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unexcited N" nucleus has two protons in the 1S~ shell,
four protons in the 1Pg shell, and one proton in the 1P~
shell. The excited levels available to the outer proton
are: 1D~, 1D~, 2S~, 1F~, 1Pg, 2P~, 2Pg, etc. On the
basis of the present analysis, the D~ and E~ levels
appear at about 3.5 Mev while the D~ and E~ levels
presumably lie above 5.6 Mev, since experiment shows
no other scattering anomalies below this energy. So, it
appears that these doublets are inverted and the
splitting is large. ~

f Note added in proof: In the single particle approximation the
reduced widths of the energy levels are approximately equal to
h'/pa. (See reference 4.) On the basis of this analysis, the reduced
widths of the Sg, P~, and Dy levels are 82 percent, 4.1 percent, and
24 percent of this value, respectively. The relatively small width
of the P~ level indicates that it is not a single particle level but

It is possible that one or more levels of high angular
momentum or very small reduced width lie below 5.64
Mev, even though none was observed. ' In the single-
level approximation, the width of any level is inversely
proportional to 2&' which increases rapidly with l. As
the elastic scattering cross section was measured at
30-kev intervals away from the observed anomalies, such
a level could have escaped detection.

We are most grateful to Dr. H. T. Richards for his
interest, encouragement, and counsel throughout this
undertaking, and to Dr. R. K. Adair and Dr. and Mrs.
R. A. Laubenstein for information and advice.

rather arises from the excitation of two or more nucleons. If such
is the case, the above argument does not apply so far as the Pg
level is concerned.
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A qualitative discussion of the near and far infrared spectrum
of methyl alcohol shows that the rotational states, including the
hindered rotation. may be well represented by a model consisting
of a rigid hydroxyl and a rigid methyl group. These groups may
perform a mutual rotation with respect to each other about the
symmetry axis of the methyl group subject to a hindering potential
which is assumed to have the form V=JB(1—cos3x) where x
is the angle of mutual rotation. A series of lines in the microwave
spectrum, discovered by Hershberger and Turkevich, have recently
been measured with great accuracy by Coles who also determined
their Stark splitting. The positive identification of these lines
leads at once to an estimate of the barrier height H.

The wave equation for the rotation of methyl alcohol is obtained
and the matrix elements of the hamiltonian are evaluated using
the wave functions derived by Koehlgr and Dennison on the
basis of a simplified model. Diagonalizing the hamiltonian yields

the energy levels which are found to predict correctly the prin-
cipal features of the microwave spectrum. A quantitative com-
parison serves to fix the moments and product of inertia to have
the values, A =34.28, Ci=1.236 and D= —0.107 all times 10 ~
g cm~. The two components of the electric moment are determined,
ply=0. 893 and @~=1.435X10 ' esu. A relation is obtained
between the barrier height H and the moment of inertia C~ of the
methyl group about its symmetry axis. Assuming C2 to be equal
to the methane moment of inertia, then H=380 cm '. If, in
addition to taking a methane-like structure for the methyl group,
it is assumed that the OH distance is the same as in water, namely
0.958A, one finds that (1) the CO distance is 1.421A, (2) the
symmetry axis of the methyl group lies between the 0 and H
atoms with the 0 displaced 0.084A from it and (3) the COB bond
angle is 110' 15'. This latter angle is 5' 44' greater than the apex
angle in water vapor.

INTRODUCTION

&HE spectrum of methyl alcohol has been examined
by a number of investigators. The region from

2.5p to 26p, was mapped by Borden and Barker' and the
principal fundamental vibration frequencies were iden-
tified. The spectrum from 20+ to 57@ was measured by
Lawson and RandalP who found it to consist of an
intense series of irregularly but closely spaced lines.
These are undoubtedly connected with the torsional
vibration or hindered rotation of the molecule. More
recently the microwave spectrum has been explored. A
series of lines around 25,000 Mc which, from the regu-
larity of their spacing, must clearly have a common

* Now at the Department of Physics, University of Colorado,
Boulder, Colorado.

' A. Borden and E. F. Barker, J, Chem. Phys. 6, 553 (1938).
J. R. Lawson, thesis, University of Michigan (1938).

origin, were discovered by Hershberger and Turkevich. '
These lines were also observed by Dailey4 and later were
remeasured with high precison by Coles. ' Coles not only
found many more members of the series but also deter-
mined the number and spacing of the Stark com-
ponents. Edwards, Gilliam, and Gordy' have measured
a number of lines between 50,000 Mc and 35,000 Mc.

The general structure of methyl alcohol is fairly well
known from chemical and spectroscopic evidence and is
shown in Fig. 1. The methyl group is presumably very
similar to the methyl group in methane or in the methyl

'%. D. Hershberger and J. Turkevich, Phys. Rev. 71, 554
(1947).

4 B. P. Dailey, Phys. Rev. ?2, 84 (1947).' D. K. Coles, Phys. Rev. 74, 1194 (1948).
6 Edwards, Gilliam, and Gordy (to be published). %e are very

much indebted to Professor Gordy for sending us a preliminary
account of their work.
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halides where it is known that the CH distance is about
1.10A and the HCH angle is closely equal to the tetra-
hedral angle of 109'28'. The distance between the
carbon and oxygen has been estimated from electron
diGraction measurements on similar molecules to be
about 1.44A. There is little doubt but that the oxygen
atom must lie close to the symmetry axis of the methyl
group although not necessarily directly upon it. The
symmetry axis may be deined as the line passing
through the carbon atom and the center of gravity of
the three hydrogen atoms, The OH distance is most
probably of the same order as it is in the water molecule,
namely, 0.958A and as a Grst approximation it is ex-
pected that the COH angle will be about equal to 105',
the apex angle in water.

The fundamental vibrations of methyl alcohol are 12
in number, of which one is to be associated with a tor-
sional motion of the hydroxyl group with respect to the
methyl group. This torsional motion has often been
called a hindered rotation. Clearly, as the hydrogen of
the hydroxyl group moves in a circle whose axis is the
symmetry axis of the methyl group, it will encounter
a potential with three identical minima. If the potential
barriers separating the minima are suSciently high, the
hydrogen will oscillate with the torsional frequency. If
the equal barriers are sufficiently low, the motion will

approximate a free rotation of the hydroxyl group
relative to the methyl group.

It was found by Borden and Barker' that, excluding
the torsional frequency, the remaining fundamental
frequencies are relatively high, the lowest being ap-
proximately 1000 cm '. The torsional frequency, as will

appear from the present analysis, is only around 250
cm —' and, consequently, the forces giving rise to the
torsional oscillation are of the order of 16 times weaker
than those producing the other fundamental vibrations.
Thus, to a high degree of approximation in treating the
problem of hindered rotation in methyl alcohol, one

may consider that both the hydroxyl group and the
methyl group are individually rigid and that their
mutual motion consists only of a rotation of the one

group relative to the other where the angle between the
symmetry axis of the methyl group and the line of the
hydroxyl group remains constant. The potential energy
associated with this motion must be periodic and repeat
itself upon a rotation through 120'. Since little is known

concerning the detailed nature of such hindering poten-
tials it is natural at the outset to assume the simple
sinusoidal form, namely V=-', H(1—cos3x) where x is
the angle of mutual rotation. This form will be used
throughout the present work and, while it is undoubtedly
only approximately correct, it appears evident that the
most important features of the spectrum can be well

represented by it. A similar situation is encountered
with the ammonia molecule, where the inversion levels
are relatively independent of the precise form of the
double minimum potential.

Among the early discussions of the theory of hindered

FrG. 1. The general
structure of methyl
alcohol.

rotation are those by Nielsen, ~ and by Koehler and
Dennison. s In the work of Koehler and Dennison the
molecule was assumed for simplicity to consist of two
symmetrical rotators having a common axis joining
them. These rotators represented the hydroxyl and the
methyl groups, and their moments of inertia along the
symmetry axis were designated C& and C2, respectively.
In the present paper this simplifying assumption with
regard to the hydroxyl group will not be employed but
for a general understanding of the nature of the energy
levels and for a qualitative estimate of the height of the
barrier the Koehler-Dennison discussion will be suf-
ficiently exact. They found that the rotational energy—including the hindered rotation —could be written as
the sum of two terms E=E +Ep, where

Ep= h'[(J'+J Jt )/2A+iV/2C]—,

and is thus equal to the usual rotational energy of a
symmetrical top. A is de6ned as the moment of inertia
about an axis which is perpendicular to the symmetry
axis and which passes through the center of gravity of
the molecule and C= C~+C2. E represents the internal
or hindered rotation contribution and consists of suc-
cessive groups of levels, each group containing three
levels identi6ed by the quantum number v=1, 2 or 3.
The groups were denoted by the number n=0, 1, 2,
The qualitative interpretation is that, when the barrier
is relatively high, each group represents a vibrational
energy level of the torsional oscillation. Thus their
positions (for high barrier) are approximately given by
hv&(e+-', ), where v& is the torsional frequency. The fact
that each group contains 3 levels is of course due to the
threefold nature of the potential. The splitting of the
levels in any group is a periodic function of the rota-
tional quantum number, E, times the ratio of moments
of inertia C~/(C~+C2) but in order of magnitude it is
equal to the exchange frequency between two minima.
It is thus the analog of the inversion frequency in

' H. H. Nielsen, Phys. Rev. 40, 445 (1932).
8 J.S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940).
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ammonia and consequently is a sensitive function of the
barrier height.

The far infrared spectrum predicted by Koehler and
Dennison was exceedingly complicated and to this extent
only it agreed with the experimental results found by
Lawson and Randall. It was so complex a function of
the molecular constants, and the individual calculations
were so tedious, that it did not seem practical to proceed
further. The microwave spectrum has, however, fur-
nished the means of evaluating the barrier height and
the other molecular constants. The qualitative reasoning
will be given before presenting the exact theory.

The lines observed by Hershberger and Turkevich, '
Dailey, ' and Coles, ' belong to a series and their posi-
tions may be expressed as an analytic function of J'+J.
An inspection of the structure of the energy levels of
the molecule shows that there is only one type of transi-
tion which can give rise to a series of lines in this
region. It is (expressed as an emission rather than as an
absorption line) J~J, E—&E—1, r +r', N-=O —+0 and
the series members correspond to J=E, E+1, E+2,
etc. The Stark e8ect measurements of Coles show that
the first line which lies at 24,934 Mc or 0.831 cm ' has
J=2 and the series has been traced as high as J=30.
Since the series is analytic the position of a possible line
with J=1 can be predicted with great accuracy. No
line is found at this point and one must conclude that
the first member of the series corresponds to J=2—+2.
The E transition must therefore be E=2+1.

The frequency of the transition can be expressed as
the sum of two terms v= v +vs, where vs is the con-
tribution due to the usual rotational energy of a sym-
metrical top; namely, since E=2-+1, vs=(3h/Sw'c)
X(1/C —1/A). The values of A and C, the moments of
inertia for the entire molecule, may be estimated from
the approximate dimensions given earlier and a sub-
stitution yields vp

——9.9 cm ' and therefore v = —9.1
cm '. The situation is thus one in which the microwave
lines result from a large positive term due to the usual
rotation and on almost equally large negative term
arising from the hindered rotation. An examination of
the form of the hindered rotation levels shows that the
selection rules (see reference 8) permit only one transi-
tion which results in a negative term. This is v= 1—+2.

The energy E, as is shown in reference 8, depends
upon the quantum number E, upon the moments of
inertia C» and C~ and upon the barrier height, B. A
rather crude initial estimate gives C»= 1.43X10 ~ and
C2=5.33/10—~ and these lead to a barrier height
8=325 cm '. The value for barrier height just obtained
is not an accurate one since a simpli6ed theory and
approximate moments of inertia have been used but it
must be of the right order of magnitude. The crucial
point in its derivation was the identi6cation of the
microwave lines. About this the Stark eGect measure-
ments leave little doubt. Further progress requires the
development of a more exact theory. It will be shown
that this theory predicts (1) the magnitude of the Stark

effect coefljttients and (2) the spacing of the lines in the
microwave series. Using the approximate values for C»,
C2, and H it is found that both of these quantities agree
qualitatively with the experimental results. It may be
remarked that no agreement is obtained if the micro-
wave lines are assumed to be due to a transition
E=1 +2 a—nd x=2~1 with vs= —9.9 and v =+10.7
cm '; a possibility which up to now could not be
excluded.

The following procedure will be adopted:
1. The methyl alcohol will be represented by a model

consisting of a rigid hydroxyl and a rigid methyl group.
It is assumed that the hydroxyl group can rotate about
the symmetry axis of the methyl group subject to the
potential V=~H(1 —cos3x), where x is the angle of
mutual rotation.

2. The kinetic energy will be derived and from this
the Schroedinger wave equation obtained.

3. Matrix elements of the hamiltonian will be found
using the wave functions of the simpli6ed model em-
ployed by Koehler and Dennison. The matrix elements
are all diagonal in the quantum number J but, in addi-
tion to the elements diagonal in E, possess elements
where E—+E+1 and E~E+2. Diagonalizing the
hamiltonian yields the energy levels.

4. The predicted microwave spectrum will be com-
pared with the observed spectrum for the purpose of
obtaining values for the molecular constants.

KINETIC AND POTENTIAL ENERGIES

The kinetic energy of the model which has been
chosen to represent the methyl alcohol molecule—
namely, a rigid methyl group and a rigid hydroxyl group
which may rotate with respect to each other —may be
derived in the following manner. Consider two vectors
p» and p2 drawn from the center of gravity of the
molecule (which for simplicity is assumed to be sta, -
tionary) to the respective centers of gravity of the
hydroxyl and methyl groups. Let r; be a vector drawn
from the center of gravity of the hydroxyl group to the
mass m; of that group. Let R; be the corresponding
vector from the center of gravity of the methyl group
to the mass M;. Let x, y, s and X, F, Z be two sets of
axes moving rigidly with the hydroxyl and methyl
groups respectively and with origins at the centers of
gravity of those groups. The Z axis is taken to be the
symmetry axis of the methyl group and s is chosen to be
parallel to Z. The oxygen and hydrogen atoms com-
prising the hydroxyl group are assumed to lie in the ys
plane.

The angular velocities of the hydroxyl and methyl
groups will be denoted by the vectors ~ and Q, respec-
tively, and their components along the moving axes
will be co, co„, co, and Qx, Qy, Qz-

%ith these definitions the vector velocities of the
individual particles in each group are, respectively,

v;=dye/dt+a)Xr;, V, =dpm/dl+QXR'.
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Since, from their definitions Zm;r; ZM,R;=0, twice
the kinetic energy becomes

2T= Zrrt;(dgI/dt)'+ZM (dg2./dt)'

+ Z~, (~Xr,)'+ZM;(aXR, )'.
The vector y~ has a constant length and lies in the

sy plane. The angle which it makes with the OH line is
a constant. Thus, yj moves as though it were rigidly
connected to the hydroxyl group. The velocity of the
center of gravity of the entire molecule as seen from
the moving x, y, s coordinate system is (Id XgI). This is,
however, the negative of the velocity of the x, y, 2

origin as viewed from the center of gravity of the
molecule. Therefore,

dgI/dt= —(IdX gI).

From the definitions of y~ and y2 one has

Zut, g1+ZM, g2=0,

and a substitution yields

2T= ZIII;(IdX gI)'+ZM, (IdX gI)'

+ZIII, (IdX r~)'+ ZM;(Q XR~)'.

Since the s and Z axes are always parallel, ad,'+Id„'
is necessarily equal to QxI+Qr'. Expanding the above
expression one obtains

2T=A (Qx'+Qr') —(A —8)Id„'

—2Dco„a),+Cc~z2+C2~z2.

The meaning of these moments and products of
inertia are most easily seen by constructing a coordinate
system $, lt, p whose origin lies at the center of gravity
of the entire molecule and whose axes are parallel to
the axes xys. If p,; denotes a mass of either of the two
groups, A =Ztl;(Itp+fp) and is the moment of inertia
of the molecule about the $ axis. 8=ZtI, (gp+ f,s) is the
moment of inertia about the p axis. One may define
C=Ztl, (),2+It;2) as the moment about the g axis.
D= ZtI, It;f, is the product of inertia with respect to the
g axes. C2 ——ZM, (X,2+7;I) and is the moment of
inertia of the methyl group along the Z or symmetry
axis and Ci=C—C2 ——A —B.

The orientation of the x, y, s axes which determine
the position of the hydroxyl group may be expressed by
means of the eulerian angles 8, lt I, f and, as usual, one
one obtains

Cd = g cos4ll+lP slIlg slnkly

cd„= —g sinlt I+/ sing coslt I,

Id, = /I+if COSH.

The eulerian angles which Gx the orientation of the
methyl group are g, lt 2, f and, since the s and Z axes are
always parallel, only diGer from the earlier ones in the
angle @2 which measures the rotation of the methyl
group about its symmetry axis. The expressions for
Qz, 0&, and Qz may be obtained from co, co„, co, by
merely introducing fit) 2 instead of p~. A substitution now
yields the kinetic energy as a function of g, f, QI, $2,
and their time derivatives.

The potential energy must be a periodic function of
the relative rotation of the methyl and hydroxyl groups,
that is, of pI —&2 and must have a period of 2n/3. As
explained earlier, it is expected that the principal
features of the spectrum will depend upon the periodic
nature of the potential function and upon its general
properties (such as the height of the barrier) but will
be largely independent of any 6ner details. For this
reason it is natural to choose the simple sinusoidal
form,

V=-', H[1—cos3(&I—&2)].

The wave equation may be obtained in the usual
manner by expressing the laplacian in the curvilinear
coordinates for which the metric is given by 2T. After
writing out the laplacian, making the substitutions,

4= (CI/C)4 I+(C2/C) It 2, x= 41—42

and inserting the hindering potential, the wave equa-
tion takes the following form:

'(A+8)CI D' 1 8—( Bu) 8'u—
(

sing —~+cot'g
2A (BCI—D') sing Bg E Bg) 8@'

1 82u 1 82u C 8 u
+ +— +

sing 8$8$ sin2g Bp C Bltlm CIcs Bx~

2 cote 82u

2 H
+—E——(1—cos3x) u,

52 2

.{ 2 g2u 2C1 g2u $2u-
II l+ + +

CI(BCI—D') C' Blt' C Blt Bx Bx'

D2

2D ( 8'u CI 8'u
+ i +— —cosg

Bc D', (8$8x C—Bltlgp 8@Bx

Bu

(A B)CI+D' ( 1 8'u —8'u 8'u
+ i

— +cot'g
2A (BCI—D') E sin'g Bp Bg' Blt '

2 cot8 82u Bu) ( C2 )
+cotg—) cos2i P+—x

i

sing 8&8/ Bg& ( C

8'u 2 8'u 2 cotg Bu
+i 2cotg — +

Bgglt sing Bggp sing Bf

Bug ( C2 )—(1+2 cot'g) —
I sin21 P+—x I

Byi & c )

C, 8'u 1 Bu i cos(g+ (C2/C)x)——cosg ——sing —
~

C Bltl' 2 Bg) sing
III»

t au C, 8'u 1 au cosg au~

&Bggx C Bgg& 2 sing 8$ 2 sing84)

Cs 't

Xsin( lt+ —x [,c&'
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The boundary conditions governing the solutions of
the wave equation are the same as those which were
applicable to the simpler model studied by Koehler and
Dennison and are that the functions must remain
finite at the poles 8=0 or m and that they must be
periodic with period 2K in the angles f, p2, and g2.

It will be noted that the wave equation has been
divided into four groups of terms. Group I when set
equal to zero is identical with the wave equation
discussed by Koehler and Dennison providing their
moment of inertia A is replaced by

2A(BC&—D')/(Ac&+Bc D')—
Its solutions, subject to the above boundary conditions,
may be written,

where m is an integer that may be shown to increase in
steps of 3. The first kind where v = 1 has a series where
m takes on the values —6, —3, 0, 3, 6, . When
7-=2, m may be . —4, —1, 2, 5, and when 7-=3,
no= —5, —2, 1, 4 . Both EK'" and the a are
determined through finding the roots of continued
fractions. ~

The matrix elements of the hamiltonian corresponding
to the complete wave equation will now be evaluated
using the wave functions which are the solutions of
the Group I terms. Since we shall be interested in the
Stark effect it will be convenient to add these terms to
the hamiltonian. They are

p,»8 cos8+ @~8sine cosfy)

1I= e'K—'e'~&OINK~ exp( icrKx—/C)P&, &K'".
2'

where

p2 ——&+C2x/C.

The quantity e'K&e'~&OJK~ is the usual symmetric
top wave function. 3f&,& exp( 2—C—&Kx/C—)P&,&

'2 satis-
fies the equation

d'iV/dx2+(8+5 cos3x)%=0,
where

E=(2C&C2/Ch2)(EK'" —H/2), S=C&C2H/Ck'.

The total energy is equal to the sum of EK'n and EJK
where the latter is the symmetrical top energy,

E =[a'(AC +Bc D')/4A(BC —V')]—
X(J'+J K')+O2K2/2C. —

The boundary conditions require E(,)K'" to be
periodic in x with period 2m and it is customary to
express it as

+00

P Kr2 —Paeimn

b is the electric field intensity and p, » and p~ are the
respective components of the permanent electric
moment of the molecule, parallel and perpendicular to
the symmetry axis of the methyl group. p» h cos8 belongs
with the Group I terms and p~b sintt cosp~ with Group
III.

The Group I terms yield elements of the hamiltonian
which are diagonal in all four quantum numbers. Since
the Group II terms do not contain 8, p or x, explicitly,
they are diagonal in JK and r but need not be diagonal
in n. Each term of Group III contains either the sine
or cosine of p+C2x/C and will therefore connect states
where K—+K~1. Similarly Group IV terms connect
states where K—+K&2. The actual evaluation of the
matrix elements may be performed through the known
properties of the symmetric top wave functions (see for
example Reiche and Rademaker). " Assembling these
results one obtains

H.K =I l(AC&+Bc& D')(J'+J K')/4A(BC& D')I+K2/2C

t

2% d2

(D2/2C (Bc D2)) (PKrn)4 PXrndx +EKrn+~ gK~/(J2y J)
dx

JXr a 2% d2
, = —[$ D/2C&(BC& —D.)] I" (P r )* PKr 'dx-

Jp dntr2

where e'/n

J K r2» e—'~ d 1
P2D/2(BC D2)] ~~ (PXrn)4 PX+&r'nr e rn(PKrn)4PK+Ir'n'—

0 Z dx 2

+[p~$~/2(J2+J)]J p
—&n(p«n)*PX+&r'n'dX [(J+Kyi)(J K)]t

0
BJK rn
HEX+2, , = fh'(AC& BC&+D2)/8A(BC& D')]—[(J K)(J K 1)(J—+K+/)(—J+K+—2)]—&

X JI' (PK'")*e 2&nPK+2""'dX

In the formulas (16), (17), and (18) given by Koehler and Dennison (see reference 8), the right-hand side of the equations
should have a positive and not a negative sign."F. Reiche and H. Rademaker, Z. Physik. 41) 453 (1927).
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In these formulas there is no restriction on the values
of n' but the only nonvanishing elements will be those
for which v' obeys the following rules. For the elements
where K~K+1 the possible v connections are 1—+3,
3-+2 and 2-+1. For the elements where E~E+2 the
nonvanishing elements are those where v goes from
1,~2q 2~3' or 3~1.

The energy levels of the system are found as usual by
calculating the roots of the determinant

K= —4 —3 —2 —1012
Determinant 1: v=. 1 3 2 1 3 2 1

Determinant 2: 7-= 3 2 1 3 2 1 3
Determinant 3: r= 2 1 3 2 1 3 2

~ ~ ~

)

3 2 ~ ~ ~

2 1

3 ~ ~ ~

From the definition of the quantum number r (see
reference 8) the states E, v=1, 2, 3, are, respectively,
identical with the states —E, 7.= 1, 3, 2. For this reason
the roots of determinant 1. are identical with those of
determinant 2 and the levels so found are therefore all
doubly degenerate. An examination of the symmetry
properties of the molecule shows that they belong to the
class E and that consequently their degeneracy cannot
be removed by any perturbation having threefold
symmetry.

The roots of determinant 3, with the exception of the
root corresponding to E=O, v= 1 which is single, all
occur in pairs the members of which may be shown to
belong to the symmetry classes A& and A2. If the

asymmetry of the molecule is small, the separation of
the levels belonging to a pair becomes very small and
decreases rapidly as E increases.

The solution which has been obtained for the model
consisting of a rigid hydroxyl and a rigid methyl group
which are coupled through a hindered rotation may be
compared with the results found by Koehler and
Dennison for the model in which both groups were

rigid symmetric rotators. There are five principal dif-

ferences all of which, in the case of methyl alcohol, where

(A B) and D are sm—all compared with A, have only
minor efFects upon the infrared spectrum but which
assume importance in considering the details of the
microwave spectrum. They are:

1. In that part of the energy which was described as
the rotational energy of a symmetrical top 1/A has been

replaced by

~Cs+&Ca —D' 1 CP+D2~+
2A (BCi D') A A (BCi D')— —

JEr e
~Hyper. ;„Eb»—8, 8 ~

~

—0.

The r connections given above have as their consequence
that the energy determinant factors into three deter-
minants. These may be designated by listing the pos-
sible E and 7- values which characterize their diagonal
terms.

2. The diagonal element has been augmented by the
term

2% d2
—P&D2/2C&(BC& D2)j I (PIc»)v Px»ds.

0 ds

For methyl alcohol the coefIicient, when divided by hc,
is of the order of 0.01 cm '. The integral for the state
E=O, ~=1, m=0 is of the order of —1.5 and its ab-
solute value increases with E so that at E=10 it is
approximately —7.

3. There now exists an oG-diagonal term connecting
the states E and E&1.For moderate values of J (10 or
less) the numerical value of this term is much less than
the difference between the diagonal elements of the
states it connects. The usual approximation methods
show that these ofI'-diagonal elements contribute a
term to the energy which is mainly proportional to
J'+J and which depends upon the quantum numbers
E, ~andn.

4. The oG-diagonal elements connecting the states E
and E&2 have much the same properties as those just
discussed and they will yield a term in the energy that
is mainly proportional to (J'+J)'.

Qualitatively, effects 3 and 4 are just what are neces-

sary to explain the series of lines observed by Coles'
since their members may be expressed as a power series
in which the terms involving (J'+J) and (J +J)' are
of dominant importance.

5. The energy levels E=i, 7=3; K=2, v=2; K=3,
7=1; K=4, v =3; etc., have become doublets with a
spacing which decreases rapidly for large E values but
which increases with J. This particular effect is the
exact analog of the fact that the energy levels of the
symmetrical top with the exception of E=O, become
double if the top becomes asymmetric. Since neither of
the levels E=2, v.=i or K=1, ~=2 belong to the
above class, the lines of the microwave series measured

by Coles would not be expected to be double and are
not observed to be.

It should be remarked that the matrix elements of the
hamiltonian do degenerate properly to the elements of
the hamiltonian for a rigid rotator when the barrier
height goes to infinity. This degeneration is not irn-

mediately self-evident since the former elements contain
C& while the latter contain only the total moment of
inertia C. The point is that the diagonal elements (as
the barrier becomes very high) contain the large term
hv&(n+ —', ), where v, is the torsional frequency. The
integrals occurring in the o8-diagonal elements con-
necting n to n&1 are proportional to u&&. The diagonali-
zation process involves dividing the squares of the off

diagonal elements by the difference of the diagonal
elements they connect and thereby a number of 6nite
terms are introduced which bring about the desired
degeneration,
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AND EVALUATION OF MOLECULAR CONSTANTS

It is expected that the first line of the normal rotation
series, namely J=1—+0, K=O—+0, 7=1~1, 2—+2 or
3~3, should fall in the region of 48,000 to 50,000 Mc.
Edwards, Gilliam, and Gordy' have measured several
lines in this neighborhood. A study of the corresponding
lines due to isotopic molecules of methyl alcohol (to be
reported later) appears to show that the strong line

found at 49,867.2 Mc can be uniquely assigned to this
transition. The only oG-diagonal terms which might
contribute to this transition are small and to a high
order of approximation,

(h/Ss') L(A Cr+BCr —D')/A (BCr —D')]=49,867.2 X 10'.

The small oG-diagonal terms referred to predict that
this line should be a doublet corresponding to the
transitions r= 1—&1 and to the two coincident transi-
tions 7 = 2—+2 and 3~3.An estimate of the doublet sepa-
ration yields a value of only a fraction of a megacycle and
consequently it might well have escaped observation.

It is convenient to consider next the Stark eR'ect

to which the diagonal elements furnish the term
p„BEM/(J'+ J). The process of diagonalizing the
hamiltonian will involve squaring the ofF-diagonal ele-
ments and the cross product from ~Pz~~~~„',„",~', gives
rise to a first-order Stark energy which may be shown
to have the form

h2D/(BCi D2)]L~ gM/(J2+ J)][f1+(J2+J)f2]
The coeKcients fi and f2 are functions of E, r and I
and depend upon the indicated integrals containing
P~ )~'" and upon the resonance denominators.

The problem of evaluating the molecular constants
for methyl alcohol is one of successive approximation
and after one or two attempts the following trial values
were selected" C~=1.24X10 " C~=5.34)&10 " and
H=368 cm '. The integrals entering f& and f2 are
found to be quite insensitive to small changes in the
constants and the most important of the resonance
denominators is determined by the microwave lines
themselves and, consequently, is independent of C&,

C2 and H.
The microwave lines in question correspond to the

transitions J—+J, M~M and E, v, n=2, 1, 0-+l, 2, 0.
The first-order Stark frequencies for these transitions
have been calculated using the trial values of the
constants and are given by the formula,

p SM/h(J'+ J)+(D/{Sz.2c(BCi—D') I j
Xfpi8 M(/J+ J))L0.105(J +J)—0.152j.

The Stark frequencies measured by Coles may be ex-

"The values k=6.624XTO ~' and C=2.99776XTO'0 were used
in the calculations.

L0.0111+0.877/(J +J)jMSX 10 "/h.

Identifying the corresponding terms one obtains,

p,„=0.893X10 "esu,

p~hD/Ss'cp (BCr —D') =0.1184 cm '

The total electric moment of methyl alcohol has been
meaxured by Kubo" and found to have the value 1.69
&10 "esu and consequently, the absolute value of p~
should be 1.435X10 ".Further,

hD/Sn'c(BCi D'—) = —0.07368 cm '.

The table of atomic electronegativities shows that the
component of the electric moment perpendicular to the
axis lies along the positive y axis while the parallel com-
ponent lies along the negative s axis and therefore yjp„
in our notation, is negative. For this reason the Stark
eGect measurements demand that the product of inertia
D must be negative.

It is interesting to calculate the components of the
electric moment from the table of bond moments given
by Pauling. " Assuming that the bond angle COB is
105' as in water vapor these yield @~=1.46, and pI)=
—0.81X10 " esu. The total moment would then be
1.67&(10 "esu. The agreement between these approxi-
mate values and the Stark eR'ects results is remarkably
good.

The positions of the lines observed by Coles may be
expressed by means of a power series in (J'+J). The
lines up through J=8 are accurately represented by

v= v,+a(J'+J)+b(J'+J)'+c(J'+J)'+d(J'+ J)
where, in megacycles, so =24,948.13, c= —0.4094& 10 ',
a= —2.9656, d= —0.3168)&10 ' and b=0.11258.

The diagonalization of the hamiltonian gives rise, as
mentioned earlier to two sets of terms, one proportional
to J'+J and the other to (J'+J)'. These results are
correct for values of J where the magnitude of the oQ'-

diagonal elements is much smaller than the diQ'erence
between the diagonal terms they connect. This condi-
tion obtains for J less than 10, and the dominant terms
expressing the positions of the lines are indeed seen to
be those proportional to (J'+J) and to (J'+J)'.

It will prove convenient to examine first the con-
tribution from the o8 diagonal terms for which IC—+E
~2. Their evaluation requires the calculation of the
various integrals

p
2 7f

j (Para) we 2izPrr+2r'n—~dg

0

"The 6gures shown here differ by about 2 percent from those
given in reference 5 and represent Coles' latest values. We wish
to thank Dr. Coles and his associates for many helpful discussions
and for keeping us fully informed on the progress of their work.

"M. Kubo, Sci. Papers, Inst. Phys. Chem, Research Tokyo 26,
242 (1935)."L.Pauling, Xatlre of the Chemical Bond {Cornell University
Press, Ithaca, New York 1939), p. 68.
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as well as the diagonal elements in order to obtain the
resonance denominators. All of these quantities depend
upon the molecular constants C~, C2, and IJ but for-
tunately again they are not sensitively dependent.
Using the trial values given earlier the energy levels and
fourier coeScients of I'~'" were calculated and the con-
tribution from the off-diagonal elements E—+E&2 were
obtained. The 6nal result for the transition in question,
namely Ere=210—+120 was, in cm ',

h(CP+ D')
hv= [0.0635(J'+J)'

.32m'cA (BCg—D')

—0.241(J'+J)—0.662j.

The coeKcient b may be expressed in cm ' and upon
equating this to the first term in the above formula, one
6nds

h(CP+D')
= 7.691X10-' cm-'.

32x'cA (BCg—D')

The experimental data have now been made to yield
three relations involving the three constants A, C~=A
—B and D. The numerical solution for these quantities
gives,

A =34.281X10, Cz= 1.236X 10

D= —0.107X10~' g cm'.

The accuracy of the determination will be discussed
later.

The coeKcient of the J'+J term in the series ob-
served by Coles cannot be utilized directly for the
evaluation of the moments of inertia. The reason for
this is that it depends upon three effects, only two of
which can be calculated with any exactness. These are
(1) the J'+J contribution coming from the oG-diagonal
elements E—&E+2. From the above formula, this has
the numerical value —0.43 Mc, (2) The oB-diagonal
elements of the hamiltonian E~E~1 can be calculated
using the trial values of C~C2 and B.These result in an
addition to the frequency of (in cm '),

[hD/8x'c(BCi —D')]'[—0.0052(J +J)+0.055].

Using the values for the moments of inertia this
becomes, in megacycles,

—0.85(J'+J)+8.9.

The sum of these two contributions falls short of the
experimental constant a.by 1.70 Mc and is due to (3)
the centrifugal stretching. This effect is best under-
stood by considering a rotation of the molecule essen-
tially about the A or 8 axes, that is E«J. A cen-
trifugal force proportional to J'+Jwill attempt, among
other things, to increase the HOC angle. An increase of
this angle will presumably lower the potential barrier
slightly since for values of the angle around 180' the
barrier goes to zero. A decrease in the barrier height

increases the distance between the hindered rotation
levels E'" and E"'.Since this is a negative contribution
to the microwave lines in question the effect will be to
displace the lines towards smaller frequencies and since
the change in the angle and hence in the barrier height
is very small it will be proportional to J'+J.An order of
magnitude estimate can be made in the following
manner. From the frequency of the vibration resulting
from the change in the HOC bond angle the bond angle
force constant may be obtained. Balancing this against
the centrifugal force the distortion of the angle bn is
found. Making the rather crude assumption that the
proportional change in the hindered rotation levels is
equal to the proportional change in the angle, that is,
to ba/(180' —no) one obtains that the lines will be dis-
placed by the amount —2(J'+J) Mc; a result which
is consistent with the —1.70(J'+J) Mc cited above.

The last and most important step in the cycle of
calculations will be to use the origin of the microwave
series, vo to provide a relation between the moments of
inertia and the barrier height. The difference between
the diagonal elements for which JErn= J210 and J120
is equal to vo minus the small constant terms 8.93 and
—1.18 Mc arising from the respective off-diagonal
elements E~E~1 and E—+E&2. This quantity is
-24,940.38 Mc which, for uniformity with the previous
expressions, will be expressed in cm '.

3(ACg+BCg D')—
0.83197= (h/8s'c) 3/C—

2A(BCg D')—
( p2~ J2

—(D'/(BCg —Dm)C&)
I

~' (+210)4 P210dg
dS

2% d2
(@120)+ P120dg

( + (E21D E120)/hg
dx' )

The two integrals in the above expression have been
calculated using the trial values for C~, C2, and II
mentioned earlier and are equal to —1.662 and —2.~P.,
respectively. They are not critically dependent upon
the constants and in any case the magnitude of the
whole term is small being only —0.00501 cm '. Sub-
stituting for the moments of inertia A, C~, and D one
obtains

3h/8x cC+(E'" E"')/bc=3 33—220 cm '. .

There are still two unknown constants, the barrier
height H and the moment of inertia of the methyl group
about its syrnrnetry axis, C&. The latter quantity has the
value 5.328X10~' g cm' in methane and this has been
chosen as the point about which to make an expansion.
The energy difference E"'—E"' was calculated for a
number of values of its variables, namely C&/C and
a= 2''cC~CRH/hC and in the region of interest,

(E"'—E"') h/c=9. 7 368mc'—(0.671)(a'—11.2)
+4.12(Cg/C —0.19).
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TABLE I. Barrier height H for several values of
moment of inertia C~.

C~ Xi'

5.428
5.328
5.228

H, em 1

383.3
380.2
377.0

Using now the relation imposed by the origin of the
microwave series, Table I has been constructed.

There is no reason to suppose that C2 is precisely
equal to the methane moment of inertia, and in fact
measurements on other molecules containing methyl
groups (such as the methyl halides) have revealed
variations in C2 of as much as 0.17X10 ".It is however
evident that H is not unduly sensitive to C2, and in the
remainder of this paper for purposes of discussion C2
will be arbitrarily taken to be 5.328X10 ' .

DISCUSSION OF THE MOLECULAR CONSTANTS

The methyl alcohol constants as determined from
the microwave spectrum are A =34.28X10~', H =380

C&=1 236, p»=0.893X10 " esu, D= —0.107,
p~=1.435X10 ", C~ ——5.328 (assumed).

Since the microwave line at 49,867.2 Mc is, in the
main, determined by A only, it is estimated that the
value given above is probably not in error by more
than a few tenths of a percent, provided of course that
the microwave line has been properly identi6ed. C& and

D, on the other hand, depend more intimately upon the
hindered rotation energies and matrix elements which

are less well known since among other things the use of
a sinusoidal potential function is only an assumption,
although a plausible one. It is probable that C~ and D
are correct to within a few percent. It should be re-
marked that the moments and products of inertia given
here are the eGective ones for the normal vibrational
state and not the equilibrium moments and products
which would require many additional data for their
determination.

The three quantities A, C&, and D are, of course, quite
insufhcient for a determination of the six structural
parameters of the molecule. If, however, the dimensions
of the methyl group and of the hydroxyl group are
assumed to be known, it is possible from the moments
and product of inertia to 6x the relative position of one

group with respect to the other. In conformity with
the somewhat arbitrary choice that has been made for
C2, the methyl group will be taken to have a methane
like structure, that is, the CH distance will be set equal
to 1.093A and the HCH angle will be 109' 28'.

Some information on the hydroxyl dimension may be
obtained from a consideration of the vibration fre-
quencies. The OH stretching frequency in methyl
alcohol has been identi6ed by Borden and Barker' and
observed to lie at 3683 cm '. From the known force

constants of the water molecule" one may calculate the
vibration frequency to be associated with OH. After
making an appropriate compensation for the eBect of
the anharmonic terms in the potential one obtains 3660
cm—'. From Badger's rule this close equality of the
frequencies would indicate that the OH equilibrium
distance in methyl alcohol should not dier appre-
ciably from its value in water, namely 0.958A. Assuming
this to be the case, the quantities A, C&, and D lead to
the following results.

1. The symmetry axis of the methyl group, which
was de6ned as the line determined by the carbon atom
and the center of gravity of the three hydrogens, falls
between the oxygen and the hydrogen of the hydroxyl
group. The distance of the oxygen from the symmetry
axis is 0.084A. This result depends principally upon the
product of inertia D and in fact to a large extent upon
the fact that D is small and negative. It is therefore
considered to be quite reliable.

2. The COH angle has the value 110' 15' and is, in
the main determined by CI, D, and the assumption re-
garding the OH distance. It is appreciably, but perhaps
not unreasonably, larger than the apex angle in water
vapor" of 104' 31'. One might speculate that the large
COH angle may be connected with the fact that the
hindering potential barrier is somewhat lower than was
originally anticipated.

3. The CO distance is found to be 1.421A. This 6gure
depends upon the moments and products of inertia,
upon the OH distance and the dimensions of the methyl
group, and consequently is not as certain as one would
wish.

The machinery that has been developed for obtaining
the rotational energy levels of the methyl alcohol
molecule is unfortunately very cumbersome. In an
effort to gain an over-all picture of the levels it may be
pointed out that by far the largest part of the energy
comes from the diagonal terms of the hamiltonian and,
of these, the expression

f2% d2
—[h'D'/2C, (BCg D')j ~

(Px'"—)* Px'"ch==-
d'h'

is very small and may often be neglected. The remaining
terms may be divided into the rotational energy of a
symmetrical top and an internal rotation E~'". Using
the numerical constants for the moments and products
of inertia, the former may be expressed in wave numbers
and becomes

0.83174(J'+J—E')+4.2638''

The internal rotation energy is a periodic function of
2mC&E/3C and hence . may be expanded as a fourier
series in the angle y which has here the numerical value

y = (22.589)'K. For the levels where r = 1 and e= 0, the
internal energy in wave numbers has been calculated

"B.T. Darling and D, M. Dennison, Phys. Rev. 57, 128 (1940},
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to be

E~"= 136.3958—6.2785 cosy

+0.2507 cos2y —0.0190 cos3y.

The remaining levels of this group, namely those for
which v = 2 and 3 and n =0, may be found by increasing

p by 120' and by 240', respectively.
The higher internal energy levels cannot be deter-

mined with great accuracy at present, since these levels
are near or above the top of the potential barrier and
will depend to a larger extent upon the exact form of
the hindering potential. The following formulas, which

have been calculated for a sinusoidal potential, can only
be considered as a guide to the true positions of the
levels.

E»u=368.9+48.6 cosy+9. 1 cos2y+2. 7 cos3y,

E~"=608—124 cosy+17 cos2y —12 cos3y.

It must be emphasized that the values just given for the
symmetrical top and the hindered rotation energies, as
well as the figures for the molecular dimensions and
barrier height, are dependent upon the moment of
inertia C2 and therefore must be viewed as provisional.
Since it is unlikely that C2 could dier from the methane
moment of inertia by more than a few percent, it is

believed that they are, at any rate, qualitatively correct.
The theory of the rotation of the methyl alcohol

molecule as developed in the present paper appears to
be successful in that it correctly predicts the principal
features of the microwave spectrum and of the Stark
splitting of the lines. The structural constants which
have been derived from the experimental data are all
reasonable. It would, however, be desirable to make
further comparisons of the predictions of the theory
with experimental observations in the hope of obtaining
better values for the constants, of investigating the
exact form of the hindering potential, and of finding
a number of self-consistency checks. Two series of
researches are being currently pursued with these
purposes in mind. (1) The far infrared spectrum of
methyl alcohol has been mapped from 22' to 200@,.
The entire region is found to be filled with intense lines
whose spacing, while irregular, is of the order of from 1

to 1.5 cm '. It is believed that, by making use of the
theory, most of these lines can be identified and the
energy levels determined. Since the energy levels for
n=0, 1, 2, and probably 3 are well populated at room
temperature, the complete rotation spectrum must
involve many transitions and is understandably com-
plex. (2) Recently the microwave spectra of the isotopic
methyl alcohol molecules with C", 0", and deuterium
have been measured. These data together with the
correct identification of some of the other microwave
lines which have been observed and which do not belong
to the series considered hitherto, should provide many
checks on the validity of the theory.


