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F1G. 1. Energy spectrum of =+ mesons at 18.0+0.9°. The peak occurs at
63.5 0.3 Mev. The dotted curve includes a correction for nuclear absorp-
tion of mesons in slowing down. Based on 885 mesons.

using a “point” source of liquid hydrogen bombarded with nearly
monoenergetic protons. Meson energies and the incident proton
beam energy were determined by range in absorbers, using the
tables of Aaron, ef al.* with slight corrections required by the
absolute proton range-energy measurements of Segré and Mather.5
The width of the observed peak (3.6 Mev) corresponds very nearly
to that expected from a “line” broadened by the 0.5 percent®
inhomogeneity in the incident proton beam.

The peak meson energy of 63.530.3 Mev and incident proton
energy (34241 Mev) may be used to calculate a mass value for
the #* meson of 279.04-1.5m.. The integrated spectrum corrected
for absorption is (16—_*__8;)X 10728 cm?steradian™, based on 885
mesons. The partial yields of the p+n+x* and d+=* reactions
may be estimated by resolving the spectrum of Fig. 1 into a con-
tinuous distribution up to 60.0 Mev plus a line separated by 3.5
Mev. Since the energy resolution half-width is 1.8 Mev the position
of the peak and the higher energy side of the curve are only slightly
affected by the presence of the continuous spectrum. Good agree-
ment with the experimental curve is obtained if the “line”” con-
tains 55410 percent of the mesons observed.

The preliminary measurement made at 30° using a line source
geometry? has been repeated with the point source and better
statistics (482 mesons). The integrated cross section at this angle,

L 1.2 L
corrected for absorption, is (5.81—0 6))(10‘29 cm?-steradian™!.
However, the energy resolution of this spectrum, taken previous
to the 18° run, is not sufficient to separate the partial reactions.

The cross section at 64°4-8° has also been determined, although
the low yield and poor angular resolution make it difficult to
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FIG. 2. Angular distribution of »* mesons in the laboratory system. The
curves are calculated for the reaction p +p—d +=+ for 340-Mev protons.
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obtain a significant energy spectrum. A value of (7i“21 X 1073

cm?steradian™, based on 22 mesons, is calculated from the
emulsion-target geometry and proton flux. An independent check
of this value may be obtained by determining the yield of elas-
tically scattered protons in the same emulsion. Using the known
p—p scattering cross section of 5.541 mb/sterad” (c.m. system)
the meson/proton yield ratio gives a meson cross section of

111-2)( 107% cm?-steradian.

These data, normalized to the 0° cross section measured by
Cartwright, et al.,8 can be used to plot the angular distribution.
The relative cross sections as a function of laboratory angle are
plotted in Fig. 2. The angular distributions to be expected from
pure isotropic or cos? production are also shown, for the case
p+p—d+at. A direct comparison of these curves to the experi-
mental data assumes that most of the mesons are emitted with
maximum energy at all angles. This assumption is supported by
the energy spectra at 0°® and 18°. Comparison of curves in Fig. 2
shows a strong preference for cos? emission.

If the angular distribution were strictly cos?, the total cross

+0.4)

section for #* production may be estimated to be (2.3_02

X 1072 cm?.
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Note on the Compound Dirac Equation*

D. C. PEASLEET
Washington University, St. Louis, Missouri

(Received August 13, 1951)
SOME systematic remarks are made on a recent proposal! for
combining Dirac equations with positive and negative times.
The indices 7, k=1 to 3; u, v=1to 4; 4, B=1to 6.
Consider a Dirac equation and its time reverse:
@jvitdsystr)y=0 W
(077i— 8sva+ ) =0, ¢ =iyiaap.

These two 4-rowed equations can be simply superposed to give an
8-rowed equation

(auﬂu+x)¢=0) (2)

where, if ¢z, 0, 0, are 2X2 Pauli matrices and 1 the corresponding
unit matrix,

ni=Lvi, 415, M6= 0274, OyV4, Oxve 3)
The 74 are all hermitian and satisfy the equation
n4B+nBa=2848. 4

The invariance of (2) to a Lorentz transformation x,'=a,,x,
depends in the usual way on the existence of a transformation
matrix S such that

Tuluy=S"'1S. (5)
In terms of the 74, there are four quantities that commute with
all 5, and hence transform as scalars under (5); namely,

1, 56, M12345, Mm2sss=1, 01, Mg, Inzs={¥'}. (6)

Thus any transformation operator can be generalized from the
4-rowed to the 8-rowed representation by S(y)—S(»)Y. This type
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of generalization also holds for operators Q of which the expecta-
tion value is to be taken, YQ(v)¥—@Q(n) Y’ ¢, where Q is one of
the five covariant forms familiar in B-decay. It will be seen below
that the set ¥’ includes only half the members of Y.

The equation adjoint to (2) is

3uPnu—xp=0, =T .. )

where the superscript T denotes the transpose. The above general-

ization also applies here, and @Y is a perfectly good adjoint solu-

tion. But since @ is of interest only in bilinear forms @Q¥’ ¢, and

YY'—Y’, it is sufficient to select a unique adjoint function as in
(7), provided that ¥’ ranges over all possible values.

The possible operators ¥’ are seen by characterizing them in

terms of the representation (p'—-‘(t,); then Y'p=(y3,’“/;,), where

for 77, y=—19'=1, and for 75, y=9'=—1. Consider the bilinear
form @QY’ o=yWQy+y'Y'QY’, where the =+ is as Q does or does
not contain the index 4 and comes from the =41 eigenvalues of o,
in 74=0sys. Then by (1) QY ==£yQ¥ according as Q does or
does not contain v, on account of the commutation properties with
v123. Thus, @QY’ o= (y+v")YQ¥ =0 if ¥’ contains 77, and hence

{Y'}=1, ns. (6a)

Note that the set (6a) depends on the choice (7) for the adjoint
function @; if the adjoint were taken as @V, the general condition
would be that {¥'V,}=1, s.

Judicious combination of ¥ and ¥’ permits some flexibility in
the transformation properties of bilinear forms. Let $QY’ ¢ be
transformed under SY; then since 77, 7s anticommute, the alge-
braic sign under transformation is the same as for the 4-rowed
case if ¥'=1 or if ¥'=ns, Y=1, 5, but is reversed if ¥’'=1s,
Y =nus1, in7s. This applies, for instance, to the behavior of (&)
under time reversal. It also applies to the five 8-decay invariants
under charge and complex conjugation, so that the groupings
(SAP) and (TV) found in the 4-rowed representation? may be
arbitrarily altered. This arbitrariness fails only in the case of the
energy and charge densities, which are presumably derivable from
a single lagrangian and hence must transform with opposite sign
under time reversal in any case.

It is curious but of little apparent use that the n4 are the
matrices of a six-dimensional Dirac equation. The four choices of
¥ correspond to the four combinations of reversal and non-reversal
of the unphysical coordinates x5 and xs. This aspect also provides
a direct proof that the 4 are irreducible, for they build the
components of antisymmetric tensors in six dimensions of the
0, 1, 2, 3, 4, 5, 6th rank with (14-6415420+41546+41)=8X8
independent elements. All representations are thus equiva-
lent to (3).

* Agsisted by the joint program of the ONR and AEC.
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Low Frequency Dispersion in Ni- and Co-Ferrites
KAN-1CHI KAMIYOSHI

The Research Institute for Scientific Measurements, Sendai, Japan
(Received August 31, 1951)

ALT, Matthias, and Remeika! observed the low frequency
dispersion of the magnetic permeability in Ni-ferrite, and
recently Koops? found the low frequency dispersion of the dielec-
tric constant in NiZn-ferrite. The present paper describes the
electric low frequency dispersion in Ni- and Co-ferrites.

Real and imaginary dielectric constants, ¢ and €”, and the
dielectric loss factor, tans, were measured in vacuum by a Schering
bridge with a sample which is 17 mm in diameter and 5 mm in
thickness. The sample was prepared by sintering at 1200°C for 3
hours and was rapidly cooled in air from 1200°C. Figure 1 shows
the curves of tand versus temperature for different frequencies.
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FIG. 1. Curves of tané with varying temperature for Ni-ferrite.

Breckenridge? considered the relaxation process for the low
frequency dispersion in ionic crystals and gave the following
equation:

7=T1oeE/*T, 1)

where 7o and 7 are the time constants for the natural vibration
and the orientation process, respectively, and E the activation
energy. Assuming this equation to hold for the ferrite and taking
7=[(e0+2)/(e1+2)](e1/€0)}(1/w), where € and e are the static
and very high frequency dielectric constants,* respectively, we
obtain a linear relation of log(1/w) against 1/T for each peak
point of tand for various frequencies; this is shown in Fig. 2.
From the linear relation in this figure, we obtain £=0.23 ev. It is
noticeable that this activation energy is equal to the energy,
Ecna=0.23 ev, obtained from the electrical conductivity meas-
urements which were made on the same sample. Therefore, it is
expected that the origin of the anomalous dispersion in ferrites
may be a similar mechanism to that of the electrical conductivity.
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F1G. 2. Relation between log(1/w) and 1/T for Ni-ferrite.



