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where E, is the Minkowski force on the particle

E,= t(k,u4/ic)dV

~aP+rr@r = ~~rTorp (84)

The mass m though invariant in a Lorentz transforma-

tion is not necessarily a constant of the motion, even if

the density p of the particle is constant, since m in-

cludes the thermodynamic internal energy Lsee Eq.
(34)7. Included in the Minkowski force is a term which

predicts a force on a particle when it exists in a tempera-
ture gradient, a force associated with the entropy the
particle possesses. If 8„8,T is constant throughout the
volume of the particle, then this force is —$8„8,T,
where 8 is the total entropy of the particle.

Equation (25) may be written in a form which facili-
tates comparison with the methods of field theory,
namely,

T,= (1/4m)(F, Fp,+b„Fp,2/4), (86)

where Ii„=8 A, —B,A. and A, is the four-vector po-
tential, then Q, coincides with the Poynting flux, the
energy density pU=(E"+EP')/8 swhere Z' and H'
are the electric and magnetic intensities in the rest
frame, and the stress tensor

41I Q~~ = —(F~p+u~u~F~p/c )(F~p+u~u„F„p/c )

+8.,F,„2/4, (87)

which reduces in the rest frame to the maxwell stress
tensor in its nine space components and to zero in its
fourth row and column.

where

T.,= —(1/c')(p(A+ TS)u u,+u.Q +u,Q,7+y., (85)

Equation (84) describes motion of a "naked" element,
i.e., an element devoid of thermodynamic structure,
through a field described by the energy-momentum
tensor T„. If we take T, to be the electromagnetic
tensor,
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The relativistic two-body equation of Bethe and Salpeter is derived from Geld theory. It is shown that
the Feynman two-body kernel may be written as a sum of wave functions over the states of the system.
These wave functions depend exponentially on the energies of the states to which they correspond and
therefore provide a means of calculating energy levels of bound states.

L INTRODUCTION

EVERAL attempts have been made to calculate the
energy levels of bound systems of two particles that

interact through a quantized field. The standard
method' has been to calculate an efFective potential
energy function and to insert that function into some
two-particle Schroedinger or Dirac equation. In a case
where the major efFects of the interaction are obviously
in the nonrelativistic region (e.g. , the hydrogen atom),
such a procedure seems reasonable (although even here
higher order efFects may not be describable by a poten-
tial). ' However, in the treatment of nuclear problems,
one may have to deal with specifically relativistic inter-
actions and singular forces for which methods successful
in the atomic domain may fail entirely.

Recently, DancofP has used an approximate method
based directly on field theory. He has solved the

' G. Breit, Phys. Rev. 34, 553 (1929);Yukawa, Sakata, Koba-
yashi, and Taketani, Proc. Phys. -Math. Soc. Japan 20, 720 (1938).' Y. Nambu, Prog. Yheor. Phys. 5, 614 (1950).

'S. M. Dancoff, Phys. Rev. 78, 382 (1950).

Schroedinger equation for the state vector with the
requirement that it contain no particle-pairs and only
one field quantum. The formal extension of his method
to include higher approximations is dificult on account
of the necessity of separating divergences in a nonco-
variant way. Furthermore, it appears impossible in his
framework to make use of the elegant techniques
developed by Feynman4 and Dyson. '

Bethe and Salpeter have proposed an equation' for
a two-body "wave function"; their equation is covariant
in form and permits the separation of divergences as in
the S-matrix theory. Their reasoning, however, is based
on an analogy to that in Feynman's "Theory of
positrons"4 and the demonstration of equivalence to

4 R. P. Feynman, Phys. Rev. 76, 749 (1949);Phys. Rev. 76, 769
(1949).

~ F. J. Dyson, Phys. Rev. 75, 486 (1949); Phys. Rev. 75, 1736
(1949).

s H. A. Bethe and E. E. Salpeter, Phys. Rev. 82, 309 (1951).
We are indebted to Drs. Bethe and Salpeter for communicating
their results to us prior to publication. We understand that this
equation has been treated by Schwinger in his lectures at Harvard.
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conventional field theory is incomplete. Our purpose is
to provide such a demonstration.

The starting point of the argument of Bethe and
Salpeter is the consideration of the so-called Feynman
two-body kernel, and the proof that its usual power
series expansion can be re-expressed as an integral
equation. We will begin in a similar fashion; however,
we will exhibit all quantities of which we make use (in
particular, the wave function) as matrix elements of
field operators, and derive their properties in the con-
ventional way.

where
U(t, 0)=exp(iHp(0)t) exp( iHt), —

and thus satisfies the familiar diBerential equation,

id U(t, 0)/dt= H, (t) U(t, 0),

with the boundary condition

U(0, 0)=1.

(7)

II. GENERAL THEORY

For simplicity we will consider a proton 6eld f and a
neutron field p coupled by a neutral scalar meson field,
A. {The generalization to other cases is direct. ) All
symbols unless otherwise labeled refer to the Heisenberg
representation. Let us denote by I'„ the total energy-
momentum four vector of the interacting fields; P„acts
as a displacement operator in the sense that for any
function I of the field-variables at the space-time point
x the equation

4IF/Bx„=i[F, P„j (1)

holds. ' %'e may choose a complete set 0' of state-
vectors such that

P„4.=p„"4.. (2)

Each 4' will then describe a stationary state.
The component I'p can be written as the hamiltonian

function H of the field variables and their conjugate
momenta. Although H is independent of time, it is
convenient to separate it into two time-dependent
parts, H, (t) and Hr(t), where Ho(t) is the sum of the
free-field hamiltonians. We shall use IJp to define an
interaction representation that reduces to the Heisen-
berg representation at a finite time, which we shall take
to be t=o For any tim. e dependent operator 0(t) the
corresponding operator 0(t) in the interaction repre-
sentation is given by

0(t) = exp(iHp(0)t)0(0) exp( —iHp(0)t). (3)

According to Eq. (1), the time-dependence of the
Heisenberg operators is of the form,

0(t) =exp(iHt) 0(0) exp( —iHt) (4)

so that Eq. (3) can be written

0(t) = U(t 0)0(t)U-'(t, 0), (5)

We shall make extensive use of the true vacuum state
0'p and the vacuum of free particles, @p. The former is
the eigenstate of H with the lowest energy pop= Ep. The
latter is the eigenstate of Ho=Ho(0) with the lowest
eigenvalue ep.

It will be necessary to express 0 p in terms of C p and
operators of the interaction representation. There are
two standard methods of handling that problem. The
first is to introduce the interaction representation at a
time 3= —~ rather than at t=0 as we have done; it is
then assumed that at —~ the coupling constant
vanishes, H and Hp are identical, and thus 0 p=Cp. It
will become clear that such a procedure does indeed
yield correct results, but it would be inconsistent to
base a discussion of stationary states on a physical
assumption of the variability of charge. The second
method is that of stationary-state perturbation theory;
the interaction representation can be defined as above
at I,=O, and 4p expressed in the form,

c%'p ——[1+(Hp—pp) '(1—V)(Hr(0) —Eo+pp)] 'Cp, (9)

where V is the projection operator on the state C p and
c is a normalization constant. We are then free to write
Eq. (9) in terms of integrals over time (as a parameter),
for example in terms of the U matrix considered as a
solution of Eq. (7). We shall show in the Appendix that
Eq. (9) may be replaced by the formal equation„

c%'o=U '(&Op, o)Co/(Co, U—'(%~, 0)Co). (10)

In fact, both the numerator and denominator of Kq.
(10) are indeterminate on account of the presence of a
phase factor exp(i~); however, the quotient is well
defined in terms of a suitable limiting process, such as
we shall exhibit in the Appendix, which does indeed
involve turning the charge on and off infinitely slowly,
but only as part of a mathematical prescription for
solving the stationary state problem.

III. THE INTEGRAL EQUATION FOR THE KERNEL

We define the Feynman two-body kernel as follows:

E(x~xo, xpx4) = (%p„P[$(x )$4(xo)f(xp) y(x4)]ep), (11)

where I' is Dyson's time-ordering operator and e is —1
if the permutation of the times (1234) induced by P
is even, +1 if it is odd. Introducing the interaction
representation at time t= 0, and making use of Eqs. (5)
and (10), we have, for a typical order of the times
(t, &t, &t, &t4),

X(x,x„x~4)= —(C p, U(+ ~, O) U-4(t„O) q(x, )
X U(t„o)U-'(t„o) tI(x,)" ~

X P(x4) U(t4, 0)U-'( —~, 0)C p)/

(C'o) U(~, 0)U-'( —~, o)C'o), (12)

where the ratio is necessary to eliminate the constant c,
and terms of the form (C'o, U '(& ~, 0)Cp) have can-
celed. It is clear that

7%c tyke Q=t, U(t, 0)U-'(t', 0)= U(t, t'), (13)
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where

1

XIf

Frc. 1. Typical Feynman diagrams.

iaU(t, t')/w= H, (t) U(t, t )

+ oe ~

(14)

Sp'(*—y) =o(x, y)(c'o, P[4(x)4(y) jC'o), (19)

S,"(*—y) =.(*,y)(C'o P[4(x)V(y)3C'o) (2o)

Ap(x —y) = (C'o, P[A (x)A (y)74o). (21)

Here, o(x, y) is +1 if t,)t„a nd —1 if t,&t„;and dec is
the four-dimensional volume element.

Bethe and Salpeter have shown, by summing the
terms of Eq. (18) in a particular order, that the power
series can be converted into an integral equation. All
terms arising from diagrams of the type shown in Fig. 1
may be combined to give the integral equation

U(t', t') = 1.
U(t, t') may be expressed as a power series:

E(1, 2'3 4)—Sp (1, 3)Sp~(2, 4)—g' t d(uodcoo

XSpP(1, 5)Sp~(2, 6)d p(5, 6)E(5, 6; 3, 4). (22)
( t)n

U(t& t')= P dr& dr„P[Hr(r&) Hz(~„)j. The exact integral equation may be written
n-o g!

(15) E(1, 2; 3, 4) =Sp'p(1, 3)Sp'"(2, 4)

Using Eqs. (12), (13), and (15), we 6nd

E=o(Co, P[U(~, —~)g(x,)P(xo)g(xo)P(x4)]Co)/

(O'Q, U(oo, —oo )eo), (16)

where

PLU(, — )eeO]
co $ ts

~o ~~ J

XP[Hr(rg) Hl(r„) gPgP]. (17)

From an expansion of Eq. (16) in powers of the
coupling constant, it is clear that E is equal to the two-
body kernel as given by Feynman in terms of Feynman
diagrams

E(1, 2; 3, 4) =SpP(1 3)Sp~(2 4) —g')t )t da)oda)o

XSpP(1, 5)Sp~(2, 6)hp(5, 6)

XSpP(5, 3)Sp"(6, 4)+ ., (18)

Xc

Fzo. 2. An excluded
Feyn man diagram. (It
can be decomposed into
simpler diagrams. )

X7

d(sod(sod(v7d(aoS p'P(1, 5)Sp'~(2, 6)

XG(5, 6; 7, 8)E(7, 8; 3, 4), (23)

where, in contrast with Eq. (19),

Sp"(*—y) =o(x, y)(+o, P[4(x)0(y) j+o), (24)

all symbols now referring to the Heisenberg represen-
tation. The interaction function G is given in lowest
order by

G(5, 6; 7, 8) =g'6 p(5, 6)8(5, 7)8(6, 8)

and in general, in a given order, by the sum of all
diagrams of that order that cannot be decomposed into
simpler diagrams connected by one proton and one
neutron line. For instance, the diagram in Fig. 2 is
speci6cally excluded, its eGect being already contained
in Eq. (22). All nucleon self-energy parts may be
omitted, since their eGect is simply to substitute Sp
for Sp in every nucleon line occuring in G.

It is interesting to compare the power series (18} and the
integral equation (23) for the kernel from the point of view of
convergence. The power series is certainly badly divergent, in
general. Looking at the integral equation, we see that there are
three possible sources of such divergence of the series:

(c) Certain terms in the expansion, of the interaction function G
and of Sg' contain infinite integrals which are known to be can-
celed by renormalization procedures (see Dyson~ and Salam').

(5) After renormalization, the expansion of G may not converge.
We are not prepared to discuss this matter, but will assume that
G is well defined.

(c) For suKciently large g, the power series for E will diverge
merely on account of the failure of the Born approximation. 9 In
such a case, the integral equation will continue to have meaning,
although the series has none.

' A. Salam, Phys. Rev. 82, 227 (1951).' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
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IV. THE INTEGKG EQUATION FOR THE
WAVE FUNCTION

The connection of the kernel E with the properties
of the stationary states of the two-nucleon system may
be exhibited in the following way: Let t&, tm&ts, /4.

Then, using the completeness of the set of stationary
states +, we have from Eq. (11)

K(1& 2&3&4) =Z-(+6& 6(12)f'[4(»)4(»)j+-)
X (+ E[P(~3)4 (x )76(43)%'o), (25)

or

Consider a bound state, O' . Its energy, barring
accidental degeneracy, will dBer from that of every
other state possessing the same values of momentum,
internal angular momentum, and other constants of the
motion. If we set up the left-hand member of Eq. (32)
for I= 63, general g, and t(t, , t2, we have, by Eqs. (26),
(30), and (31),

t K(»& x2& x3& (& x4& $)p&vppx&&(x3& $& x6& t)dx3dx6

where
K=K. x.(1, 2)x-(3 4) (26) =P„x„(»,»)V—' dX exp[i(P. —P )X

i(E —E„)t]J—dxf„*(x)f (x), (33)

X.(X3, x6) = (@„6(4,3)P[p(»)y(264)]e.)*p77pp (28).

Here P orders operators in the reverse sense to I' and
P~ and Pp are the usual Dirac matrices.

Let us observe that x„possesses the symmetry
properties of the state O'„. For example, 0'„ is an eigen-
state of the displacement operators I'„; and, therefore,
a simultaneous displacement of the coordinates of both
particles yields

where f„*(x) is the hermitian conjugate of the column
vector f„(x) (the times t3 and i4 both being equal to t).
We may now eliminate all the x„but x by performing
the following operation on (33): We take the limit L
of both members as t—+—~ in the sense that all oscil-
lating terms are taken to approach zero. As an example
of a linear operation of this kind, we might take

t

I. f(t)= lim f(r)dr.( 8 8
+ —

I X.= —i(+6 [f'. 6f'(f4)3+-)
Ear,„ax,„J = i(P&"—P,')X6, (29) Then, we have

where we have made use of Eq. (1) and of the fact that
the dBerential operator commutes with e and with P.
Hence, we may write

x = V-& exp[3(p„"—p„')X„jf.(2:),

where X is any center-of-gravity coordinate, x= x&—x2,
and V is the normalizing volume. Similarly, we have

X„=V—l exp[ —i(p„"—p„')X„]f(x). (31)

It can now be seen that a knowledge of the kernel is
suflicient to determine the energy-levels of the system.
However, it will obviously be advantageous to 6nd an
equation for the simpler quantity x„., for that purpose
we seek a method of isolating a single wave function
from the sum that occurs in the kernel.

In the absence of interaction the wave functions x„
possess properties of orthogonality and normalization
which enable one to write, for t&t~, t2,

J' K(2'1»& x3& $& x4& I)p37p&&x»(x2& i& x4& $)dx3dx4

=X-(» *2), (t= o) (32)

(where x stands for the spacelike part of x and dx is
the three-dimensional volume element); but, in general,
such is not the case. However, we may always make
use of the fact that wave functions of states of diBerent
energy are characterized by diferent exponential time
dependences.

I
J

K(»& ÃQ& x3& 1'& X4& t)pjvppX»(x3& i& x4& i)dx3dx4

= x (2:1, x2)P2(a), (34)

where

P2(63) =
J

t dxf, *(x)f,(x).

The inner product has removed states degenerate with
a from the sum by symmetry.

The relation (34) enables us to derive from Eq. (23)
an integral equation for the bound state wave function

x .behave

+2(63)g»(21& +2) I& i~SF (261j x3& i)
t~—oo Q

XSF' (x» x4, t)dx3dx6ppp77x, (x3& t& x4, t)

d(&&6d»&6d&&&7d6»3SF (1
& 5)

t~—oo J

XSF'~(2& 6)G(5, 6; 7, 8) tdx3dx4K(7& 8; x3& L& x4& i)

Xp77ppX (x„ t, x4, t). (35)

Let us examine the second term on the right of Eq. (35).
As t~—oo, the region of integration in which ty or I,s
is less than t gives a vanishingly small contribution to
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the integral. We may therefore employ Eq. (34) and
obtain for the second term the value

—Pg(a) ~d(undo)gd(o7d(usSg'~(1, 5)Sp'~(2, 6)

XG(5, 6; 7, 8)x (7, 8). (36)

To evaluate the erst term we note that, analogously to
Eqs. (25) and (26), we can write Sz'~ Sz'~ as a sum
of products of neutron and proton wave functions; for
a given momentum, these will never contain frequencies
as low as E . Thus, I., applied to the 6rst term, gives
zero; and we 6nd as our anal result the integral equation,

x~(1, 2) = —Jt d(ogdcagda)yd(asSg'~(1, 5)

XSz'~(2, 6)G(5, 6; 7, 8))r (7, 8). (37)

The eigenvalue problem of the mass of the bound system
appears when we substitute Eq. (30) into Eq. (37).

The simplest covariant approximation to Eq. (37) is
the analog of the approximate equation (22) for the
kernel,

x.(1, 2) = —g')t d&vgdcoeSg"(1, 5)Sp"(2, 6)

X»(5 6)x-(5 6) (38)

The differential equation of which Eq. (38) is a par-
ticular integral,

where U (t, 0) satisfies the differential equation

idU. (t, 0)/dt=H, (i)U (t, 0) exp( —a~i~) (A2)

instead of Eq. ('?).
It is well known that an expression such as the quotient X

is calculated by the same rules (in terms of Feynman diagrams)
as the numerator, except that all disconnected closed loops are
omitted. Moreover, the resulting sum is known to be free of
factors of the form exp{iu/a) that are introduced by disconnected
closed loop diagrams; thus in a finite theory the limit in Eq. (Ai)
exists.

For any finite a we may write

~,(a}= U.-I(—~, O)C.= U.(O, —~)e," (—i)"
dt ~ .dt expLa(t + . +t„}]

n o n !
XP)HI(tl) ".HI(t„)jco (A3)

and

(Ho —ep)%'p(a) = )Hp U (0, —oo)]Op

1 " (—i)" o
dt's ~ dt exp[a{tl+ ~ +t„)j

(~~1) n!
n

X Z —PI HI(t1) HI(t„)jap
I ah

( i)n-I
= —Z dt, dt. exp[a(t, + +t„)j

1) (n —1) t

a—Pt H, (t,)" H, (t„)jep
atl

( i)n —I
= —HI(o)U. (o, — )c,+a Z

&„» (n-1)!

f dtl dt„exp[a(tl+ ~ +t„)j
XPI Hs(t ) . HI(t }]@o {A4)

or

so that
(H—ep)+p(a) =iaga+p(a)/ag, (A5)

=g'»(1, 2)x-(1, 2), (39)

has also been proposed by Nambu. '
The authors wish to express their gratitude to Dr.

J. R. Oppenheimer and to the Institute for Advanced
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APPENDIX. THE VACUUM STATE

In order to derive Eq. (10}, we must first attach a rigorous
meaning to the right-hand member. For convenience we will take
it to mean

lim Usa {~cc
s 0)4p/(4p~ Ues (+ te

& 0)4p) =llIQ Xrx, (Ai)
a~o

(H—cp —iaga/ag}X =X I
—zag(a/ag) log(C p, 0'p(a) )I. (A6)

But from {A5) we see that

(c'o (H —ep)X }=iag(a/ag) log(e'o, +o(a) }
Thus, we have

(H —) limX„= (Co, (H —o) limX ) limX .
Moreover, (Co, X ) is clearly 1. Hence, limX is indeed c%'p.

It may be of interest to note that the expressions {9}and (Ai)
can be compared directly. Performing the integrations in Eq. (A3),
we have

0 o(a}=Li (Ho —5p ia) HI(0)+{Hp—ep —2ia)
XHy(0} (Hp —ep —ia) HI(0)+ ' ' ' j4'p. (A9)

Substituting Eq. (A9) into Eq. (Ai) and taking the limit, one may
check the agreement with Eq. (9} to any desired order.

The treatment of U '(+ ~, 0} is exactly analogous to that of
U &{—oo 0)


