful for the establishment of a
dynamic liquid model.


