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Divergent Integrals in Renoriaalizable Field Theories
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The proofs of the renormalization of the theories of scalar and pseudoscalar mesons in scalar interaction
with nucleons and with the electromagnetic field, given previously by the author, depended on a certain
subtraction procedure. A general proof is here given that this subtraction procedure, when applied to a
divergent integral in the S matrix of a renormalizable field theory, does, in fact, lead to an absolutely
convergent, covariant, and unique remainder.

S INCE Dyson's' proof of the possibility of absorbing
all divergences in spinor electrodynamics, by re-

normalizing mass and charge, it has been possible to
extend his considerations and to renormalize the
theories of scalar and pseudoscalar mesons in (scalar)
interactions with the nucleons, and with the electro-
magnetic field. ' The proofs in these cases depend upon
the success of a generalized procedure' for subtracting
divergences from the integrals occurring in these
theories. This procedure was outlined in 1, Sec. III,
and it was asserted that after the subtractions are
carried out in a prescribed manner, the remainder is an
absolutely convergent integral in a strict mathematical
sense. A proof of this statement is given in this note.
The conditions under which such a procedure succeeds
brings out clearly the diBerence between theories which
can be renormalized and those for which the concept of
renormalization of constants has proved inadequate.

Regarding the general structure of the graphs and
the corresponding integrals occurring in the matrix
elements of Dyson's 5 matrix, we note the following:

(i) In a connected Feynman-Dyson graph consisting
of X vertices and Ii internal lines, n=F —S+1 lines
can be chosen such that the momenta corresponding to
the remaining (II 1) lines can b—e expressed as linear
sums of the momentum variables t&, t2, .t„which can
be assigned to these n lines. Thus, the graph gives rise
to an I-fold integral I(n) over these basic variables. '

(ii) For all "renormalizable" theories (i.e., the
theories for which the number of primitive divergent
graphs is governed by conditions of the type E&u, E
being a linear sum of the number of external lines and
a being a fixed constant), not only is the number of
primitive divergent graphs limited, but further, perhaps
more important, the degree of divergence of the inte-

* Now at Government College, Lahore, Pakistan.' F. J. Dyson, Phys. Rev. 75, 1736 (1949}.
'Abdus Salam, Phys. Rev. 82, 217 (1951), referred to as I;

and "Renormalized S matrix for scalar electrodynamics, " to be
published.' This procedure was suggested by F. J. Dyson, to whom the
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4 The domain of integration is in fact a 4n-dimensional space;
but the treatment being wholly relativistic, the 4 components of
any vector are never separately considered. We, therefore, speak
of n-fold rather than 4n-fold integrations.

grals' corresponding to these graphs does not depend
on the order of the graphs.

(iii) We are interested in the absolute and not the
conditional convergence of our final expressions; that
is to say, their convergence must be independent of the
choice of basic variables. Irrespective of the choice of
basic variables, all the possible divergent subintegra-
tions can be detected graphically by seeing which parts
of the graph satisfy the condition E&a, where E is the
number of external lines of the part in question. By a
"wrong" choice of basic variables, it is possible to make
some of the integrals corresponding to these parts
conditionally convergent; for example, a subintegration'
which conditionally converges for t& and t2 integrations
may diverge if t&'=t&+t& is chosen as a basic variable.
The proof the e6ectiveness of the subtraction procedure
given in Sec. II depends on the following lemma

Ienema 1:—There exists at least one "correct" choice
of basic variables, such that every possible genuinely
divergent part of the graph has associated with it a
divergent subintegration over one or more of the basic
variables.

This lemma is proved in Sec. III. In any graph there
may be more than one set of "correct" variables. It is
also shown in Sec. III that the finite remainder after
the proposed subtractions is the same for any "correct"
set. It will be seen in Sec. III that the lemma is true
under extremely restrictive conditions. These happen
to be precisely the conditions which renormalizable
field theories satisfy.

The detailed prescription for subtracting divergences
from overlapping graphs has been given in j., Sec. III.
We write the given integral I(n) as

I(n) =D(t,)R(t,t, . t„)+D(t,)R(t,t, t„)+ . .

+D(t,t,)R(t,t, . t„)+.
+D(t,t,t,)R(t4t, t„)+ +

+D(tgt2 t )+I,(tgt2 . t„). (l)
s The degree of divergence of an integral is estimated by

employing the basic considerations given in Sec. V of Dyson's
paper and merely counting the powers of relevant t in the numer-
ator and denominator of the integrand.'If a set of variables t tf, ~ t is held fixed, the integration
over the remaining variables is called a subintegration.
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Here D(t,t; .) is the true divergence from the part of
the graph corresponding to the t;t," ~ ~ subintegration
and E's represent the reduced integrals. It is to be
shown that I„the remainder left after all terms DXE
have been subtracted from I(n) is absolutely convergent.

In general, the integrand of I(n) is a product of
"simple" factors Ii, H, J, etc., each "simple" factor I
being a function of one single variable t, and external
momenta (p), and of overlap factors G, E, etc. , which
are functions of more than one variable.

In any term like D(ti)R(t2t& t„),D(ti) is a divergent
constant; analytically, D(ti) is a divergent constant
obtained by an operation T(ti) on the ti subintegration,
the integrand of this subintegration consisting of all
those factors Ii, G, etc. , in the integrand of I(n) which
contain ti. All momenta other than t~ in these factors
are treated as "external. " There is one operator T(ti)
for each type of divergence in the theory; this operator
may correspond, for example, to giving all the "ex-
ternal" momenta special "free-particle" values or may
also involve differentiations with respect to "external"
momenta before such "free" values are substituted if
the divergence over t~ subintegration is more than
logarithmic. In practice, the operation T may be even
more complicated, but in all cases (so far developed)
T acts by changing the values of "external" momenta.
In actual fact, the result of operation T(ti) is not
merely D(ti) but D(t,)p„, D(ti)8„„or D(t, )hp ', etc. ,
where y„, 8„„, etc. , will be called "vertex factors. "
These "vertex factors" are absorbed in the reduced
integrals. R(t2t3 t„), for example, is an integral with
the integrand consisting of all factors G, H, etc. , in the
original integrand which do not contain t~, multiplied
by the "vertex factor" from the t~ integration.
R(t2ts t„) corresponds to a graph, called the
reduced graph, which has exactly the same number of
external lines as I, but is of lower order in e.

VVe notice at this stage that the operation

[1—T(t,)]I(n) = [I(n) —D(t,)R(t,t," t„)]

can be thought of graphically as the insertion of the
convergent part of the t& integration at the appropriate
place in the reduced graph R(t2ta t„).

The general procedure for obtaining a true diver-
gence, D(tit2), for example, has been formulated in I,
Sec. III. Consider the integral

[1—T(t,)—T(t,)]I=[I—D(t,)R(t,t, t„)
D(t, )R(t,t, t„)]—. (2)

An operation T(titm) on this new integral gives D(titm).
For this operation all momenta other than tj, t2 are
"external" and explicitly the operation is only designed
to make the double integration over t&t2 in

[1—T(t,t,)][1—T(t,)—T(t,)]I(n) (3)

convergent. It was shown in I, Sec. II, that (3) in fact

proves to be convergent over t~ and t2 integrations
considered singly as well. The proof may be repeated.
Holding t2 fixed, we rewrite (3) as

= [1—T(ti)]I—T(tit2) [1—T(ti)]I
—[1—T(t,t,)]T(t,)I. (4)

The erst two terms obviously converge over tj inte-
gration.

%'e can rewrite the third term as

[1—T(t t )]T(t )I= [1—T(t t )]D(t )R(t t, t„).

T(tit2) operates only on the tit2 integration, giving all
variables "external" to the t~t2 integration certain
special values. Here, since D(t~) is a constant and does
not contain any external momenta, T(tit2) operates,
in eGect, only on that part of the integrand which
contains ti. The convergence of [1—T(titn)]D(tm)
XR(tits t ) over ti is clear dimensionally, since D(tm)

being divergent, the degree of divergence of R(tits t„)
in t~ cannot exceed that of the t~t2 divergence, which

[1—T(tit2)] is explicitly designed to remove. In the
example considered in I, Sec. II, T(ti) and T(t2) repre-
sent extraction of (logarithmic) vertex part divergences,
while T(tit&) is designed, in the first place, to extract
(linear) self-energy divergences. D(t~) thus being a
logarithmic divergence, the ti integration in R(tits t„)
can at most be linearly divergent. The operation
[1—T(tit2)] therefore suffices to produce convergence
over ti in [1—T(t~t2)]T(t2)I. This is an important
point for the subsequent proof.

In the general case I, is convergent for the over-all
n-fold integration by its very construction, since it is
obtained from 4' defined in Kq. (5) below by an oper-
ation [1—T(tit2. . t )],which operation subtracts from
4 the true divergence D(tit~ t„):

C =I—D(t,)R(t, t„) —D(t,t,)R(t, ."t„)

—D(t,t, t„,)R(t„) .. (5)

%e now want to show that I, is also convergent
over all subintegrations tj, , t~t2, ~ ~ ~, 4t2. 4 i, ~ ~ ~

as well. Combining this with the discussion given in Sec.
III, this will establish that I, is absolutely convergent
in a strict mathematical sense and all mathematical
operations are valid for it.

By rearranging the terms in I,(n), we shall first
exhibit that I,(n) is convergent over the (t2tq ~ .t„)
subintegration, explicitly. The proof proceeds induc-
tively. Suppose that I,(n 1) obtained from any (n ——1)
fold integral I(n—1) by subtracting true divergences

unreduced integrals converges over all its possible
subintegrations as well as over the (n —1) fold inte-
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gration. We rewrite Eq. (5) as follows:

C =[I—D(t,)R(t,h, "t„)—D(t,)R(t,t, h„)

—D(t„)R(h, ' 'h„,)—D(t,t,)R(t,t, t.)
D(—t,t," t„)R(h,)]

—[D(t,)R(tgtg t„)—D(tgtg)R(t3t4' ' 't~)

D(—t,t„)R(t, "t„,) " D(h—,t,t,)R(h4h, h„) ~

D(t,—t, h„)R(t,) D(t,—t, t„)R(t,)
—D(t h h-- )R(h.)] (6)

It may be noted here that if we take two variables t&

and t; such that the parts corresponding to t~ and t,
integrations do not overlap, then we have DR(t,) =D(h;).
(The true divergence for the t; subintegration of the
reduced integral R(tg t„) is the same as that of the
original integral I(t1tg ~ t„).) It was shown in Sec. 3, 1,
that for such a case we have D(t, t;) = —D(t, )D(t,).
Hence, it follows that (G,(t;)—+J'dt1dt, )0——0, which is
compatible with its graphical interpretation.

We shall prove a similar result for D(t1tgtg). By
definition we have

Then we have
D(t1tghg)R(h4 ' 4) = T(hghghg) [I D(tg)R(t1tg h„)

D(tg)R(tltgt4 ' 't.)—D(tghg)R(tgtg t„)]
D(t,)—R(t,t," h„)

+T(t14hg) —D(hgtg)R(tgtg t„) (10)
—D(hgtg)R(hgt4' ' 'h~)

The expression in the first square bracket is convergent
on account of our inductive assumption for the t2t~

integration. Precisely as above, we can write the result
of operating T(t1tgtg) on the first bracket as

(G,(hgtg)~f'dtgdtgdtg)oR (h4 t„)

By a repeated use of Eq. (9), the remaining terms in
Eq. (10) can be written as

= —T(h14tg)[D(h1) IR(hghg' 'ts) DR(hg)R(h34' ' 'ts)
DR(t, )R(t—,t, t„)I

+(G,(t,)~fdt, dt )0R(h, t4' ~ t„)
+(G.(hg)~f Chgdtg)0R(hgh4' ' t.)]

= —[D(t,)DR(tgtg)+ (G,(tg)~f dhgdhg)0DR(4)

+(G,(tg)1J'Ch, Ch,),DR(tg)]XR(t, t„). (11)

So that, finally we have

D(t1tgtg)R(t4 4) = [(G,(hghg)~ J'dt1dtgdt3)0

(G (tg)~J Chldhg) ODR(t2)

(G (tg)~J'dt1dt2)ODR(4)
—D (h,)DR (t,t,)]R(t, t„) ("12).

This can be generalized immediately by an inductive
proof as follows:

D(t,t," t,)R(t,+, t„)- [(G.(t, . t,)2J'Ch, Ch, "Ch„),

(G.(t, t,)~—J'dt, dt, dt.„),D„(t,)
g I 4 g I 0

—(G.(4 t, 1)~fdt1dtg . dt„1)0DR(t,)
—(G.(h4 h,)~fd4d4 Ct,)ODR(tgtg)

—(G,(4. t,)~fd4d4 .dh, )ODR(tgtgh4)
g 0

—(G.(h,)~fdtgdt, )ODR(tgtg t„,)
3 0

D(hl)DR(h2h3' 'tr)]XR(htqg' ' t„). (13)

I,(n) = [1—T(t1 . .t„)]c. (&)

If t~ is held fixed, it acts as an "external" momentum
vector for the terms in the first bracket. The integrand
in R(t1) contains (apart from the "vertex factor") those
factors in the integrand of I(23) which do not contain
any other basic variable except t&, and these factors
are therefore common to all the terms in the first
bracket in Eq. (6). Apart from these, the erst bracket
is precisely I,(23—1) and, consequently, convergent
over t2t3 t„ integration, by assumption.

To exhibit the explicit convergence of the second
bracket, we derive an alternative expression for the
true divergences.

Consider D (h, t2) . We write

D( hgh)gR( gh4t' ' '4) T(h14)[I D(4)R(hgh3' ' 'hg)

—D(t1)R(tgtg t„)]
= T(h,t,)[I—D(h, )R(h,h, h„)]

D(t )D (t —)XR(h t t„) (8).
Here DR(tg)R(hgt4 . t„) is t.he result of the operation
T(t1tg) (which, D(t,) being a constant, is effectively
now an operation on tg integration alone) on R(t,t, t„).
The reduced integral R(hgt4 t„) from this operation,
obtained by omitting all factors containing t2 in the
integrand of R(4tg h„) is the same as that obtained

by omitting all factors containing t&t2 from the integrand
of I. As noted before [I—D(4)R(t1tg .t )] can be
thought of as the graph obtained from R(tgtg t„) by
inserting in the appropriate place the convergent
remainder G,(tg) of the hg integration in I.The operation
T(t1tg) now implies that from the resulting expression
another divergent constant is evaluated. For our
purposes, however, the essential point is that
T(t1tg)[I D(tg)R(t1—4 h )] is convergent over tg. To
emphasize this we write T(tgtg)[I —D(tg)R(t1tg t„)]
ss (G.(t )1fCh,C4)OR(hgh, . t„) Here, (G,(t .)~J'dt, Ch, ),
is the divergent constant mentioned above and is such
that in its integral representation the t~ integration is
convergent. Its multiplier R(tgtg . t„) is an int.egral
with the integrand consisting of those factors in the
integrand of I which contain neither t~ nor t2 and is
thus the correct reduced integral. Hence, 6nally we have

D(t,4)R(4 t„)= [(G.(tg)~J'dt, dt, ),
—D(4)DR(4)]XR(tg. t„) (9).
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All that remains now is to substitute from Eq. (13) in

the expression obtained after operating {1—T(t~ts t„)]
on the second bracket of Eq. (6). We obtain

—D(t,) {R(t,t, "t„)—D (t,)R(t, t„) ~ ~ —~
D—(t,t,)R(t t )—

Dtt(t2t3' ' 'tg)]
—

{ (G,(t,)~fdt,dt,),{R(t, .t„)—D, (t,)R(t, t„)
—D&(t,t,) R(t, t„)—" D„(t, —"t„)I]

DG,—(t,)~fdt, dt,),{R(t,t, t„)
—D, (t,)R(t, t„) . ~

—D.(t2«)R(t' "t.)" —D.(tmt4 "t.)I]
—

L( G( tt,)~J'dt, dt, dt,),{R(t, t„)
—D, (t,)R(t, l„) . .

D&(t4t,)—R(t,t, t„) D, (t,t, —t„){]
0

—(G,(t, "t„)~fdt,dt, dt.), (14)

By our inductive hypothesis each expression in square
brackets in the above converges for the t2t3 t„ inte-

gration if t~ is held fixed. This proves the result. Since

the inductive hypothesis assumes the convergence of

I,(n 1) for all —its possible subintegrations, we have

succeeded in establishing the convergence of I,(n) over

all subintegrations t2, t2t3, , t2t~ t„~ ~ as well.

By difterent rearrangements we could prove the
convergence of I,(n) over any other subintegration over

(n —1) variables. This shows that I,(n) is absolutely

convergent, provided we can give a proof of the lemma

stated in Sec. I. This is done in the next section.

In this section we give a proof of the lemma stated
towards the end of Sec. I, on which the discussion in

Sec. II depends. The proof is long, and only an outline

will be given. We first investigate the condition for
primitive divergents for the most general mixture of
fields. Consider a graph with Eg as the total number

of external boson and E~ as the total number of external

fermion lines. Let X; stand for the number of such

vertices in the graph as have i lines incident; thus, i
may be any integer equal or greater than two. The
number of boson lines at each vertex of the type i is

b; and the number of fermion lines f;
If F stands for internal lines, then we have the

relations,

Et+2Ft, =gb&;, Er+2Fr=gf&
We restrict ourselves to theories~ in which the integrals

for matrix-elements can be written in momentum space

by setting in the integrand hr(t) for each boson line,

'This excludes P-formalism of meson theory, for which the
propagation function is

Tr(t) = (ipt K+(1/I) p(pt) P-gl/(P+E')—

Sr(t) for each fermion line, and a vertex factor of the
general form t ' for each vertex of the type i. The
condition for convergence of a graph, following Dyson,
is derived as

2Ft,+Fg [4—(F N+—1)+Pa;N;]) 1.

Since N=gN;, this reduces to

2EI+Eb+QN, (4 a,—b; —23f—,) 4)—1.

The upper limit to the number of primitive divergent
graphs is therefore given by the following condition:

2E)+Et,(5++(a;+b;+,'f; 4)N-;.—

This result shows that if for a mixture of fields the
number of primitive divergent graphs does not depend
on the order of the graphs considered, then this number
is governed by a condition of the type E&a with
a=5. Any graph in these theories, with four or more
external fermion lines or five or more external boson
lines must be (at least "superficially'") convergent.
This implies that if we open one single line of any
graph with at least two external fermion lines, and if
the resulting graph is a "connected" graph (i.e., the
resulting graph does not split into pieces each joined to
the other by a single line), it must converge superficially.
The same result holds a fortiori if two or more lines
which leave the graph connected are opened simultane-
ously. It is also seen to be valid for all graphs with boson
lines external except for boson self-energy graphs. In
this case, opening one boson line may produce a
connected graph with 4 external boson lines which may
diverge logarithmically. However, precisely this was
the case treated in l(B), where it was shown that such
divergences affect only the mass-renormalization con-
stant. These divergences were called "final'"' and it
was proved quite generally that one could eGectively
proceed as if these divergences did not exist. We can
therefore state the following as a general rule: If in any
graph one or more lines are opened suck that the graph still
remains "connected, " the resulting graph is either super-
ficially convergent or suck that its divergence is "finaP'
and ue can electively proceed as if the divergence doesn' t
exist. Using the above result we proceed to the direct
proof of Lemma 1. By "exhibiting" a part of a graph
we mean opening enough lines so that the momenta

' For a theory to have a finite number of primitive divergents,
it is clear that Z(a+b+$f —4)E must equal zero. This therefore
excludes all vector couplings for meson-nucleon interactions
(b=i, f=2, a=i}, meson-pair theories (b=2, f 2) and Fermi
types of interaction between four spinor particles (f~4}.

9 An integral is "superficially" convergent, if by counting the
powers of t in the integrand, the integral itself is found to be
convergent, while any one of its subintegrations diverges.

"One further instance of a "final" divergence tarot noted in
1(S}j is provided by vertex parts with 2 meson and i external
photon line. If the external photon line belongs to a B-vertex,
opening one of the internal meson lines at this vertex may produce
a connected M-part. This M-divergence can be treated as "final."
The reduced integral in this case is a vertex part which can be
shown to be a function of the external photon momentum (p —p')
only. The reduced integral would therefore vanish from the
familiar arguments of gauge-invariance.



430 ABDUS SALAM

associated with the external lines of the part become
fixed. It is clear that any part (convergent or di-
vergent) may be exhibited by opening all its external
lines. If we can show that the number of lines, some or
all of which need to be opened, to exhibit every diver-
gent part contained in a graph, is never greater than n
(the number of independent momenta at our disposal),
we will have proved the lemma. For we can then
associate basic momenta with these lines, and thus
have a "correct" choice of basic variables.

All internal lines belonging to any graph can be
divided into two mutually exclusive sets. Lines in set
(a) have the property that if any one of them is opened
the graph splits into two or more parts each joined to
the other by a single line (called a "bridge" ). All lines
not belonging to set (a) fall in set (b) which thus
includes lines which if opened singly leave the graph
connected.

The lines in set (a) can further be divided into
distinct classes; If opening a line l, splits the graph
into separate pieces joined by single lines (bridges) l, ,
l ', . - -, it is obvious that the result of opening l '
would. be to split the graph into pieces joined by bridges

. If a basic momentum variable t is assigned
to f,', the lines f,2, f ', etc. , acquire momenta 1+p,
where p are linear sums of momenta of external lines.
All these lines will belong by de6nition to class E,.
We can assign all lines in set (a) uniquely to various
classes Ri, R2, R,. No line (a) can belong to more
than one class at a time, and each class must contain
at least two lines. If those vertices of the graph at
which external lines are incident are 3-vertices, each
internal line at such a vertex certainly belongs to some
one of these classes. For distinction we shall label such
classes as E' '. If E'"' consists of just the two internal
lines incident at the external vertex defining E'"', then
the e6ective result of opening one of these external
lines is one single connected graph with external lines
one more than the original graph. We further dis-
tinguish such E'x' by writing these as R'"'.

The connection of these sets and classes with diver-
gences in a graph is obvious. On account of the rule
stated above, opening a line (b) leaves the graph
connected and therefore at least superficially conver-
gent, while a line (a) may split the graph into pieces
at least one of which has external lines satisfying E&a.
To "exhibit" these divergences, it is therefore essential
that a basic momentum variable be associated with this
line (a). If (a) belongs to a class R„an assignment of
the basic variable to any other line in E is, from the
definition of a class, clearly an equivalent and a "cor-
rect" procedure. As a first step towards the proof of
Lemma 1 we show that s, the number of efFective
classes, which can split the graph into pieces all or
some of which satisfy E&5 is always ~& n.

For graphs consisting entirely of 4-vertices the result
is trivial. For this case, we have e=F—%+1, while
2F+E=4X. Each of the s classes must contain at

least two lines; since the minimum number of lines in
the classes, 2s, must not exceed the total number of
internal lines F, we have 2s~&F=2n+~~E —2. For the
case of divergent graphs with E~&4, this shows that
s~& n.

To prove the result for graphs with 3-vertices we
establish Lemma 2.

Lemma Z:—The maximum number of classes s for a
proper graph with n basic vectors and no external lines
is n —2.

For the proof it is unnecessary to distinguish between
boson and fermion lines. We can always obtain any
graph with e basic vectors from a graph with (n 1)—
basic vectors by adding a new line with its terminating
vertices on two existing lines of the graph with (N 1)—
basic vectors. In general, the addition of a new line
does not add to the number of the existing classes
except for two cases: (i) when the terminating vertices
of the new line both belong to the same line of the
original graph and (ii) when these vertices belong to
two lines already belonging to a class. In both these
cases the number of classes is increased at most by one.
The proof of the lemma follows by induction, since the
result is obviously true for n=2. We also notice that
at the new terminating vertices there are at most two
lines belonging to set (a), while the newly added line
itself must belong to set (b). Generalizing from this,
we have the result that at no vertex can there be more
than two (a) lines incident. We shall have occasion to
use this result.

We now consider the effect of adding external lines
to such graphs. Each external line may produce at
most one new class R'"', so that the general result is
that for a graph with n independent vectors and E
external lines

max s~&n+E 2—
Ke can now show that for E=3, at least one of classes
R'"' either produces a convergent connected graph when
one of its 2 lines is opened, or a "6nal" divergence.
The former is true for R'"' formed by the external
photon or meson line in vertex parts in all theories
except scalar electrodynamics where this R' ' intro-
duces, as noted before, merely a "final" divergence.
Excluding this from the classes of interest we have s« n
for E=3. For the case E=4, opening one of the lines
of an R'"' must produce a connected graph with 6ve
external lines, i.e., a subintegration which is super-
6cially convergent. This is not true, however, if two of
the R'"' coincide (i.e., when two external lines are
adjacent), in which case the graph produced has just
four external lines. Thus, in this case too the eGective
number of classes which exhibit divergent parts is
governed by s~& N.

With these preliminary results we now prove that we
can choose a set of n lines which if opened singly or in
pairs, etc., would exhibit all the divergences of the
graph. Consider the case s=e. We assign s basic
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momenta to the s lines, selected one each from the s
classes R. The assignment of all momenta is complete
and it remains to prove that we only need open some
or all of these n lines to exhibit every possible diver-
gence. We notice now that for this case the lines (b)
acquire an additional property. By counting the lines
and vertices we can show that at each vertex there are
precisely two lines (a) and not more than one line (b).
(We are here dealing with graphs with 3-vertices only),
and also there are in all just (n 1—) lines (b). If we

open one of these lines (b), the graph still remains
"connected. " Lines (a) defined for the original graph
retain their property of splitting graphs even for the
new graph; therefore, there are already two (a) lines
at each vertex of the new graph. We have seen that
at any vertex there cannot be more than two (a) lines.
This shows that the (b) lines of the original graph
remain the (b) lines of the new graph. The "connected-
ness" of the graph no longer depends on the lines (b);
in other words, lines (b), which were defined in the first
place on account of their property of leaving the graph
connected if opened one at a time, acquire the further
property that they still leave the graph connected if
more than one of them are opened simultaneously. "
The result of opening any set of these lines will therefore
never be a divergent part. All divergent parts of the
graphs are thus exhibited by opening one or more of

"This result is of course not true for s&n.

lines (a); analytically, this assignment of basic momenta
will insure that the entire number of divergences in
the graph never exceeds the possible subintegrations
at our disposal, and therefore the lemma is proved.

The uniqueness of I,(t&t& t„) for a different "cor-
rect" choice of basic momenta follows. immediately
from the concept of classes. For the case dealt with
above, the choice is correct only if the basic lines are
selected one each from a class R. Since all other lines
in a class acquire momenta p+t, if t is the basic line
which belongs to R, all "correct" choices are completely
equivalent, and obtainable one from the other by
trivial transformations involving only linear sums of
external momenta (p). This proves the result.

We will not deal in detail here with the proof of
Lemma 1 for the case of s(n where some at least
of the (e—1) fold integrations are "superficially" con-
vergent. The proof requires formulation of rules for
assignment of the remaining (e—s) moments which is
not difFicult.

The proofs in this section, though tedious, are
essential because it is important to realize that a
subtraction procedure is worthless unless it can be
shown that it leads to unique absolutely convergent
results.

The author is indebted to Dr. P. T. Matthews and
Dr. Res Jost for help in Sec. III and to Professor
J. R. Oppenheimer for the very kind hospitality of the
Institute for Advanced Study.
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The absorption spectrum of GaCl has been measured and analyzed to provide values for molecular
constants. The energy of dissociation for the ground state has been determined from a predissociation limit
as less than 5.00 volts and probably greater than 4.98 volts.

rmRoovcTrOm

HILE studies of the vibrational spectra of mole-
cules formed by the elements from a sing1.e

column of the periodic table are not uncommon, investi-
gations of the rotational, spectra from various elements
in one column have been rare. Such a study has been
started for the chlorides formed by the elements of
column III. An analysis of the rotational structure of
the InCl molecule was made by Froslie and %'inans
the rotational spectrum of Al.C1 was analyzed by Hoist. '

Two previous investigations of the spectrum of GaCl
have been made. Petrikalm and Hochberg' obtained the

*Now with Carter Oil Company, Tulsa, Oklahoma.
' H. M. Froslie and J. G. Winans, Phys. Rev. 72, 481 (1947).' W. Hoist, Z. Physik 93, SS (1935).' A. Petrikalm and J. Hochberg, Z. Physik 86, 214 (1933),

vibrational spectrum in absorption in the region from
3220A to 3470A. The dispersion was sufFIcient to check
the isotope shift due to CP' and CP', but not enough
to make a vibrational analysis of the bands. Miescher
and Wehrli4 working with somewhat larger spectro-
graphs con6rmed the assignment of the spectrum to
GaCl and showed that the heads around 3300A belonged
to two overlapping systems. Although Miescher and
Wehrli made a thorough and accurate vibrational
analysis of the three systems obtained in absorption,
the dispersion of their instruments was not sufFicient to
analyze the rotational structure or determine the
position of the null lines.

In the present investigation, the spectrum was

' E. Miescher and M. Wehrli, Helv. Phys. Acta 7, 331 (1934).


