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Methods of calculation with nonlinear functions of quantized boson fields are developed during the dis-
cussion of two problems involving multiple boson processes. In the first of these a simple treatment is given
of the multiple radiation of photons by classical current distributions, a special case of which, in effect, is
the infrared catastrophe.

In the second illustration, generalizations of the scalar and pseudoscalar meson theories are considered in
which the interaction hamiltonian depends exponentially on the meson field. In the pseudoscalar case such
hamiltonians are closely related to the familiar form of pseudovector coupling. Assuming the over-all
coupling of the nucleon and meson fields to be weak, calculations are made of the nuclear forces, and of the
multiple production of mesons in meson-nucleon and in nucleon-nucleon collisions. In the latter events
statistical independence of meson emissions is found to prevail.

L INTRODUCTION

~)EFICIENCIES in the mathematical techniques
for handling quantized Geld theories obscure

many questions of critical importance, such as the
extent to which difliculties of the theory arise from a
questionable expansion in powers of a coupling con-
stant, and the importance of higher order corrections.
An attempt has, therefore, been made, based on the
developments due to Schwinger and others, "to 6nd
improved methods of computing the various matrix
elements and expectation values of interest. Ideally
these methods should be capable of handling rather
general functions of quantized 6eld variables, wherever
possible without resorting to power series expansions.
Simple rules accomplishing these ends have been found
for dealing with functions of fields whose cornmutators
with themselves are c-numbers, i.e., boson fields. While
the problem of treating spinor fields remains, these
methods make possible the simpli6cation of some parts
of the theory, and the generalization of others.

To illustrate both aspects of the work, the mathe-
matical methods are developed during a discussion of
two problems involving multiple-boson processes. In
part II we discuss the radiation of quanta by a classical
current distribution and in particular the well-known
"infrared catastrophe" (the emission of an infinite
number of soft photons when a charged particle is
suddenly accelerated). The familiar results of Bloch and
Nordsieck' are obtained in a rather direct way. In part
III we discuss generalizations of the usual neutral
scalar and pseudoscalar meson theories in which the
interaction hamiltonian is allowed to depend exponen-
tially on the meson field. A particular case of such an
exponential hamiltonian involving the pseudoscalar
6eld has been shown by Dyson4 to result from a contact
transformation performed on the familiar hamiltonian
for pseudovector coupling of the pseudoscalar 6eld.
Couplings of the type introduced bring many high

' J. Schwinger, Phys. Rev. 74, 1439 (1948).' J. Schwinger, Phys. Rev. 75, 651 (1949).' F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).' F. J. Dyson, Phys. Rev. 73, 929 (1948).

order aspects of the usually treated couplings much
closer to the surface of the theory. Among these are
higher order corrections to nuclear forces and the mul-
tiple production of mesons. We may hope, by treating
these processes to gain some insight which the usual
theory has not granted us.

II. RADIATION OF PHOTONS BY CLASSICAL
CURRENTS

The infrared catastrophe causes low frequency di-
vergences in the calculation of the radiative corrections
to any process involving the sudden acceleration of
charge, e.g., scattering in a potential 6eld, Compton
effect, pair production, etc. Bloch and Nordsieck treated
the scattering of an electron by a potential by intro-
ducing several approximations, principally the neglect
of pair effects and of the electron's recoil in photon
emission. These approximations, which are justi6ed by
the very low energy of the photons involved, may be
epitomized by saying that only the classical properties
of the electron current are important. The general class
of problems for which this property holds may be
treated by considering the interaction of the quantized
electromagnetic vector potential A „(x) (p= 1 4,
x„=r, ict) with a classical current distribution j„(x),
prescribed as a function of space and time. ' The state
vector 0'(o) of the system on a space-like surface o in
the interaction representation obeys the Schrodinger
equation'

ih/bo(x) +=H(x)%,

where B(x) is the interaction hamiltonian,

&(x)= i.(*)~.(*). —
The quantities we shall be interested in calculating

are the probability amplitudes for the real emission of
any specified number of photons. We may assume that
the interaction began in the remote past when the
system was in a state with no real photons present. The

s A treatment of the infrared catastrophe using classical currents
has just been published by W. Tbirring and B. Touschek, Phil.
Mag. 42, 244 (1951).

sWe use units in which 8= 1, c= 1.
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specification of the functions j„(x) may remain to the
last step of the calculation.

Equations (1) and (2) are readily solved in two steps.
The first is the familiar contact transformation due to
Schwinger. ' We define a new state vector 4'(0) by the
relation,

(. !" .
+(0)=exp~ i j„A„dx ~O'(0)E~„"" i (3)

(in which dx=dxodxidx2dx&). Substituting into (1) and

using the multiple commutator expansion to evaluate
the transformed operators we find the equation of
motion for 4'

i e'(o)
bo (x)

j„(x)[A„(x),A„(x')jj„(x')dx%'(0)
—00

1 f

j„(x)D(x—x')j„(x')dx'0" (0).
00

(4)

This simple equation is exact since j„is a c-number. No
quantized quantities are present in the transformed
interaction, and the time dependence of 4"(0) therefore
contains no real transitions. The information sought is

already implicit in the part of the S-matrix given by (3).
%'hile the 5-matrix is usually defined by the equation
4'(~) =SV(—~), we shall find it briefer to work with

an effective S-matrix defined from (3) as

S=exp( i j„A„Cx [.i (5)

This lacks merely the phase factor

exp —,'i j„(x)D(x x')j„(x')dxdx'—

which is due to the current's energy of self-interaction.

A phase factor does not aGect proton emission prob-
abilities, since the latter are expressed as the absolute

value squared of certain matrix elements of 5. The
calculation of these matrix elements occupies us next.

The operator S defined by (5) has matrix elements

for the creation of any number of photons. A term
which creates e photons is evidently given by the eth
order term in the power series expansion of the exponen-

tial. However, n real photons may also be created by
any term of order I+2p, where p is a positive integer.
Such terms correspond to the creation of e real photons
together with the virtual emissions and reabsorptions
of p additional photons. Rather than consider the

expansion term by term it will be convenient to develop

general methods for separating real e6ects from their
corrections due to virtual e6'ects. Ke may do this in

fact for functions of boson fields more general than the
exponential of (5).

Let Ct be a hermitian operator which, like A„(x)
contains a sum of matrix elements for the creation and
destruction of all possible photons. Such an operator
may be a linear combination of the A„'s evaluated at
di6'erent places, or in particular the integral in the
exponent of (5). Consider a power of 8, say 8". We
ask now for the matrix element of 8 for the creation
of e real photons, where n~m. The e factors of 8 which
are allowed to create the real photons may be chosen

fm&
from the product in the binomial coefficient

different ways, the remaining m —e operators in each
case being allowed to carry out virtual transitions. The
desired matrix element, which we shall write as (8~)„
must of course vanish unless es—n is even. Setting
aside for the moment some questions of commutation,
if the real operators are separated from the virtual ones
without changing the order of the latter, each of the
partitions of the 8,'s should give the same matrix
element. Their sum is

(m&«")-= I I
~"(~"-").

gn j (6)

in which the bracket ( ), retains its usual significance
as the vacuum expectation value. The noncommutation
of operators in the diferent factors of 8 might be
thought to add further terms to (6). Such terms though
would only have the effect of correcting (6) for the cases
in which some of the virtual photons are identical to the
real ones. Since the density of photon states is enor-
mous the contribution of such exact coincidences to the
summations over all virtual photons implicit in the
vacuum expectation is vanishingly small. ' Equation (6)
is in eGect exactly correct in a quantized field theory.
%e may rewrite it in the symbolic form,

(f(@))-=(1/ !)+"(f'"'(@))o, (8)

where f'"'(8) signifies the nth derivative.
Returning to (5) and identifying @ with J'j„A„dx.

the e6'ective matrix element for the creation of e
photons becomes

f p ) S

(S)„=(1/e!)(i j„A„dx ) exp( i ' j„A„dx (
. (9)) E~""]

7 If the quantization is carried out in a region of 6nite volume
the corrections are easily seen to vanish as the reciprocal of the
volume. Equation (6) also holds when the free factors of g are
used to absorb real photons. However, since we must assume that
the ordering of these factors is immaterial they may not be used
to emit and reabsorb the same photon. Such processes are already
correctly accounted for among the vacuum Quctuations.

do
(gm) — g gsa

d'e"

It is now evident that for any function f(8) expansible
in a power series
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We require still an evaluation of the vacuum expectation
of the S-matrix. To find this, we consider the quantity
(exp(7&Ct))0 as a function of the variable k Its derivative
ls

present. Apart from a phase factor,

+-( )=(S).+(— )

=(s).e. . (19)

d/d) (exp(XCt))0= (Ct exp(XCt))0

= (O', Ct exp(XCt)%', ), (10)

where the state vector for the vacuum has been written
in explicitly. The only part of the operator exp(7&8)
which can contribute to the expectation value a term
which does not vanish because of orthogonality is the
part which creates a single photon, aside from virtual
eGects. This photon may then be annihilated by the
remaining factor of 8 in order to secure again the
original vacuum state. Hence we may substitute
(exp(XCt)&~= XCt(exp(XCt))0 for the exponential on the
right side of (10).We obtain thus a differential equation
for the original expectation value

&f/d X(exp (7& Ct) )0= X(Ct')0(exp(X Ct) )o (11)

The solution, which must reduce to unity for ) =0 is
evidently

(exp(XCt) )o= exp(AX'(CP)0) (12)

Vacuum expectations of more general functions of 8
may be found by expanding them as fourier or laplace
integrals and applying (12) to the integrands.

By employing (12) the expression (9) for (S)„may
be evaluated explicitly,

(S)„=(1/I!)( i j„A„dx )
e-&,(.

,

~.
(J "" )

(13)

where lV is the integral

W= j„(x)(A„(x)A„(x'))pj„(x')dxdx'

j„(x)(A„(x)A „(x')+ A„(x')A„(x)),j„(x')dxdx'2

=-',
)~~ j„(x)D'"(x—x')j„(x')dxdx'. (16)

D&"(x)= (2Ã) 'Jt e"*&1(k')(dk). (17)

Having evaluated the required matrix elements we
are in a position to find the emission probabilities. The
6nal state vector of the system %(~) is a sum of
mutually orthogonal components 4'„(~), each of
which corresponds to a diferent number of photons

Use has been made, in going from (15) to (16), of
Schwinger's evaluation' of the vacuum expectation of
the symmetrized product of two A' s. The function
D&'&(x) is de6ned by the integral

The probability w for the emission of'n photons is just
the absolute magnitude squared of 0 (&c).

~-= (+.("),+-("))
= ((s)„(s»„o.

(20)

(21)

The latter expression for m„allows the summation over
real final states of the system by employing the same
formalism as is used for vacuum fluctuations. Employing
the expression (13) for (S) we have

(~!) '
( j~„dx I; )

!j„A„dx I
e ~. (22)

f' t'.")'& "")
A semicolon has been used to separate the two factors
in the expectation bracket in order to indicate that n
photons must be created by the factor on the right and
annihilated by the one on the left. No A's may be paired
within a single factor since this would amount to using
real photon operators to carry out vacuum fluctuations.
These are already accounted for correctly in the factor
e ~. There are nt ways of pairing the A's on either side
of the semicolon and each contributes a factor W" to
the expectation value. Hence the emission probabilities
form a poisson distribution,

w„=W"e ~/m!. (23)

The probability distribution assumes this simple form
for the radiation from all classical systems since the
successive photon emissions are statistically inde-
pendent. This independence is destroyed, for example,
when recoil efI'ects are not negligible. Had a first-order
perturbation calculation been made of m~ the result
would have been m»=W. Evidently, the perturbation
theory calculates in general in this approximation not
the single photon emission probability, but the expec-
tation value of the number emitted.

For most purposes j„(x) may be taken as simply the
current due to a moving point charge. When the charged
particle suffers a sudden change of velocity W is easily
shown to be the infrared divergent integral familiar
from the work of Bloch and Nordsieck, and of Pauli
and Fierz. ' The foregoing methods are also applicable
to the discussion of Cerenkov radiation, for which
purpose the D-functions may be generalized in a way
appropriate to dispersive media.

III. MULTIPLE MESON EFFECTS

Hamiltonians for the interaction of nucleon and
meson fields are usually taken, by analogy with
quantum electrodynamics, to be linear in the meson
field. More general types of interactions depending

g W. Pauli and M. Fierz, Nuovo cimento 15, 167 (1938).
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4'(o) = e—'e&'@'(o), (27)

S(o)= (1/p) ) j„'(x')s (x')do, ',

the integration being carried out over the contemporary
surface o. (do„ is a directed surface element parallel to
g„.) It is not difficult to show that the Schrodinger
equation satisfied by 4 (o) has the interaction hamil-
tonian given exactly by

H'(x) =M/(x) t exp[(2ig/p)ps'(x) j—1If(x). (29)

nonlinearly on the meson field may, however, arise
either as new assumptions, or as transformed versions
of the familiar linear couplings. Calculations with such
hamiltonians may be greatly simplified by some of the
rules established in the previous section. As an ex-
ploratory example which, it develops, has particularly
simple mathematical properties, we shall consider
interactions of the form,

H(x) =Xf(x)es"'&g (x), (24)

between the spinor nucleon field f(x) and the neutral
scalar meson field y(x). The interaction is characterized
by two coupling parameters, X and P. The constant X

gives the over-all strength of the nucleon-meson coupling,
while P determines the average number of mesons
taking part in an elementary process. A corresponding
pseudoscalar theory may be considered without chang-
ing notations by letting p(x) be a pseudoscalar field and
letting P represent the matrix igy~, where s is again a
new coupling constant.

An interesting feature of interactions like (24) is that
elementary events may involve high multiplicities of
mesons (real and virtual) even when the coupling is
weak (i.e., X is small). Many effects of a type charac-
teristic of the high orders of perturbation theory for the
usual couplings are already present in the earliest terms
of an expansion in powers of X. %e shall investigate
some of the properties of such an expansion performed
without specializing the parameter P.

The exponential hamiltonian (24) is of particular
interest in the pseudoscalar case because of its coin-
cidence with the result of a contact transformation
performed on the familiar (linear) pseudovector coupling
of the pseudoscalar field. The latter coupling is

H(x) = (1/p) j„'(x)8y(x)/ax„+1/2 p'(g, j,)', (25)

where
j„'(x)=igg (x)ps'„p(x). (26)

g, is the unit normal vector to the space-like surface,
and u and M are the meson and nucleon masses, respec-
tively. Dyson has shown' that the hamiltonian (25)
may be brought to a form containing no derivatives
of the meson field by a contact transformation which
suitably redefines the state vector %(o). The new state
vector 4'(o) is defined by the relation,

The similarity of (29) to the pseudoscalar form of (24)
is obvious when we note that the subtraction of a term
Xff from (24) would affect only the nucleon self-energy.
The results to be derived from (24), therefore, include
many of the higher order effects of the pseudovector
coupling (25), but the approxima, tion used, treating 74,

as small, is rigorously applicable to (25) only when M
is small, i.e., p)&M. Although such a limitation on the
masses might be of use in treating a conjectured coupling
between electrons and mesons, its effect for nucleon-
meson systems is naturally quite unrealistic. The exact
correspondence of (25) or (29) with the pseudoscalar
form of (24) is, therefore, mainly of interest as a
limiting case.

The simplest of the physical effects contained in the
hamiltonian (24) is the nucleon self-energy. This is
found by taking the vacuum expectation of the ex-
ponential factor.

(30)8M= X(e'«')o,

The quantity P'6&'&(0) is quadratically divergent, and
positive in the scalar case, negative in the pseudoscalar
case. In either instance, however, its infinite effects may
be removed by a redefinition, in effect a renormalization,
of the constant X. This is most directly illustrated by
considering the matrix element for the collision of a
meson with a nucleon, leading to the production of n
mesons (including the original one). The desired matrix
element is given, according to (8) by

where

(!3~(x))"+'

(v+1)!

(PV (x))""
=X'P(x) P(x)

(I+1)!
(33)

X'= X exp[riP'6"&(0) j. (34)

Evidently if we consider the product ) exp[4P'4"'(0))
as a renormalized coupling constant ) ', and regard the
latter quantity as finite, the remaining effects are finite
as well. This type of renormalization may be shown, by
a somewhat simpler example (see Appendix) to be of
use throughout the theory. It will be the only renor-
malization needed in order to obtain, in the lowest

powers of 'A, the physical effects of immediate interest.
The probabilities of the multiple production of

mesons in meson-nucleon encounters' are readily cal-

9 Meson-nucleon collisions, with exponential pseudoscalar
coupling are also considered in a note by K. Sawada and K.
Takagi, Frog. Theor. Phys. 4, 239 (1949).

which is evaluated, according to (11), as

8M = X exp[-', P'(q'(x))o j. (31)

To evaluate vacuum expectations of quantities quad-
ratic in the meson field, we recall the relation,

( (*) (*')+ (*') ())o=~'"( —') (32)
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The upper limit of summation is given by n
—Pp/M&s. The most probable multiplicity (and asyrnp-
totically the average) is

n-( —P PP/gx )~. (36)

The meson emission is spherically symmetrical in the
center-of-gravity system. Nucleon-anti-nucleon anni-
hilation with the production of mesons is also contained
in the matrix elements (33). The average multiplicity
is again given by (36), expressed in terms of the scalar
product of nucleon momenta.

To investigate two-nucleon processes more generally
we must consider e6ects quadratic in ). The two-
nucleon part of the second-order hamiltonian, found by
contact transformation, is an expression analogous to
the hamiltonian in (4)

H&s&(x) = —
s'~

~
&&O

P(x) &&! (x)'!&&7(x, x')P(x') f(x') dx', (37)

where

%"(x, x') = gi}s[e—s«*&, es'«*'& js(x—x'), (38)

in which s(x) is the familiar time-reversal function
xQ/

~
xQ

~
. A distinction has been drawn between the two

occurrences of P by priming the second since, in the
pseudoscalar case, these are ys matrices operating
between different pairs of wave functions. In the scalar
case they are of course identical constants. A simple
theorem concerning exponential functions of operators
enables us to evaluate the commutator in (38). Let a
and b be any two operators whose commutator com-
mutes with both of them. Then

erseb ea+ 5+)[a, 5]

This is proved by considering the expression e& e& e—&( +')

as a function of the parameter l', and differentiating

d
er'erse r& —+'&=er [-a, er'je r&Q+'&=1'[a, t&jet'erse r&'+s&.

dg

culated by using the matrix element (33). Recursion
relations for increasing numbers of mesons provide a
convenient way of 6nding the required multiple
integrals over the momentum spaces of the emergent
particles. The results are most compactly stated for
extremely energetic collisions, i.e., letting Pp be the
scalar product, P p —Psps, of the nucleon and meson
momentum-energy vectors, we assume PP—))3IQ. In
this limit, the total cross section, expressed as a sum
over the possible numbers of emerging mesons is

}&~sp4 s~~ 1 ( pspp) s—1

(35)
16&r ~-& (n+1)!n!(n 1)—!! 8n' )

V(x—x') = }&"8exppspp'd r(x—x') j, (41)

where 8 means the imaginary part.
The applicability of (41) to bound state problems may

be decided, in the scalar case, by considering, in the
nonrelativistic limit, the static potential between two
nucleons. Recoil and retardation eQects are neglected
by assuming that the nucleon wave packets in (37)
are slowly varying and may be evaluated at the same
time. The time integration in (37) is then carried out
s,pproximately by just integrating '&&&&(x, x'), or in the
present case V(x—x'). In effect, the time integral of
V(x) is just the nuclear potential. (For linear couplings
it is easily verified that J'„"Z(x)dxs is the Yukawa
potential. ) The integration may be carried out by first
expanding V in series, and gives for the irst terms of
the potential'

}&"pp' e ""—pp'&

+ E,(2»r)+
47r r (2 ) r&rss

(42)

Near the origin the second term diverges as r '. The

Using (39) to evaluate the commutator in (38) the
interaction % (x, x') is seen to be the operator,

'&&&7(x, x') =A&see«'&+e'«"&

X inh{-,'PP'[ (*), ( ')] ( —*')}
= —}&see«*&+e'«"& sin{pp'E(x —x') }.

In the limit of very small p, which corresponds to the
usual treatment of linear couplings, the interaction has
the form —}'PP'E(x—x'), which is responsible for the
familiar form of nuclear forces. For unrestricted values
of P, '%(x, x') contains not only a rather different force
between nucleons, but matrix elements as well for the
creation of arbitrarily many mesons in a nucleon-
nucleon collision. We consider 6rst the nuclear forces.

The analogue of the Manlier interaction between
nucleons is the part of '&!&7(x, x') which emits no real
mesons, i.e., its vacuum expectation,

V(x—x') = —}&'(ee«*&+e'r&"')Q sin{PP'Z(x —x')}

which, by using (11)and (32), is found to have the value

V(*—x') = —}&' xp[l((p (*)+p' ( '))') i
Xsin {PP'Z(x —x') }

= —X' exp[-', {p'6"&(0)+pp'6&" (x—x') }]
XsinPP'Z(x —x').

Once again the renormalization (34) may be used to
remove the ambiguous factor. The result is more com-
pactly expressed in terms of the Feynman function

The solution of this differential equation leads immedi- "Th' bssssl f"&&'t'&» K~(&}!sden»sd br Watso», A Tre&asss
on the Theory of Bess@i Functions (Macmillan Company, New

ately to 39 . York, 1948).
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further terms have the same signs and diverge suc-
cessively as r ', r-', etc. The potential is therefore,
much too strongly singular at the origin to permit a
bound state. " In the pseudoscalar case, relativistic
effects are not negligible, and the applicability of (41)
can be decided rigorously only by much more detailed
considerations. It appears, however, very unlikely that
the interaction has bound states.

%hen two nucleons collide, mesons may be emitted
by either one. The matrix element for the production
of re mesons, in all, is given according to (8) and (40), by

(Pv (*)+P'v (~') }"
V(x—x'). (43)

the special case of which, n=0, has already been con-
sidered. The form of the matrix element is a particularly
simple one. Mesons of the group created by each
nucleon are emitted at the same point in space-time and
therefore independently of one another in momentum-
space. A correlation between the momenta of the two
groups is introduced, however, by the nuclear potential,
and by the over-all conservation conditions for mo-
mentum and energy. In effect, the operator (43)
preserves, in so far as possible, the statistical inde-
pendence of the type mentioned in part II. Similar
operators have already been treated in this connection
by Lewis, Oppenheimer, and Wouthuysen. " An ap-
proximation they make to simplify their calculations,
neglect of the momentum dependence in the fourier
transform of the nuclear interaction, amounts to the
replacement of V(x—x') by a four-dimensional delta-

"Ironically, however, for p= —p' (dissimilar nucleons op-
positely charged), the potential (42), although repulsive, is quite
well-behaved. The series, summed over all terms, is less singular
than 1/r near the origin (along the real axis) and may be shown
to approach a 6nite value there for y=0.

'~ Lewis, Oppenheimer, and Wouthuysen, Phys. Rev. 73, 127
(1948); H. Fukuda and G. Takeda, Prog. Theor. Phys. 5, 957
{1950).

function. "With this assumption, substitution of (43)
into (37) gives a very simple matrix element, similar in
its dependence on the meson 6eld to (33), which was
used for meson-nucleon collisions. The resulting meson
production is once again spherically symmetric in the
center-of-gravity system, and has an energy-dependent
multiplicity proportional to (36). Experimentally ob-
served angular distributions of mesons show a tendency
to cluster around the axis of the collision. To investigate
such effects with the operator (43) it will be necessary
to consider interactions less singular than delta-
functions.

The author is deeply indebted to Professor J. R.
Oppenheimer for numerous discussions of the foregoing
material. This work was begun under an AEC Post-
doctoral Fellowship, and continued under the Frank B.
Jewett Fellowship.

APPENDIX

It may be of interest to note that for the coupling

a(~) =~&(~).~«.&, (A.1)

where p(x) is a classical scalar nucleon density, the S-matrix may
be found exactly, and contains no inhnities after the renor-
malization (34). The nth term of the S-matrix is given by

(—8)S~"~ p{eee', ee~ ~ eee" } II p;dx;, (A.2)
nt j~l

where P is Dyson's time-ordering symbol, and qj and p; are
these functions evaluated at xj. The reduction (39) of the product
of two exponentials to a single one may be used to reduce the
entire P-bracket.

P(d'"' e~&") =expfPZqj —@P Z g(xj—xp) j. (A.3)
j(k

The matrix elements of S~",because of (8), all involve the vacuum
expectation of this expression, which may be written in renor-
malized form as

)"(PJe«' e&~.
J }0——),'~ exp+@ Z &z(xj xp) j (A 4)

j(k

"Treatments to-date of multiple production by two nucleons
have overlooked the interference between amplitudes for the
creation of diferent numbers of mesons by each nucleon (the
total number of mesons remaining 6xed). For V(x) 5'4)(x) the
interference e6'ects are as important as the direct ones. Their
inclusion increases the n-fold emission probability by a factor 2"
and the average multiplicity by 2&.


