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Fia. 1. Resistivity of germanium at high temperatures. The values for
the resistivity of the solid are in good agreement with values obtained by
extrapolating the direct current resistivity measured at lower temperatures.

Local Fields in Ionic Crystals*
M. H. CoHHN
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{Received August 21, 1951)

'HE polarization of ionic crystals can consist of two parts.
One part, the electronic polarization, arises from the polar-

ization of the electronic distributions of the individual ions. The
other part, the ionic polarization, arises from the displacement of
the entire ions from their original positions in the lattice. When
only electronic polarization is present, the local Gelds are found
by replacmg the e1ectronic polarization with point dipoles at the
lattice points. It has been customary in cases in which ionic polar-

The resistivity of the liquid germanium near the melting point
was found to be 60)(10 ' ohm-cm and the temperature coefBcient
of resistivity was found to be positive and about 1 or 2X10 '
(deg C} '. A synthesis of data from several runs is shown in
Fig. 1.

The melting of germanium thus shows a certain analogy to the
transition from gray, semiconducting tin to white, metallic tin
at 13'C. In the case of tin there is a 20 percent increase in density
and an increase of the coordination number from four to six as the
temperature is raised through the transition, and recent work' has
shown that the resistivity decreases by a factor of 16. Estimates of
the density of liquid germanium by the author based on Hendus'
data give a density increase of about 20 percent in germanium
upon melting, and the conductivity measurement shows that the
resistivity of the solid germanium at the melting point is 6fteen
times that of the liquid.

The author is indebted to Dr. A. W. Lawson for encouragement
and advice. Since the start of these experiments it has come to his
attention that independent work on the same subject is being
carried on by A. Epstein and Dr. K. Lark-Horovitz at Purdue
University.

+ The investigations described were actually carried out in the labo-
ratories of the Institute for the Study of Metals.
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I D. Turnbull, J. Appl. Phys. 21, 1022 (1950).' O. Kubaschewski, Trans. Faraday Soc. 45, 931 {1949).' H. Hendus, Z. Naturforsch. 2a, 505 (1947).
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ization is also present to adopt a similar procedure. In this pro-
cedure the electronic and ionic polarizations are replaced with
point dipoles at the original lattice points and the local 6elds at
the original lattice points are found. However, the use of the local
6elds at the original lattice points is inconsistent with ionic crystal
theory and can lead to large errors. In ionic crystal theory the
local 6elds at the nuclei of the ions must always be taken as the
efFective polarizing Gelds for both electronic and ionic polarization.
Consequently the local Gelds at the displaced positions of the ions
must be used when ionic polarization is present.

The difference between the local fieM at the original and that at
the actual position of an ion may be of the same order of magni-
tude as either local Geld, To understand this qualitatively, con-
sider a crystal AB in which the lattice A has undergone a small
homogeneous displacement. The usual procedure for finding the
local Geld for an A ion includes contributions at the original lattice
point from "equivalent dipoles" on A. Actually, since A has only
suffered a uniform translation, it will give no contribution to the
local field at an A ion. The field on A results from the displacement
of 8 relative to A. In calculating this 6eld the equivalent dipoles
should be put on 8 rather than on A. Thus, putting the dipoles
on A may lead to significant errors in the local 6eld.

For simplicity we omit explicit consideration of the contribution
of the electronic polarization to the local 6eld. The ionic contribu-
tion to the local field at the actual position of the ith ion is given by

E;=Z (z,er;;)r;; ', (1)

where z;e is the charge of the jth ion and z; its valence, and where
the summation extends over all ions except the ith. E; vanishes for
a crystal in which each lattice point is a center of charge, that is,
in which there is no ionic polarization. Suppose that each sublattice
of such a crystal experiences a small homogeneous displacement
from its original position in the lattice relative to some one of the
sublattices. The ionic polarization of the lth sublattice produced
by its displacement d& is P&=ntz&edt, where n& is the number of
ions per unit volume on the lth sublattice. The separation between
ions is now r;;= y;;—(d;—d;) where p;; is their separation in the
original lattice. The right side of (1) can now be expanded to first
order in the displacements, yielding

E;=Z I3z;eg(d; —d;) r;;jr;;—z;e(d; —d;)r;PIr;; '. (2)

The right side of (2) can be converted into a sum over sublattices:

Ek= ~l fklPt+gkPk (3)
where

gk= —~t'fkt(rtt:t/~kzk). (4)

Only those crystal structures will be considered for which the
fkt are simply constants, the dipole Geld constants of the original
lattice. Equation (3) gives the local 6eld at the actual position of
the ion when ionic polarization is present. The first term in (3) is
the contribution of the ionic polarization of all sublattices except
the kth. It can be represented as due to equivalent dipoles at the
original positions of these sublattices. The second term in (3) is
the contribution of the ionic polarization of the kth sublattice
itself. As shown by (4) this contribution can be interpreted as due
to appropriate equivalent dipoles at the original lattice points of
the other sublattices.

Taking the local Geld at the original position of the ion is
equivalent to neglecting d; in (2). One would then have ob-
tained Rk=ZtfktPt. The difference between the two local 6elds is

(gk—fkk}Pk. For sublattices for which gk= fkk, they are the same.
The simplest crystals for which this is so are those with the NaCI
structure and those with the CsC1 structure. For many crystal
structures, however, gk —fkk is of the same order of magnitude or
greater than fkk for one or more ions. The usual treatment of
situations in which ionic polarization occurs must then be replaced
by one in which the ionic polarization is dealt with explicitly. In
particular, if only one sublattice has appreciable ionic polarization,
a polarization equation for this ionic polarization must also be
included in the treatment of the dielectric properties of the crystal.
Calculations of this nature for BaTi03 are discussed in the follow-
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ing letter. In general, when more than one sublattice has appreci-
able ionic polarization, considerations similar to those used to
obtain the local field must be used to obtain the elastic restoring
forces on an ion. The ionic polarization equations should be

EI =&&p~tpt, (5)

where the local field Et, includes the electronic contribution and
where the Pqt are related to the noncoulomb forces within the
crystal.

+ This research has been assisted in part by the ONR.

Type of array

Polariza-
Ion bility

Local field displaced cc

1. ferroelectric (f.e.)
2. antiferroelectric (a.f.e.)
3. f.e.
4. a.f.e.
5. f.e.
6. a.f.e.
7. f.e.
8. a.f.e.

at original position
at original position
at original position
at original position
at displaced position
at displaced position
at displaced position
at displaced position

Ti 0.947 )(10 s4

Ti 0.947
04 3.01
Os 5.06
Ti 0.947
Ti 0.787
Or 0.646
Os 0.626

TABLE I. Ionic polarizability required for spontaneous polarization.

Ferroelectricity versus Antif erroelectricity
in Barium Titanate*

M. H. CoHEN
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LATER'S recent treatment of BaTi03' has shown that the
probable origin of the ferroelectricity of BaTiO& and similar

substances of perovskite structure is the strong dipole-dipole inter-
action within lines of 0 and Ti ions parallel to the spontaneous
polarization. Slater found that the value of the ionic polarizability
necessary for spontaneous polarization of the Ti ion alone is
0.947X 10~4 cc. This value was checked here {see row 1, Table I).

Qualitative considerations suggest that the dipole-dipole inter-
actions in BaTiOs might be stronger in an antiferroelectric state
than in the observed ferroelectric state, just as in the simple cubic
structure. Consequently a treatment of BaTi03 similar to that of
Slater was carried out for an antiferroelectric state to determine
the ionic polarizability necessary for spontaneous antiparallel
polarization.

The 0 ion on the y-s face of the unit cell will be designated as
0~ and similarly for O„and 0, as shown in Fig. 1(A). The anti-
ferroelectric state considered is one with polarization in a Z& array
(in the notation of Luttinger and Tisza ), Fig. 1{B),on the Ti and

0, sublattices, and with no polarization on the 0„0„,and Ba
sublattices. For convenience, the Ti and 0, ions will be referred
to as 1 and 2, respectively. The only nonzero Geld constants for
this arrangement are f»= f&2=5.351 and fi2=33.118. The value
of fi~ was calculated by the Ewald method. The electronic polar-
izabilities used were those given by Slater. ' The edge of the unit
cell was taken as 4.00A.

Calculations were made assuming that Ti or 0, alone contributes
ionic polarization. The local fields at the original lattice points
were used, as has been customary. However, as pointed out else-

where in this issue, 4 the local fields at the displaced lattice points
should have been used. The calculations were repeated using the
local fields given by Eqs. (4) and (5) of reference 4. For the ferro-

electric arrangement go=47.013, enhancing the local field at the
0, ion considerably. On the other hand, gi= f» =4~/3. Hence the
calculated polarizability is the same for Ti with both methods. For
the antiferroelectric arrangements go= 66.236 and go=16.559, en-

hancing the local field at both ions. The results of the calculations
are given in Table I.

In general, the greater the local field and the greater the elec-

(A)

Fia. 1. (A) Unit cell of BaTiOs. (8) Za array.

tronic polarizability of the ion contributing most to the local field,
the smaller the ionic polarizability required for spontaneous
polarization. When the local fields at the original lattice points are
used, the results for ferro- and antiferroelectricity are the same
for Ti. For 0, less ionic polarizability is required for antiferro-
electricity and hence antiferroelectricity is favored. In the actual
crystal, however, both ions may contribute ionic polarization.
Since Ti requires less polarizability than 0, in both arrangements,
one would expect the Ti ion to contribute most of the ionic
polarization. Hence, one cannot interpret decisively the favoring
of ferroelectricity in BaTi03 with simple dipole-dipole interactions
alone if the local fields are taken at the original lattice points.
When the local fields at the actual lattice points of the ions are
used, antiferroelectricity is favored for the Ti and the 0, ions both.
Thus even if one uses local fields at the actual lattice points, one
still cannot explain the favoring of ferroelectricity in BaTi03 with
the simple dipole-dipole interaction model.

I wish to thank Professor Charles Kittel for having suggested
this problem and for many informative and stimulating discussions.

*This research has been assisted in part by the ONR.
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~HE angular correlation of two successively emitted nuclear
particles can be inQuenced by magnetic fields (e.g., from the

electron shell, from neighboring atoms, or from an external source).
In order to calculate a general expression, we start with the formula
of GoertzeP for the emission probability S' of two particles with
directional vectors ki and k2.

W(kg, kg)=szsm z (A(lPglB„)(B~lHmlC„)"
hem'y

x(aileilB )'(B. le~lC„)
1

1—tCOBBiT

A i, 8, C~ are the wave functions of the atom {nucleus+shell) for
the 3 states of the cascade. H~, H2 designate the hamiltonians
responsible for the emission of the first and second particles, re-
spectively. co» is the energy splitting of the two levels B~, 8
divided by k. T is the mean life of the intermediate state. %'e can
now modify Goertzel's expression (1) by choosing an arbitrary
s-axis. Introducing solid harmonics Fq"(k) we get instead of (1)

1
W(ki, k2) = Z Gt,rAg Fgr{ki) FI,'(kg)*. (2)

r, k

As is seen later, the coeKcients et, are independent of the magnetic
field. The whole inBuence of the magnetic field is in fact contained
in the attenuation factor Gg,". This attenuation factor can be
calculated for the two special cases of a weak and strong field.


