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ing letter. In general, when more than one sublattice has appreci-
able ionic polarization, considerations similar to those used to
obtain the local field must be used to obtain the elastic restoring
forces on an ion. The ionic polarization equations should be

EI =&&p~tpt, (5)

where the local field Et, includes the electronic contribution and
where the Pqt are related to the noncoulomb forces within the
crystal.

+ This research has been assisted in part by the ONR.

Type of array

Polariza-
Ion bility

Local field displaced cc

1. ferroelectric (f.e.)
2. antiferroelectric (a.f.e.)
3. f.e.
4. a.f.e.
5. f.e.
6. a.f.e.
7. f.e.
8. a.f.e.

at original position
at original position
at original position
at original position
at displaced position
at displaced position
at displaced position
at displaced position

Ti 0.947 )(10 s4

Ti 0.947
04 3.01
Os 5.06
Ti 0.947
Ti 0.787
Or 0.646
Os 0.626

TABLE I. Ionic polarizability required for spontaneous polarization.
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LATER'S recent treatment of BaTi03' has shown that the
probable origin of the ferroelectricity of BaTiO& and similar

substances of perovskite structure is the strong dipole-dipole inter-
action within lines of 0 and Ti ions parallel to the spontaneous
polarization. Slater found that the value of the ionic polarizability
necessary for spontaneous polarization of the Ti ion alone is
0.947X 10~4 cc. This value was checked here {see row 1, Table I).

Qualitative considerations suggest that the dipole-dipole inter-
actions in BaTiOs might be stronger in an antiferroelectric state
than in the observed ferroelectric state, just as in the simple cubic
structure. Consequently a treatment of BaTi03 similar to that of
Slater was carried out for an antiferroelectric state to determine
the ionic polarizability necessary for spontaneous antiparallel
polarization.

The 0 ion on the y-s face of the unit cell will be designated as
0~ and similarly for O„and 0, as shown in Fig. 1(A). The anti-
ferroelectric state considered is one with polarization in a Z& array
(in the notation of Luttinger and Tisza ), Fig. 1{B),on the Ti and

0, sublattices, and with no polarization on the 0„0„,and Ba
sublattices. For convenience, the Ti and 0, ions will be referred
to as 1 and 2, respectively. The only nonzero Geld constants for
this arrangement are f»= f&2=5.351 and fi2=33.118. The value
of fi~ was calculated by the Ewald method. The electronic polar-
izabilities used were those given by Slater. ' The edge of the unit
cell was taken as 4.00A.

Calculations were made assuming that Ti or 0, alone contributes
ionic polarization. The local fields at the original lattice points
were used, as has been customary. However, as pointed out else-

where in this issue, 4 the local fields at the displaced lattice points
should have been used. The calculations were repeated using the
local fields given by Eqs. (4) and (5) of reference 4. For the ferro-

electric arrangement go=47.013, enhancing the local field at the
0, ion considerably. On the other hand, gi= f» =4~/3. Hence the
calculated polarizability is the same for Ti with both methods. For
the antiferroelectric arrangements go= 66.236 and go=16.559, en-

hancing the local field at both ions. The results of the calculations
are given in Table I.

In general, the greater the local field and the greater the elec-

(A)

Fia. 1. (A) Unit cell of BaTiOs. (8) Za array.

tronic polarizability of the ion contributing most to the local field,
the smaller the ionic polarizability required for spontaneous
polarization. When the local fields at the original lattice points are
used, the results for ferro- and antiferroelectricity are the same
for Ti. For 0, less ionic polarizability is required for antiferro-
electricity and hence antiferroelectricity is favored. In the actual
crystal, however, both ions may contribute ionic polarization.
Since Ti requires less polarizability than 0, in both arrangements,
one would expect the Ti ion to contribute most of the ionic
polarization. Hence, one cannot interpret decisively the favoring
of ferroelectricity in BaTi03 with simple dipole-dipole interactions
alone if the local fields are taken at the original lattice points.
When the local fields at the actual lattice points of the ions are
used, antiferroelectricity is favored for the Ti and the 0, ions both.
Thus even if one uses local fields at the actual lattice points, one
still cannot explain the favoring of ferroelectricity in BaTi03 with
the simple dipole-dipole interaction model.
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this problem and for many informative and stimulating discussions.
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~HE angular correlation of two successively emitted nuclear
particles can be inQuenced by magnetic fields (e.g., from the

electron shell, from neighboring atoms, or from an external source).
In order to calculate a general expression, we start with the formula
of GoertzeP for the emission probability S' of two particles with
directional vectors ki and k2.

W(kg, kg)=szsm z (A(lPglB„)(B~lHmlC„)"
hem'y

x(aileilB )'(B. le~lC„)
1

1—tCOBBiT

A i, 8, C~ are the wave functions of the atom {nucleus+shell) for
the 3 states of the cascade. H~, H2 designate the hamiltonians
responsible for the emission of the first and second particles, re-
spectively. co» is the energy splitting of the two levels B~, 8
divided by k. T is the mean life of the intermediate state. %'e can
now modify Goertzel's expression (1) by choosing an arbitrary
s-axis. Introducing solid harmonics Fq"(k) we get instead of (1)

1
W(ki, k2) = Z Gt,rAg Fgr{ki) FI,'(kg)*. (2)

r, k

As is seen later, the coeKcients et, are independent of the magnetic
field. The whole inBuence of the magnetic field is in fact contained
in the attenuation factor Gg,". This attenuation factor can be
calculated for the two special cases of a weak and strong field.
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{a) "Weak 6eld" (I-J coupling unbroken)

Gs"=(2k+1) Z (2F+1)(W(IaIkF(F'Ia)(' Z (Cz„a,
$,10.

X . . (3)
1

~Em, E'm'r

IIs and J stand for the angular momentum of the intermediate
state and the electronic shell, respectively; Ii is the total angular
momentum of the atom; 5' and C are Racah and Clebsch-Gordon
coeScients, respectively. ~ For the case of vanishing external mag-
netic 6eld (3} reduces to

Gp"= Z (2F+1)(2F'+1) i W(I~IkFiF'Is) i', . (3a)
1

1+(cvpg r)2

We have discussed this expression in a previous letter. 3

(b) "Strong 6eld" (I—J coupling broken)

Gq'= (2k+1) Z
~ Cg~~ a,~~

~
~(1 i~ —r) . (4)

I.00-
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g ~ ~ 1 ~ ~ I g g
~ w ~

60' 90' Q5o 180o
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If the magnetic moment J of the shell is zero, we obtain

=r~ =rIJH/I&a= ~gIJ~p (5)

(p, g= magnetic moment and g factor of the intermediate nuclear
level; pq=nuclear magneton}. Then the sum in (4) can be
evaluated:

Gk"~ 1/(1 —ircor). (6)

If we take the external magnetic 6eld H perpendicular to the plane
of the two quanta, Eq. (2) becomes particularly simple and useful
for application:

8'(0, H}=Z, Pb„/(1 —error)]eir& {7)
where 0 is the angle between the two quanta. The magnetic field
induces an attenuation and a phase shift. For ~r&&1, this results
essentially in a rotation of the symmetry axes through the classical
precession angle &=car. If the two counters cannot distinguish
between the two particles, the attenuation factor becomes real:

1 1GI"=- . +- (8)
2 1—zrcur 1+irur 1+(raur)

~'

Therefore a measurement of G&' with equally sensitive counters
gives only the magnitude, but not the sign, of the nuclear g factor.

For cur&&i, for both strong and weak 6elds, the relationship is
simplified to a minimum correlation:

Ga'= bo' {9}
In this case the angular correlation is symmetric about the axis of
the magnetic Geld. If then the direction of one particle coincides
with that of the magnetic field, the angular correlation remains
unin6uenced.

8'= Zq a~~(cos8). {1P}
Thus the aq of Eq. (2) are seen to be the coeScients of Legendre
polynomials in the case of an unperturbed correlation.

I wish to thank Professor W. Pauli, Professor V. %'eisskopf,
Dr. A. S. Bishop, Dr. H. Frauenfelder, and Dr. M. R. Schafroth
for many helpful discussions.

i G. Goertzel, Phys. Rev. VO, 897 (1946).
I J. W. Gardner, Proc. Phys. Soc. (London) 62, 763 (1949).
~ K. Alder, Phys. Rev. 83, 1266 (1951).

FiG. 1. Angular correlation, 8'(8) =1+b2' cos28, of Cd»1. Magnetic
field perpendicular to the plane of the two y-rays.

8'(8, H}=1+,Icos28%2 sin28),
b2

(3)

Wbr'

I

discussed by several authors. ~' Using an external magnetic 6eld
on a source of In"'—+Cd"' we have now established experimentally
the existence of this eRect, and have determined the magnitude
and sign of the magnetic moment of the intermediate nuclear level.

The y—y-cascade of Cd'" is well known the measured angular
correlation in sources of maximum anisotropy45 follows closely
the function'

W(e) =1+32cos'8 with A, = -p 2p~p pi (1)
The intermediate level is assumed to be a d~ state' and has a half-
life of about 8.5X1P sec.

The general relationships for the in6uence of an external mag-
netic 6eld upon the angular correlation of two successive nuclear
radiations has been calculated by Alder. 7 For the case in which a
magnetic 6eld H is perpendicular to the plane of the two successive
p-rays, and each counter is sensitive to only one p-ray, Alder
6nds the correlation function to be given by

W(8, H) =Z„ I b,/(I —iso)r) je' ~, (2)

where 8 is the angle between the two y-rays, 7 is the mean life of
the intermediate state, and co= gHgk/k is the classical precessional
velocity of the nucleus in the magnetic field H.

In the case of Cd"', the correlation function in the absence of a
magnetic 6eld can be well fitted by the function (1); the highest
term in the development (2} thus is r=2. Equation (2) then
becomes
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&HE possibiTity of determining the g factor of the intermediate
nuclear state on a y —y-cascade by measuring the in6uence

of a magnetic 6cld on the angular correlation has recently been
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Fro. 2. Anisotropy bp' as a function of the magnetic field strength H.


