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On Bailey's Theory of A~pb6ed Circularly Polarized Waves in an Ionized Medium*

R. Q. Twiss
Services EIectroeics Research Laboratory, Baldock, Herts, England

A critical analysis is given of Bailey's theory of propagation in an ionized medium. It is shown that the
growing waves, which Bailey interprets as amplified waves, can only be excited by reQection and it is argued
that this theory can explain neither the excess radiation observed from sunspots nor the excess noise observed
in discharge tubes. However power ampli6cation is possible in a drifting ionized medium under certain ideal
conditions which are analyzed.

1. INTRODUCTION

' N a series of recent papers, V. A. Bailey' ' has
~ & developed a theory for the ampli6cation of circularly
polarized waves in an ionized medium moving, with a
drift velocity No, in a dc magnetic 6eld; and he has
applied this theory to explain the excess noise radiation
observed in sunspots. 4

In this paper we shall discuss in some detail the
criticisms of this theory, which we have outlined else-
where. ' In particular, we shall show that the growing~
electromagnetic wave which is interpreted as an ampli-
fied wave by Bailey is, in fact, a reflected wave which
can be excited only at a surface of discontinuity in the
medium.

Despite this it is ideally possible to 6nd physically
realizable boundary conditions such that the medium
provides a de6nite power ampli6cation over those fre-
quency bands where this growing wave exists, and we
have analyzed the physical mechanism by which the
energy associated with this ampli6cation is transferred
to the electromagnetic 6eld from the dc kinetic energy
of the electron drift velocity. It is extremely improbable,
however, that these conditions could be encountered in
a sunspot, and we conclude that the explanation of the
excess noise radiation must lie elsewhere.

In order to prove that a particular wave can be
excited only by reaction, it is necessary to obtain a
transient solution for the electromagnetic propagation
in a moving ionized medium, which speci6cally takes
into account the boundary conditions. Instead of at-
tempting to do this by modifying Bailey's analysis, it
seemed simpler to develop a direct solution with the aid
of the Fourier-Laplace transform theory and then to
compare the conclusions drawn from the steady-state
and transient analysis with those obtained by Bailey.

The analysis in this paper has been developed under
rather special limiting assumptions. However some of

~ Acknowledgment is made to the Admiralty for permission
to submit this paper for publication.

' V. A. Bailey, Nature 161, 599 (1948).' V. A. Bailey, J. Roy. Soc. N.S.W. 82, 107 (1948).' V. A. Bailey, Aust. S. Sci. Res, (A) 1, 351 (1948).' V. A, Bailey, Phys, Rev. 78, 428 (1950).' R. Q. Twiss, Phys. Rev. 80, 767 (1950}.' By a growing wave we mean any wave the amplitude of which
increases exponentially in the positive direction whether it be an
ampli6ed wave or a reflected wave attenuated in the negative
direction.

the conclusions are of more general application and, in
order to develop these, we have discussed the physical
nature of the propagation in some detail.

2. THE BOUNDARY AND INITIAL CONDITIONS

In his original paper, ' Bailey considers the complex
case of electromagnetic propagation at an arbitrary
angle to the direction of motion of a two-beam plasma
acted on by an external magnetic 6eld. However, when

applying this theory to the sunspot radiation, he deals
only with the unidimensional case where the direction
of propagation, of drift velocity and of magnetic fieM
are all parallel, and we shall make the same restriction
here.

It is customary, in the theory of propagation in a
plasma or electron gas, to separate the disturbance in
the medium into longitudinal and transverse oscilla-
tions, a procedure which is rigorously justi6able in the
unidimensional case if, as we assume, the disturbance
is so small that nonlinear effects are negligible. In this
paper we consider only the transverse fields and ignore
the longitudinal oscillations altogether.

The boundary conditions we shall use are illustrated
graphically in Fig. 1. We assume that a plane electro-
magnetic wave of angular frequency 00 is normally
incident, at time 1=0, upon the interface at a=0
between media I and II. Medium II contains a uniform
electron stream, or plasma with in6nitely massive posi-
tive ions, moving with velocity no= (0, 0, Io) under the
action of an external magnetic field of Aux density
8= (0, 0, 80), which is bounded by surfaces of discon-
tinuity at s= 0 and s= d. In order to simplify the algebra
we shall assume that any free charges in medium I are
stationary. This restriction will not materially affect
the nature of the solution, and does not apply to medium
III which can contain free moving charge.

It is further necessary to make some assumptions
about the initial transverse velocity modulation. A
number of alternatives exist, but a complete discussion
of these is beyond the scope of this paper. Instead we
shall make the simplest choice that is physically
plausible, and assume that this modulation is inde-
pendent of the incident electromagnetic 6eld over the
surface at which the electrons enter medium II that is
at 2'=0 for No&0 and at z=d for No&0.

The boundary conditions described above are reason- .

ably close to those characteristic of an idealized unidi-
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mensional electron tube, where medium I might be a
thermonic cathode emitting a stream of electrons with
velocity up while medium III might be an anode
structure. They would also be applicable to the case
where medium I was formed by a uniform stream of
neutral gas molecules, which was partially ionized at the
surface 2'=0, and in which partial recombination or fur-
ther ionization took place at s= d. Ho&ever they give at
best a very idealized approximation to what we might
expect to prevail in a gas discharge tube where the drift
velocity up is likely to be small compared with the root-
mean-square thermal velocity, or in a sunspot where
well-defined surfaces of discontinuity would hardly exist.

and the maxwell equations

V'X E(z, t) = —BS(z, t)/Bt;
VXH='p, v(z, h)+Bn(. , t)/Bh,

(4)

where pp is the dc space charge density, v is the collision
frequency, p, p is the magnetic permeability of free space,—e is the electron charge, and m= mp/(1 —up'/c') & is the
relativistic electron mass. The other maxwell equations
and the charge conservation equation are automatically
satisfied for the transverse unidimensional case.

The solution of Eqs. (3), (4) is much simplified if,
following Stratton, ' we use a complex algebra and write

' J. A. Stratton, Electromageelic Theory (Mcoraw-Hill Book
Company, Inc. , Neer York, 1941), Sec. 5.16.

3. MATHEMATECAL THEORY

It is well known from the theory of the ionosphere
that an arbitrary plane wave is split into two inde-
pendent circularly polarized waves by an axial magnetic
field. Accordingly we look for the transient response of
the medium of Fig. 1 when a circularly polarized elec-
tromagnetic wave, with

E= (E(Qp) cosQph E(Qp) sinQpt, 0)

is normally incident, at time t=0, upon the interface
between media I and II at s=0.

When Qp is negative we have a left-hand or counter-
clockwise wave, when Qp is positive a right-hand or
clockwise wave.

In the unidimensional case, which we are considering,
the field variables E, I and the ac transverse velocity
v(z, t) are independent of the transverse co-ordinates
while, since the longitudinal oscillations are not excited,
we have for the time dependent fields

E,(z, t) =H, (z, t) =u, (z, t) = p(z, t) =0. (2)

In medium II where the dc magnetic flux density is
Bp = (0,0, Bp) and the dc electron velocity is up ——(0, 0, up)
the transverse fields satisfy the I orentz force equation

(8 8
+u —+pv }mv(z, t)

&Bh Bz ]
= —eE(z, t) —eupupXH(z, t) ev(z, t) XSp —(3)
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FIG. 1. Boundary conditions.

E(z, t) =E.(z, t)+ iE„(z, t); H(z, t) =H.(z, t)+iH„(z, t);

V(z, t) =v, (z, t)+is„(z, t) (3)

so that the incident wave at a= 0 is

= —eE(z, t)+ieBpV(z, t) —ieupupB(z t),

BE(z, t) B—imp —H(z, t) =0;
Bs Bt

8 8
i EI(z, t) =—p, V(z, t)+p,—E(z, h).
Bs Bt

To solve these equations under the given initial con-
ditions we take the fourier-laplace transforms first with
respect to t, and then with respect to s, where

1.&{f(z, t) } =f*(z, co) =
J

f(z, t) exp( —irut)dh, ,

0

'{f*(z, co) } f—(z, t)

l

+00—iy
= (2pr) ' f*(z, cu) exp(i&pt)d&a

and

I.*{f*(z~) } =f*'(k, ~)

f
f*(z, co) exp( —ikz)dz,

ppt p

+00

=(2pr) ' t f*t(k, co) exp(ikz)dk
—00 —iy

y is a positive real number such that all the singularities
of f t(k, co) lie above the line Im(k)+y=0 and all the
singularities of f'(z, a&) lie above the line Im(co)+y=0.

E; (0, t) =E(Qp) cosQpt+iE(Qp) sinQpt
=E(Qp) exp(iQpt) (6).

Equations (3), (4) may then be written

(8
{
—+up —+v }mV(z, t)

EBt Bz
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If this is done we obtain a system of linear algebraic equations for E*t(k, co), H*t(k, op), and V*t(k, u&) which

may be solved, in terms of E~(0, op), Hp(0, co), and Vv(0, op) to give

Qpb]p

ik+
c ((d+upk —(dye pv)

E*t(k, (o) =

4]ppuppp
E*(0, (a) coup—H*(0, (o)—

au+Qpk —co„—zv.

—k'+ (op'/c') —(cop'/c') (a&+u pk) /((a+upk (o~—iv)—

V*(0, co)

(10)

H &(k, op)=( —k/(guo)iE t(k& op)+[E (0 &)/op&7~

co+upk e
V*t(k, (u) = iE*t(k, op)

Q)+Qpk —Go~ Sv Gofs

upV'(0, ~)—(uo/~)H'(0, p)

a+upk —co~—~v

where
cop = (—epp/ppou) ~

(11) where k„ is one of the three roots of the characteristic
equation

( co AH—iv—) ( co l coo

I k+ II k' ——I+—I
k+—

I

u, i ( c' i c' E up)
(12)

—=Q (k—k„)=0 (17)

is the plasma angular frequency, and

Gl~ =eBo/vs

and where

Z (co) = —a&up/k (18)
is the cyclotron angular frequency.

The initial constants E*(0, &o), EP(0, oo), and V*(0, co)

are to be determined. by the boundary conditions which
can be applied after inversion from the complex k-plane
onto the real z-axis. In the present case, where E*t(k, u)
is an algebraic function of k which is O(k ') as k—+~,
the inversion can be carried out immediately from Eq.
(9) by aid of the theory of residues. We have

where
+b ((o)iH*(0, op)+c.(ar) V*(0, op)7, )

oo —op~ —ovy
a„(a))= k„I k.+ I+—c'.Rp

g (k„—k),

E*(z, (o) =Q exp(ik„z)[a„(co)E*(0, op)
m=1

+b.(cg)iH*(0, co)+c„(o))V'(0, ar)7,

,
. (15)

—iH*(z, (u) =g exp(ik„z) [a„(op)E*(0,op)
p-i Z„(oo)

is the characteristic impedance of the wave with
propagation constant k„.

In the complex algebra of our present treatment, the
impedance of a medium looking in the positive direction
across a transverse plane may be written'

Z(pp) =E*(z, pp)/ iH*(z, p—p) (19)

E;.*(op) =E(Qp)/i((o —Qo). (20)

If in medium I there is just one wave reflected from the
surface of discontinuity at s=0, then the condition for
an impedance match at this surface is

and the boundary condition on the electromagnetic
field components is satisfied at a surface of discontinuity
if there is an impedance match there.

Now from Eqs. (6) and (8) the fourier-laplace trans-
form with respect to time of the incident electromag-
netic wave is

( cd —coH —tv )b.(~)=~I oI k.+ I g (k„—k ),) sago=i

E;,*(a))—E*(0, a))
ZI-

E;„'(~}/Z,+iH*(0, ~}'
(21)

c.(~)= ~popo
mQn-1

where Zr is the impedance of medium I, and E; *(co) is

given by Eq. (21). Similarly the boundary condition

(16) at z=d gives the equation

g exp(ik d) [a„E*(0,e)+b iH*(0, ca)+c„V*(0,op)7
E*(d, op)

iH*(d, s))—
Q exp(ik„d) [a„E (0, op)+b„oH*(0, ry)+c„V*(0, ~)7/Z„(pp)

'This definition is the natural one to use in the present case where we wish to utilize the connection of the impedance concept
with the Poynting vector. Under other circumstances it would be useless, as the impedance so defined is dependent on the relative
magnitude of the amplitudes of the electromagnetic and space charge velocity fields.
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A.((o)
E~(s, oo) =Q exp(ik„z),.-~ i(~—Qo)

~ (25)V(0, t) = V(Qo) exp(iQot) (23) A.(a))3 1so that iH—*(s, oo) =P exp(ik„s),
o-i Z.(a)) i(a)—Qo)V*(0, ~) = V(Qo)/[i(~ —Qo)]. (24)

When ohio &0 we assume that V*(d, a&) = V(Qo)/[i(a& —Qo)]
is independent of E(Qo). where

When oto&0 we assume that V*(0, oo) is independent If we solve Eqs. (21), (22) for the unknowns
of E*(0, oo). It would be permissible to take it as zero, E (0, a&)H*(0, &a) we find that
but in order to see what happens when the medium is
excited by an initial velocity modulation rather than by
an incident electromagnetic wave we shall take

A„(co) =
Q (1—Zrr/Z„)[2(a„b —a„b„)E(Qo)+i{c„(b„+Zra)—c„(b„+Zra„)}V(Qo)] exp(ik„d)

sr«~ 1

Q (1 Z»/r—Z()(b~+Zza~) exp(ik~d)

(26)

fol Op~0.
The solution for the reverse beam, where Up&0, is of

a similar although not identical form.
The steady-state solution, assuming that this exists,

can immediately be written down from Eq. (25), and we
have

Qpm cop~ Qp+epk—k'+ =0.
c c Qp+spk —M~ —zv

(2g)

Of course, the limiting expression of Eq. (27) is only
valid if the moving plasma Qow is stable. For the moment
let us consider that this is so and analyze the steady
state solution and Bailey s interpretation of it, before
returning to the transient analysis.

4. THE STEADY-STATE ANALYSIS AND
BAILEY'S THEORY

(i) The Propagation Constants

When Np=0, the familiar ionosphere case, the charac-
teristic equation, Eq. (28), reduces to

E(s, t)~Q A (Qo) exp[i(k„(Qo)s+Qot)]
n~l

as t~~,
(27)

—iH(s, t)~Q [A „(Qo)/Z„(Qo)]
ss~l

)&exp[i(k„(Qo)s+ Q,t)] as t~ ~, ,

where k„(Qo) are the roots of the characteristic Eq. (17)
which may be written in the more familiar form

0 & I Qol &~o[(~~'+4ooo')» —
I ooal], (31)

and a pass band, where k is real, in the range

-', [((aHo+4' o') « —
I coa

I 5 & I
Qo

I
& ~; (32)

while for the extraordinary waves, where Qgo~)0,
there is an attenuation band

In this case there are but two partial waves with the
same polarization, one of which is interpreted as a wave
reAected from the far side of the ionosphere, the plane
s= d of Fig. 1. Since there are two possible directions of
polarization there are four partial waves in all. When
there is no external magnetic field, so that AH

——0, the
propagation constant is independent of the direction of
polarization. However, when co~ /0 one distinguishes
between the ordinary waves, the polarization of which
rotates in the opposite sense to that of an electron
moving in the external magnetic Geld, and the extra-
ordinary waves, the polarization of which rotates in the
same sense as an electron; the waves are extraordinary
if Qoa&H) 0 and ordinary if QoooH&0. From Eq. (1), the
right-hand waves are ordinary if ~~&0, extraordinary
if ~H&0 and the left-hand waves are extraordinary if
co~&0 ordinary if AH&0.

From Eq. (29) the propagation constants may be
written

k= +ia= +i {[Qo/(Qo ~H)][~o' Qo(Qo ~—H)5}«/—c
(30)

hence, for the ordinary waves, where Ops~(0, there is
an attenuation band, where k is pure imaginary, in the
range

Qp2 cup2 Qp—k'+-
C2 C2 Qp —0

(29)

I
~~

I
&

I
Qo

I
&K(~a'+4~o')'+

I ~a I],
and two pass bands

o& IQ, I
&

I ~~l

(33)

where we have also neglected the e6ects of scattering and
by taking v=0.
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When the electrons possess a drift velocity Np(&c the
critical frequencies which define the edges of the pass
and attenuation bands are slightly altered, as are the
propagation constants of these 6elds waves. In addition
there is now a third wave present with a propagation
constant that is real for all frequencies. Except in
the immediate neighborhood of the critical frequencies
the propagation constant kp(Qo), of this wave is
given by

kp(Qp) = —(Qp —oou)/up (35)

to the first order in up/c.
It is thus a space charge wave that propagates with

a velocity very nearly equal to that of the electron
stream. Its analog, in the ionosphere case, is a fixed
spatial distribution of transverse velocity modulation,
which would not appear as a solution.

Except near the critical frequencies, the propagation
constants of the 6eld waves can be found from Eq. (28)
by a perturbation method such as Newton's rule, and if

kg —— on+—P; kp in+——P,

where pn is given by Eq. (30), then for (uo/c)'((1

p = u popgzoop'/[2c'(Qp oou) p—j

(36)

(37)

Op P NpCOIIMp

kg(Qo) = —in+ +
2c'(Qp —oou)P n 2c'(Qp —poly)'

Cdp

(38)

k p(Qo) =+on
Qp P QpCO~EOp

+ 7

2c'(Qp —oolr) ' n 2c'(Qo —opH) '
COp

so that the space charge wave is attenuated as
exp( —vs/up), while, in the pass band, the forward
traveling 6eld wave becomes a decaying wave and the
backward traveling wave becomes a growing wave; on
the other hand, in the attenuation band, the velocity
of propagation of the growing wave is made more
negative and that of the decaying wave more positive.

It will be noted that the characteristic roots are
numbered in such a way that kj, and k3 are the propaga-
tion constants of the growing and decaying waves
respectively, so that

Re(ik~) &~ Re(ikp) &~ Re(ikp)

From Eq. (37), we see that P is always real so that
the eGect of a small drift velocity of the medium is to
turn the field waves in the attenuation band from pure
evanescent into growing and decaying waves that
propagate at a very high phase velocity O(c'/up).
Except near the critical frequencies, the imaginary part
of the propagation constant is unaltered to the first
order in (uo/c).

When we allow for the presence of scattering, so that
v in Eq. (28) is not zero, we have that

kp(Qp) = (pv/up) (Qp —oo—u)/up,

and lf
v& iupnoou/Qoi

upton/Qp &0

(39)

(40)

then the growing wave propagates in the positive direc-
tion. It is shown by Bailey that the direction of real
energy fiow associated with any individual wave is the
same as its direction of propagation. Hence, when the
inequalities (39) and (40) are satisaed, the energy flow
associated with the growing wave is out of the medium
at the surface of discontinuity at s=d; and Bailey
concludes that the growing wave is not reQected but
excited directly at the incident surface s=0, and that
the energy can escape if the medium beyond s=d is
either amplifying or transparent at this frequency.
Since co&Op&0 for the ordinary waves, we see that, on
this theory, they are amplified if

Np&0

and that the extraordinary waves are amplified if

Np (0.
It must be admitted that this argument from the

direction of energy Bow has been widely regarded as
conclusive in determining whether a given partial wave
is amplified or no; nevertheless it is insufhcient. The
proof of this, given in the next section, is based upon
the transient analysis; but the importance of the
question and its relevance to cases other than that con-
sidered by Bailey, may justify its consideration from the
more familiar steady-state analysis as well.

(iii) Criticisms of Bailey's Theory

The most striking conclusion from Bailey's theory is
that the presence of even the smallest axial magnetic
field in a drifting electron gas is sufhcient to transform
it from an attenuating into an amplifying medium
where the rate of growth of a disturbance is nearly
equal to the rate of decay in the absence of the mag-
netic 6eld. It is true that, when scattering is taken into
account, the magnetic 6eld has to attain a 6nite value
before the medium becomes amplifying, given, from
inequality (39), by the inequality

/
~a

/
)

/
Qov/nuo

/
. (41)

But even so, an infinitesimal change in magnetic field
transforms a reQected wave into an amplified wave.

A second criticism is suggested by relativity con-
siderations: the dependence of the wave propagation
on the uniform motion of the medium implies a special
frame of reference. This can only be provided by the

(ii) Bailey's Interpretation

All this is in accord with the conclusion that the
growing wave is a rejected wave, but is opposed to
Bailey s interpretation, based entirely upon the direction
of propagation, that it is a directly excited amplified
wave. From Eq. (38) we see that if
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surfaces of discontinuity in the medium. For were these
to move with the medium the propagation would be the
same, except for a Lorentz transformation, as in the
stationary ionosphere.

Accordingly the surfaces of discontinuity play a
fundamental role in the excitation of these growing
waves, which is in direct contrast to the familiar ampli-
6cation process in a traveling wave tube or space charge
wave ampli6er where the nature of the initial and ter-
minal impedance is comparatively unimportant. '

Finally we see from Eqs. (23)—(25) that the ampli-
tudes of the three partial waves at the initial plane 2;=0
depend upon the boundary conditions at s=d, which
strongly implies that one of the partial waves is re-
fIected, while if

Zrr Wzi(Qo) and Zr W —(bc/ccc) (42)

then the amplitude A~(Qo) of the growing wave is pro-
portional to exp[ —i(kc—ko)d], which is hardly com-
patible with the assumption that this wave is directly
excited.

However, when the inequalities (42) are not satisfied,
an electromagnetic wave incident at s=0 will be am-
pli6ed as it crosses the medium; to show that this result
is consistent with the claim that the growing wave is
reflected it seems essential to use the transient analysis.

5. THE TRANSIENT ANALYSIS

There is no need to obtain a full transient solution to
decide whether a given partial wave is reflected or not.
Instead let us consider the term

[A ~(cd)/i(cd Qo) 5 —exp(ikcz)

of E*(s, cd) in Eq. (22), which corresponds to the growing
wave, and ask how large t must be before this term
contributes to E(s, t). Now E(z, t) is identically zero
for t(z/c, since this is the minimum time taken by a
signal, applied at x=0, t=0, to reach s. By the same
token the necessary and sufhcient condition that a
given term of E*(s, cd) should correspond to a refiected
wave is that its contribution to E(z, i) be identically
zero, at least until a time t &~ (2d—s)/c where d is the
distance of the erst reflecting surface from the initial
plane a=0.

From the theory of the fourier-laplace transform, it
is known that the inverse transform f(t) of a mero-
morphic function f (cd) such that

f' —ccdl ) Gc Go

/(~)-exp~
V CO Or

2

as cd—+~, is identically zero for all t($/s. Hence the
question as to whether or not a particular partial wave
is refIected is determined by its asymptotic behavior for
large enough co.

' In the traveling wave tube, a frame of reference is provided by
the external helical structure, while in the space charge wave
ampli6er there is relative motion between the various electron
beams.

TABLK I. Asymptotic approximations for the parameters of Eq.
(26) as

k„(co/C) (1—sup'/cu')Z„—Zp(1+cop'/aP)
A„ 1/2
b Zp/2

—(o)—euII)/up
spZp/c

~H~o /~
Zp(~03~ P~~/~~3)

n=3

—(~/~) (&—~o'/)
zo(&+ p/a)

1/2—Zp/2

From Eqs. (6), (17) one can build up Table I, where
Zo= (uo/oo)& is the characteristic impedance of free
space, and where we have ignored terms of O(uo/c) and
taken v=0.

With these approximations the denominator of A (cd)
in Eq. (26) is given for large enough cd by

Zo ( Zrp ( Zrr ) ficdd)—
I

1+—II 1+—
~ e»l2( Zc) ( Zo) (c)

No +o a2

ZII exp
C2aP

f(cd cdo)d

Qo

Zo f Zr) / Zrr) ( icdd$—
(44)

2E Zc) E Zoi E c

If Im(cd) is sufficiently negative, so that

Re[exp(icdd/c) j
is suKciently large, one can expand this expression as a
convergent binomial series of the form

Zo f Zrp ( Zzz) ' f icdd)——
/

1+—
/f 1+

/ exp(
2& zi & z) E c

(u cdcf uc cddp
+terms of order exp i~ —+

c u, )
where u'+uc'&~2. Now the y, in Kq. (9) which defines
the contour for the inverse transforms, may assume any
6nite value; in particular it may be chosen so large that
the above expansion is justi6ed on and within the
closed contour formed by the line Im(cd)+&=0 and
the lower in6nite half-circle.

Hence we can express

[A ~(cd)/i(cd —Qo)j exp(ik~z)

by an asymptotic series of the form

p a„, (cd) exp(icd/c)[z (nd+mcd/—uo) j, (45)
Q fm

where a~ (cd) is a power series in cd ' and where

If ZI and ZII are physically realizable, they must
have positive real parts, and therefore

Zo ( ZI'I ( ZII)
+—il1+ 1&0

2& z)& z)
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e+nt&2. A given term of this series contributes to
E(s, 1) only if

t&(u/c+m/uo)d —s/c, where u+ou&2,

and therefore no term contributes until

t& (2d —s)/c,

vrhich shows that the growing wave is indeed re6ected.
A similar analysis can be carried through for the

other two partial waves to shovr that the amplitude of
the space charge wave is identically zero until a time
t) s/uo, while the decaying 6eld wave is identically zero
until a time i) s/c; this is what we would expect if these
tvro waves were directly excited at the initial surface.

6. POWER AMPLIFICATION IN AÃ IONIZED MEDIUM

(i) The Ideal Termination

For the case of the forward waves, vrhere up&0, we
showed from Eqs. (24) and (27) that the steady-sts, te
amplitude of the grovring wave was proportional, for
large enough d, to

exp(ikis) exp[i(ko —ki)d] exp[ —(a+ v/uo)d] exp(az)

if both the inequalities (42) are satisled. Even at s=d
the amplitude of this wave is ~exp( —vd/uo) so appre-
ciable ampli6cation cannot be taking place. This is no
longer the case however either if

which are just the conditions that the growing wave be
ampli6ed on Bailey's theory. "

That power ampli6cation is indeed possible when the
medium is thus ideally terminated follows from the
fact that the rate at vrhich real electromagnetic energy
Bows out of the medium at s= d is given by

Re[E(d, Qo) iH—(d, Qo)]
Re[Zii(Qo)] exp2(a —v/uo)d, (49)

where H(d, Qo) is the complex conjugate of H(d, Qo).
If a) v/uo and Re[Zii(Qo)]&0, this output power can
be made arbitrarily large by choosing d large enough.
However this is only possible when the terminating
impedance possesses its ideal value, and no povrer ampli-
6cation is possible unless the medium has nearly the
right impedance. To shovr that this is so we vrill consider
the normal case vrhere the terminating impedance is
non-ideal, which will throw additional light on the
physical nature of the propagation.

(ii) Non-Ideal Termination

%hen the termination is so far from the ideal that
the first term in the denominator of A„(io) is much
larger than the others, that is when

I (1—Zii/Zl)(kl+ZIol) I exp(ad)

)&I g(1 Zii/Zi—)(ki+Ziui) exp(ikid) I. (50)

or if
ZII Zi(QO) (46)

%'e have that
Zi = —bi(Qo)/ai(Qo) (47)

when, from Eqs. (24) and (27), the amplitude of the
grovring vrave is proportional, for large enough d, to

A i exp(ikis) =exp(ikis) exp( ikod)—
exp( —vd/uo+ as). (48)

If a) v/uo, which is normally the case, then the am-
plitude of this wave increases indehnitely vrith s, and
power ampli6cation is possible as vre shall show.

Let us consider the 6rst of these two alternatives
that given by Eq. (46). The necessary a,nd sufficient
condition that this is physically realizable is that
Zi(Qo) have a positive real part, so that the ideal
termination absorbs power from the medium.

From Eq. (18),

Zi(Qo) = Qouo/ki(Qo)

and since ki(Qo) =P—ia where P, a are given by Eq.
(38), this condition requires that

Qo ohio ruoooir v
Qp=

I
-+

I &0,
2c'(Qo —ir)' 4 Qo aQo')

Np 40p

A i(Qo) =E(Qo)—
c (Qo —roH)'

(Zii/Zo) exp[ —(a+ v/uo) d]
X )

(1—iaZii/ Qouo) (1 iaZi/ —Qouo)
~ (51)

$cp 20pNp 1
A o(Qo) =E(Qo)

c' (Qo —H) io(1 oiaZi/Q—ohio)

A o(Qo) =E(Qo)
1—iaZi/Qopo

where we have used the approximate values for a„, b„
given in Table II, and have taken V (0, io), the initial
velocity modulation, equal to zero.

These results can be interpreted as follows. Let us
suppose that medium I is transparent to the incident
wave, frequency Qo which carries a real power P(Qo).
If ay=0 all of this power is re6ected if medium II is
suKciently wide; but if uo WO a fraction ~(uo/c)P(Qo)
is transmitted by medium II. Of this transmitted
povrer, the greater part is carried by the decaying wave

or that

v& IQooia/aI and uooia/Qo&0,

'0 The coincidence is trivial. The condition that Rel Z(O'))&0
is identical with the requirement that the energy Qow associated
with the growing wave be in the positive direction.
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TABLE II. Approximate values of the coeKcients of Kq. (26) fol uo jc&&1 and vjuo(a.

—io+(uo/c') ~a~0'/I 2(QO- ~a)'g
1/2—Qopo/2ia

QOP, Ojzo.'

—
t (Qo—cuba)/uog+iv/uo

(uo/c) ' Qocgo /(Qo 4)a)—Zo(uo/c)'Qoa)o'a)a/(Qo —cuba)'

Zo(uo/c) Qo/(Qo —~a)

icx+ (uo/c') a acro'/L2(QO- cuba)'j
1/2

Qogo/2h—Qo go/ZA'

of amPlitude Ap(Qp), but a fraction (upP/c')(up/c)P(Qp)
is carried by the space charge wave. If the medium is
suKciently wide and u) v/up the space charge wave is
much larger in ampl. itude than the decaying wave" at
z=d, and the power in the reflected wave is therefore
of the same order of magnitude at z =d as the power in
the space charge wave. This power is very much smaller
than the incident power so that under these circum-
stances power ampli6cation is out of the question.

The conditions for power amplification are thus ex-
tremely critical, as they rely on what is essentially
resonant reflection; moreover when these conditions are
met they are more likely to lead to instability around
the feedback path formed by the space charge wave and
the reflected 6eld wave than to amplification. It may be
noted, however, that once the reQected wave has been
resonantly excited, there exists a physical mechanism
by which it can be maintained.

where
W= —epp Re[E(s, Qp) V(z, Qp) j,

V(v, Qp)=v, (s, Qp) iv„(s, Qp—).
Hence, if the electromagnetic 6eM is to gain energy

at the expense of the moving charge, we must have

W= —epp Re[E Vj&0.

"The power in the space charge wave is dissipated by scattering
and decays at a rate ~exp( —2vs/uo), while the power in the
decaying wave is transferred by radiation pressure to increase the
dc kinetic energy of the moving electrons and decays at a rate
exp(-2es),

(iii) The Physical Mechanism of
Power Amplification

Ke shall now show how the ac kinetic and electro-
magnetic energy associated with the growing wave is
obtained from the dc kinetic energy of the electron
beam once the wave has been established.

The work done by the electromagnetic field on the
moving charge in unit time and unit volume is

t/I/"= —eE pv.

In the present case, where E has no longitudinal com-
ponent and where p is time-independent

8'= —eE, pov,

where the subscript v refers to the transverse com-
ponents.

If we use the complex algebra of Sec. 3 we may write
this as

Now this energy is gained at the expense of the space
charge ac kinetic energy which is itself continually
increasing. The common source for both these in-
creasing ac energies is the dc kinetic energy of the elec-
trons, and it is made available by the interaction of the
electron drift velocity with the ac magnetic 6eld. The
eGect of this interaction is continually to turn the
electrons at right angles both to the ac transverse mag-
netic vector and to the dc longitudinal drift velocity,
in just the right sense to supply the required transverse
ac energy.

We can derive the mathematical conditions for this
energy transfer from the transverse force Eq. (12) which
may be written

(a ai—+up—
~
rNV= —8E—$8upll pH+i&sco~V.

Eat as)

If we multiply through by V, the complex conjugate
of V, and equate the real parts of both sides we get

d 1
Re —-mVV =Re[ eE V —ieupupH V—]

dt 2

and if the ac velocity 6eld is to increase exponentially
we must have

Re[E V+iupupH Vj&0.

From Eqs. (10)—(12) it can be shown that these con-
ditions will be met, in the steady state, for the growing
wave if

v&
~
Qpcp~/n~ and upppH/Qp&0

which are just the conditions, given by Bailey, of Eqs.
(39), (40).

From some points of view this is rather surprising.
We have an electron stream moving at a very slow
speed interacting with an electromagnetic 6eld propa-
gating with a very high phase velocity; just the condi-
tion that normally justi6es neglect of the interaction
between the space charge and the magnetic components
of the 6eld. However, when the field waves have almost
pure imaginary propagation constants, H is nearly
parallel to E. Hence, although HXuo is small it is
nearly parallel to v, while E v is small since E is nearly
perpendicular to v. The effect of the magnetic 6eld
components on the moving charge is thus comparable
with, and indeed greater than the effect of the electric
6eld components, in an attenuating medi@In,
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(iv) Conditions in Sunsyots and Discharge Tubes

%hat we have said above applies directly only to the
forward waves when terminated ideally at the surface
z=d; other special cases arise when Eq. (47) is satisfied,
and for the reverse waves when No&0. Furthermore the
medium might be excited by an initial velocity modu-
lation rather than by an external electromagnetic wave.
In all of these, however, ampli6cation is only possible,
if at all, under very critical conditions, which would

hardly be encountered in a sunspot or indeed anywhere
in a star. If the parameters of the medium such as the
magnetic 6eld or space charge density do not change
rapidly with wavelength, then the impedance looking
in any direction in. a region where the 6eld waves have
a complex propagation constant is nearly equal to the
characteristic impedance of the decaying wave and not,
as is essential for ampli6cation, to that of the growing
wave. Even with the most generous allowance for the
effects of turbulence, it seems incredible that the im-

pedance discontinuity could be so large as to involve a
complete reversal of sign. Furthermore this critical
impedance would have to be just right for an appre-
ciable time since the steady state in which power ampli-
fication is possible has to be built up by a resonant
reAection which, in the language of the electronics en-

gineer, has a very high Q. Finally it may be noted that
even if the electromagnetic energy could be generated

by freak conditions it could not escape, since it would
occur at a level where the characteristic impedance of
the medium was largely reactive and therefore attenu-
ating.

In a discharge tube de6nite surfaces of discontinuity
exist at cathode and anode, and it is conceivable that at
certain frequencies the right conditions might exist for
power ampli6cation. Even granting this, however, it
seems hardly possible to explain the experimental
results of Bailey and Landecker" on this theory, because
this ampli6cation is too small. Using glass discharge
tubes and a longitudinal magnetic 6eld of a few hundred

gauss, these workers measured, at low frequencies,
noise power outputs corresponding to a blackbody
temperature of 20' to 20" degrees Kelvin. At low fre-
quencies for which Qo& co~ it is only the ordinary waves

that are ampli6ed. From Eq. (30) it follows that the
maximum power ampli6cation attainable with the
ordinary waves is exp(2cooz/c) which works out at 20
db/meter when, as in the experiments of Bailey and
Landecker the plasma frequency is about 100 Mc/sec.
The observed noise power corresponded to a blackbody
temperature which at some frequencies mas as high as
20" degrees Kelvin. As the electron temperature is only
3& 20' degrees an amplification of 85 decibels would be
needed if the observed phenomena were thus to be
explained. The discrepancy is even more serious when

the e6ects of magnetic field are taken into account. At

» V. A, Bailey and K, Landecker, Nature 166, 259 (1950).

a frequency of 1 Mc/sec the ampli6cation of the or-

dinary waves with an axial magnetic 6eld of 200 gauss
is only 2 db/meter while the observed noise power cor-
responded to blackbody temperature of 20" degrees
Kelvin.

7. CONCLUSIONS

We have shown that the growing waves which Bailey
interpreted as ampli6ed waves can be excited only by
reflection. If the medium is ideally terminated in the
characteristic impedance of this growing wave, the
wave amplitude can be built up to a large amplitude by
a process of resonant reQection. Hut this termination
is very critical and it is most unlikely that the required
conditions would be found in a sunspot. Even so if am-
plification did take place the radiation would be
generated at a level from which it could not escape.
The explanation of the excess noise radiation from
sunspots must be sought elsewhere.

Under special circumstances, it is conceivable that
amplification of the transverse waves could take place
in a discharge tube. However the maximum amplifica-
tion attainable seems too small to account for the
experimental results of Bailey and Landecker, " even
under the most favorable circumstances.

From relativity considerations, we argued that any
amplification in an in6nite ionized medium drifting
with a monochromatic velocity parallel. to a magnetic
field must depend entirely on conditions at the trans-
verse surfaces of discontinuity, since these alone provide
a frame of reference with respect to which the medium
is moving.

The same argument would also apply to a cylindrical
beam of finite cross section moving in empty space, or
bounded by a perfect conductor, or with any transverse
boundary condition the qualitative form of which was
unaltered by a longitudinal Lorentz transformation.

A general criterion as to the conditions that a growing
wave be a true amplified wave cannot be obtained from
a unidimensional analysis. From the transient analysis
for this special cases however, it appears that a growing
field" wave is probably a reQected and not an ampli6ed
wave though this is not the case for the traveling wave
tube. On the other hand, if the associated energy Row

is in the positive direction, a growing space charge wave
is almost certainly a true ampli6ed wave, at least as
long as all the electrons are moving in the same direction.

Whether or not a given wave is excited by reflection
cannot be decided from its direction of propagation and
energy Qow at a 6nite frequency. We have shown that
only the behavior at arbitrarily large frequencies is
relevant.

"By a Geld wave we mean a wave which propagates, if at all,
at a speed comparable to c and which exists even when the space
charge density is zero. By a space charge wave we mean a wave
which propagates at a speed comparable to that of the moving
space charge and which vanishes when the space charge density
goes to zero,
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It has usually been assumed in the past that one can
neglect the interaction between an electron beam,
moving at a speed small compared with c, and the mag-
netic components of an electromagnetic wave propa-
gating with a phase velocity near to or greater than t, .
Ke have shown that this is not always justi6ed and that
in some circumstances such as propagation in an attenu-

ating medium, the interaction with the magnetic com-
ponents is more important than the interaction with the
electric components in some particulars at least.

This analysis has served once again to stress the
importance of taking initial and boundary conditions
into account in a discussion of propagation in an active
medium.
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A High Energy Proton-Proton Collision with Associated Events
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An event observed in a nuclear emulsion is interpreted as an incident proton of energy 1000 Bev colliding
with a hydrogen nucleus and producing a cone of six charged mesons. The presence of three neutral mesons
is deduced from two electron pairs and one triplet in the region of the cone. The triplet is due to an electron
pair produced by a gamma-ray of energy 24 Bev in the Geld of an electron. An additional electron pair is
produced by bremsstrahlung. The kinetic energies of several particles are deduced from scattering measure-
ments and these range from 800 Mev to 17 Bev. The total energy of the shower is estimated as 100 Bev.
In the center-of-mass system the mesons have energies of the order of 400 Mev and an almost isotropic
distribution. It is concluded that most of the energy is carried by two neutrons, and only one-tenth of the
energy of the primary particle goes to meson production. The results are compared with the theories of
multiple meson production.

I. INTRODUCTION

OST of the data published on very high energy
- ~ collisions with nuclei deal with the interaction

of protons, neutrons, or heavier nuclei with the light
(C, N, 0) and heavy (Ag, Br) groups of nuclei present
in photographic emulsions, and in these cases as many
as thirty minimum ionization tracks have been pro-
duced, which have been shown' to be mainly mesons.
Some of these mesons arise from the interaction of the
primary ps, rticle with a single nucleon (multiple pro-
duction), but ii the energy of the primary particle is
distributed over a part of the nucleus plural production
of mesons by interactions between many pairs of
nucleons is possible. It is clear that it is of fundamental
importance to the theory of meson production to study
collisions of protons or neutrons with hydrogen nuclei—
events which are likely to be missed in nuclear emulsions
as all tracks are at minimum ionization. Very few
examples of these collisions have been published. An
event described by Camerini et, cl.' occurred near the
edge of the plate, so no detailed measurements could be
made. Pickup and Voyvodic' have found four such
events, but the energies of only a few particles could be
measured because the lengths of tracks in the emulsion
were short. A collision of a very energetic singly charged
particle with a nucleus heavier than hydrogen has been

' P. H. Fowler, Phil. Mag. 41, 169 (1950).
~ Camerini, Fowler, Lock, and Muirhead, Phil. Mag. 41, 413

($950).' E. Pickup and L. Voyvodic, Phys. Rev. 82, 265 (1951).

observed by Lord, Fainberg, and Schein, 4 in which,
however, the mesons are most probably produced by
a single nucleon-nucleon encounter.

This paper describes an event in which a singly-
charged particle with an estimated energy of the order
of 1000 Bev collides with a nucleus to produce a shower
of seven particles at minimum ionization one of which,
however, is an electron. The event was observed in an
Ilford G-5 emulsion, 400' thick, which was exposed to
cosmic radiation at 70,000 ft. Since no tracks of ioniza-
tion above the minimum were observed, it is most likely
that the atom struck was hydrogen. The event for-
tunately occurred near the center of the plate, and the
primary particle was traveling almost parallel to the
emulsion surface, so very long tracks of most of the
secondary particles are visible, allowing detailed study.
The region around the event was carefully scanned, and
three electron pairs and one triplet associated with the
event were found. The triplet is due to production of an
electron pair in the 6eld of an electron by a photon of
energy about 24 Bev.

II. DESCRIPTION OF THE EVENT

The primary collision consists of a singly-charged
particle at minimum ionization producing seven sec-
ondary particles, also at minimum ionization, within a
cone of half-angle about 11'. One of the secondaries is
an electron of energy 60 Mev, and is probably a knock-on

'Lord, Fainberg, and Schein, Phys. Rev. SO, 970 (1950).


