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The Continuum in Special Relativity
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A relativistically covariant formalism describing the behavior of a continuous medium is presented. A
method is developed for resolving covariant expressions into space and time components. One obtains by
this method from a symmetric energy-momentum tensor, a scalar invariant energy density, a vector heat
Aux, and the stress tensor. The laws of thermodynamics appear as time components and the laws of dynamics
as space components of the same relativistic equations. If the divergence of the energy-momentum tensor
vanishes, then the first law of thermodynamics and Newton's second law of dynamics (including thermal
effects} follow. Reversible processes are considered, and the second law of thermodynamics is formulated with
the use of scalar invariant temperature and entropy.

HE equations of motion of a continuous medium in special relativity theory can, as is well known, ' be ex-
pressed as the vanishing of the divergence of a symmetric, second-order, four-dimensional tensor, called

the energy-momentum tensor. %e consider here some dynamical and thermodynamic consequences of such a
formulation.

A. MATHEMATICAL BASIS

Following Abraham and Becker2 we take as transformation matrix for a Lorentz transformation the
hermitian matrix

' 1+8P/(1 —id'),
d,d 2/(1 i44),—
4g43/(1 irtg),—

141)

4)62/(1 —i44),
1+422/(1 —i@4),

6,43/(1 id 4),—

4gd3/(1 —i@4),

4243/(1 —i44),
1+4g'/(1 —i44),

ijl3

—Ak2

—i43

W/4

The determinant of this matrix equals unity. If we
represent the four coordinates by x1, x2, x3, x4——i',
then the quantities 4 in the matrix are components of
the unit time vector

4.= (1/c) (dx./d7), 4.'= —1, (2)

where c is the speed of light and 7- is the proper time.
(Throughout this paper Greek indices run from 1 to 4;
Latin indices from 1 to 3; all repeated indices are to be
summed. ) With this transformation matrix

Pg=u~»P» and Pg~=o~»g~pf»g (3)

thus one relative to which the element momentarily
moves with velocity I,.

De6ne
b„=5„+4,4„ (5)

where 8„ is the Kronecker delta. In the rest frame all
components of b.,' vanish except

~11 ~22 ~33 (6)

so that 8„ is a unit space tensor. A scalar product of
two unit space tensors is a unit space tensor. Also, we
have

4,5„=0. (&)
where P, and P„are tensor components measured in
coordinate system x„and P,' and P„' are measured We may use the unit time vector 4, and unit space
in coordinate system x, , which moves relatively to x, tensor 6„ to produce new covariant quantities by re-
with velocity u, : solving known covariant tensors into space and time

components. Any vector P, can be resolved into two
components, A, and B„

In describing the motion of an element of a continuum, P =A.+B„A,= S„P„B,= —@,4,P„(8)
we shall take the coordinate system x,' as attached to
the element at agivenpointinitstrajectory, sothatx, ' where, in the rest frame, A, '=(PP, P2', PP, 0) and
is the momentary rest frame (at that given point) for B.'= (0, 0, 0, P4'). Clearly, it is also the case that
which I,'=(0, 0, 0, ic). The coordinate system x, is

0' 0'

'M. Abraham and R. Seeker, Theoric der Elektrisitat (B. G. S.,A, =A., b.,B,=O, (9)
Teubner, Berlin, 1933), sixth edition, Vol. II, p. 356. R. Tolman, 4,A, =0, 4,8,=A,P,= i/40.
Relativity, Thermodynamics and Cosmology {Oxford University

is a space vector and B„atime vector. P4', we see,
Relativity, Uohn %iley and Sons, Inc. , ¹wYork, 1950), p. 64.

~ See reference 1, p. 286. equals a scalar invariant.
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0-=4-+X.„ (10)

from Kq. (3). For the symmetric case, we have

Q«=zcf«4'+zu«u f 4'/c(1 zu—4/c),

))I),= b „5,.$„., (11) and
Q«= —u P 4',

Any second-order tensor P„can also be resolved into
components,

(23)

Clearly, we have

'0,
0,
0,

, $41)

0, 0, f)4'
0, 0, f«40

0, 0, $z«'

&4z', )14«', A4' )

(13)

Q„B,=Q„B,=0,

p.,&4.=x.,z1,. (15)

The component p„ is a pure space tensor, but x„ is
a mixed space-time tensor which we may resolve fur-
ther. Let

Q. "=cb»$„4, chal), xp,&,)—
Q,&') =cb.,g„4,=cb.),Xr) Z1 r

(16)

x„= (4—4„)I)„,+z7„d,f,.+zb,4,d„d„f„„) .(12)

In the rest frame Q„' gives the pure space components
of p.,', and X.,' gives the other components:

'P&) ) 4')z ) )t )z r

4'z)', Pzz', Pzz', 0

, 0, 0, 0, 0,
'

&t) «=4«''+[(u P«~'+u«P„„')u„/c'(1 i—u4/c)5

+u„u«u. used„&%4(1 i—u4/c)',
(24)

4«4=(zu p «%)+iu«u u„p „%'(1 iu—4/c),

)t)44= uw un''ma /c .
It will be noted that although the various covariant
quantities &t „,Q„etc., were obtained by operation with
zl, and b„on a single tensor f„, nevertheless, each
quantity transforms independently of the others in
the Lorentz transformation and thus preserves what-
ever physical meaning is attached to it, unalloyed by
contributions from the other quantities, regardless of
the state of motion of the observer measuring them.

Identifying the symmetric tensor P„with the
energy-momentum tensor associated with an element
of continuum (as measured by an observer relative to
whom the element moves with velocity u,), we write
the equations of motion

&)d4 ))r 0)

the symbol 8 indicating partial differentiation with
respect to coordinate x, . From Eqs. (10) and (21) we
find

(1/c')(t, (X»u.u,+u.Q,+u,Q.) =8.&t)., (26)
In the rest frame, we have

Q
' = (zcf)4 ) zc)))'«4 ) zcA4 ) ))

Q,'"'= (icg4)', zc$4«0, zc$4«', 0)

Q, o) and Q, (z) are thus space vectors, so that

Q (oz1 Q (z)zl =0
If we also write

(17)

(18)

The vectors on the two sides of this equation can be
resolved into space and time components by the
method of Kq. (8), and Eq. (26) will hold for the space
components and the time components separately. The
equation on the space components will appear as a
basic equation in dynamics; the equation on the time
components, as the 6rst law of thermodynamics.

Q
—

Q (&) —Q
(&) (22)

The explicit expression for any covariant tensor in
terms of its components in the rest frame is obtained

d~zh po z1 zl X 444 X» (19)

which shows that $44' is equal to the scalar invariant
trace X» of the tensor X„,then we may write Kq. (12) as

-=-[( Qzl. '"/ )+(~. .Q'"/ )j-si.zl.x., (20)

Here y„appears resolved into the pure time tensor,
—z1,4,X», and the mixed space-time tensor, —[(zI|,Q,o)/c)

+ (zl.Q.")/c)j.
%e shall be interested only in the case for which the

original tensor P, is symmetric. For this case )f. „and
x„are symmetric and

X,= (1/c')(u,—Q +u,Q,+u,u, X»), (21)

where we have written

where

Since, according to Eq. (21),

X-&. ,=u(Q./c')(—du. /dr),

we may also write Eq. (27) as

(29)

&)) Xppu))+ c)))Q))= )i))))~rur (30)

If we interpret x» as the scalar invariant energy density,
Q, as the vector heat flux, and q), as the stress tensor,
then Eq. (27) becomes the statement of the first law of
thermodynamics. Note that Kqs. (17) and (13) for the
symmetric case show that Q, and p„have properties

3. THERMODYNAMICS

Multiplying Eq. (26) by u, and using Eqs. (4), (14),
and (18), we obtain

B.X,pu.+8+.+(Q./c') (du./dr) = &f).,&),u„(27)
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which make them acceptable to a rest observer as the
heat Qux and stress, respectively. The rate at which the
surroundings do thermodynamic work on the element
(per unit volume) is de6ned as the scalar invariant term
$,8,u, . We may write

@O'T~0'uT Qdt~ ref ) (31)

Bt)put)=0. (35)

Thus, we may de6ne pot, as that portion of x»N, /c'
for which the divergence vanishes in the absence of
chemical reaction. Equation (35) expresses the chem-
ical fact that a portion of the energy is inert to trans-
formation into other forms. ' Equations (27) and (33)
now become

p(d U/dr)+ B.Q.+ (Q./C') (du. /dr) =y.,a.u„(36)
p(a U/ato)+ aooQ&o+ 2(Qo%o) (ag&o/BP)

=go oaooN '. (37)

The tensor Q„we have taken to represent the stress
on the element exerted by its surroundings. In order to
formulate the second law of thermodynamics, it is
necessary to assume the existence of a stress system
independent of the surroundings and defined by the

' See C. Kckaxt, Phys. Rev. 58, 919 C', 1940).

Z.,= B.„B,„(-',)(a„~„+a„g„) (32)

is the symmetric rate of strain tensor encountered in
hydrodynamics. In the rest frame, as a pure space
tensor, Z~ ' has precisely the classical form and
Z,4'=0. In our dehnition, thermodynamic work is done
on an element only if distortion (strain) occurs. The
rate of thermodynamic work should not, however, be
confused with the rate of dynamic work, 54 Bpp p,
which contributes to the rate of increase of kinetic
energy [see Eq. (73) subsequently]. For a rest observer
Eq. (27) becomes

(ax,./at')+a 'x„ot '+a 'Q '
+2(Qoo/c')(aoto'/at') = @ o'a„'I,'. (33)

Apart from a term of order 1/c' which disappears if
the element is unaccelerated, this is just the required
statement of conservation of energy in the rest frame.
The term —aooQoo is the rate at which heat is trans-
ferred to the element in the rest frame, which justi-
6es our designation of Q, as the heat flux, ; aooQoo

is not invariant, however, requiring the addition of
(Qo%o)(auoo/ato) for invariancy. The subject of the
scalar invariant nature of the energy density we re-
serve for discussion at the end of this section on thermo-
dynamics.

9'e now write

x»= p(U+o')

where p is the scalar invariant mass density which must
satisfy the equation of continuity,

S.=Q /T. (43)

Then Eq. (40) gives

T[p(dS/dr)+ B.S.+(S./Co)(dg. /dr) J
s.a.2'+(y„—@„—')z„. (44)

Delne the scalar invariant speci6c Helmholtz free
energy

A= U—TS. (45)

Then, according to Eqs. (38) and (39), we have

B,A = sa,T (1/p)(a, y„')—, —

pd A/dr = pS(d T/dr)+P. ,'Z.„—
(46)

(47)

nature of the element itself. We represent this stress
by the tensor 4t)„' and call it the stress in the element,
as distinguished from @„,the stress in the surroundings.
(This corresponds to the distinction customarily made
in a thermodynamic treatment between the "pressure
in the system" and the "pressure in the surroundings". )
We assume a basic relation between the stress in the
element and the properties of the element

(1/p)(a, y.,') = ra.s a.U. — (3&)

This equation giving 8,&„' should be compared with
Kq. (26). Just as the space and time component equa-
tions of Eq. (26) appear as laws of dynamics and
thermodynamics, respectively, so wiH the space and
time component equations of Eq. (38). We discuss the
time component equations here. Multiplication by pu,
gives the thermodynamic equation

pdU/dr= pT(dS/dr)+P„'Z„. (39)

The scalar invariant quantities T and 5 introduced
here have the properties of the Kelvin temperature and
the specific Clausius entropy, respectively. In fact,
comparison of Kqs. (36) and. (39) gives

Tp(dS/dr)+a Q,+(Q /Co)(dtt /dr)
= (4.,—4.,')z.„(4o)

so that in a process in which either p„=P,' or Z, =O
(corresponding to the two possibilities that either the
stress in the surroundings equals that in the element,
in which case whatever work is done by one stress sys-
tem is done against the other; or there is no rate of
strain of the element, in which case neither stress
system does any thermodynamic work), we Gnd

TpdS/dr= B.Q, (Q.—/C')(du—./dr).

In the rest system this becomes

TpaS/ato aooQoo 2(Q„%o)(auoo/at ); (42)

i.e., the heat absorbed by the element (plus a term of
order 1/c', which disappears in an unaccelerated ele-
ment) is equal to the temperature times the entropy
increase of the element.

I.et the entropy Aux vector be defined as
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u,S„=S+pSN„ (52)

u, B.S„=p(dS/dr)+B. S,+(S./c')(du. /dr), (53)

so that Eq. (48) becomes simply

Tu, B.S.,= u,S.,B.T—p(dA/dr)—+y„Z., (54)

The second law of thermodynamics can now be
written in covariant form as

u, B.S„&0. (55)

For the rest observer, according to Eq. (53), this gives

p(BS/Bt')+Bi, 'S~'+2(Si,%')(Bui'/Bt') &0, (56)

which states that the local entropy production rate, plus
a term of order 1/c' which vanishes in an unaccelerated
element, is nonnegative. TN„B S, is therefore the energy
dissipation. We have therefore from Eqs. (44) and (54)

S,B.T+ (P.,—P„')Z—.,&0, (57)

—(pSu.+S.)B,T p(dA/dr)+P—.,Z„)0 (58).
Consider now a continuum which is isotropic even

when in motion. %e may write

0-'= —PB- f = 4w'/3 —(59)

where p is the scalar invariant hydrostatic pressure in
the element. In this case we have

@.,'Z.,= —pB u.= ppd(1/p)/dr, —(60)

so that Eq. (57) becomes essentially identical with a
previously published result in which it is shown that
(P„P6.,)B.u—„ the Rayleigh dissipation function for
viscous How of isotropie Quid, must be nonnegative in
isothermal Row as a consequence of the second law of
thermodynamics. ' Equation (60) together with Eqs.

4 3.Leaf, Phys. Rev. ?0, 749 {1946),Kq. {10);and 752 (1946),
Zq. (40&~.

so that Eq. (44) becomes

T[p(dS/dr)+ B.S.+(S,/c') (du./dr) j
= —(S.+pSu.)B.T p—(dA/dr)+ y.,Z., (48)

The entropy quantities S and S, can be collected into
a single entropy tensor given by

S„= (—1/c') (pSu, u,+u.S,+u,S.) . (49)

It is evident, in fact, that by introduction of various
covariant quantities the tensor x„of Eqs. (21) and
(13) can be written

y„=—(1/c')[p(c'+A)u, u,]+TS„. (50)

S„ is thus a tensor with the same transformation
properties as y, . It is a symmetric tensor whose nine

space components vanish in the rest frame, the fourth
row and column consisting of

Si4' —— iSi—% and $44'= pS, (51)

where S44' equals a scalar invariant, Spp Also, we have
S 8 T=Sp'BI,'T=O, (64)

then these conditions are satisfied. It will be noted that
Eq. (63) was a requirement for Eq. (41), but a process
in which Eq. (41) is valid is not necessarily reversible
unless the condition of Eq. (64) holds also. Equation
(41) describes processes of heat transfer which may be
dissipative unless Eq. (64) holds. This fact is not usually
evident in classical thermodynamic discussions in
which temperature gradients are not allowed in the
static, homogeneous phases considered to constitute
a thermodynamic system.

Equation (63) is satisfied by either p„=p.,' or
Z„=O; Eq. (64), by either S,=O or b„B,T=O. There
is evidence that these conditions are not independent.
Thus, in Fourier's law of heat conduction, which may
be written covariantly as

TS,= —),pbp, B,T, (65)

where X„are coeflieients of thermal conductivity, and
in the linear relations assumed in the theory of viscous
How,

/tran

Qo'T TjtrTtt v~jtt vy (66)

where q„„„are coefIicients of viscosity, the vanishing
of the gradient of temperature and of the components
of stress, @„—@,' implies the vanishing of the heat
Qux and of the components of rate of strain. Because of
these relationships, we shall specify for reversible
processes that

8„8,T=0 and (67)

From Eq. (46) we have for a reversible process

8„Ops,p= —B„P&,A; (68)

i.e., the gradient of the specific Helmholtz free energy
balances the force exerted by the external stress; the
specific Helmholtz free energy acts as potential func-

(39) and (47) gives, for the isotropic case,

dV/dr= T(dS/dr) P—d(1/p)/dr, (61)

dA/dr = S(—dT/dr) pd—(1/p)/dr, (62)

in agreement with the usual thermodynamic equations
for this case. It may be noted that two independent
variables suKce to specify the thermodynamic proper-
ties of an isotropic, single pure substance. If the pres-
sure is given as the isotropic part of the total stress
system of the substance, then all thermodynamic work
appears as "pressure-volume" work. There is in prin-
ciple, therefore, no necessity to introduce numerous
work terms in the usual thermodynamic presentation
of the isotropic case.

When the equality holds in Eq. (55) the process
which occurs is nondissipative or "reversible". The
equality will also hold in Eqs. (57) and (58). H we
require that

(63)
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is a scalar invariant. But d7 is also scalar invariant,
where

dr =dÃ4/u4.

Therefore, (u4/ic)dV is scalar invariant. Hence, the
volume element in the rest frame,

dV'= (u4/ic)dV, (72)

is invariant. The integral of p over the 6nite rest volume
of a given region gives therefore an invariant massfpdV'. Similarly, the internal energy f'pUdVO, the
Heimholtz free energy fpAdV', the entropy f'pSdV',
for a region of finite extent are all invariant. Since the
temperature T and the isotropic pressure p are also
invariant in our presentation, we have found that all
the usual thermodynamic variables except volume are
invariant. That the invariance of temperature is con-
sistent with that of energy density is illustrated by the
case of radiation for which the energy density equals
O, T4, where 0, is the universal Stefan-Boltzmann con-
stant. These results may be compared with those of
Planck' who also 6nds scalar invariant pressure and
entropy but who concludes that temperature, as well
as volume, is diminished by the factor ic/u4 as com-
pared with the rest value when measured by an ob-
server with respect to whom the system moves with
velocity u .

C. DYNAMICS

The dynamical results of our formulation proceed
from the same equations as did the thermodynamic
results. The time components of Eq. (25) and Eq. (38)
Lor its equivalent, Eq. (46)] yielded thermodynamic
relations; the space components give dynamical rela-

tion for the stress p„' in the element. In the isotropic
case Eq. (59) gives

b.,Bpy» ——h—.,[B.p+(p/c')(du. /dr)], (69)

so that the pressure gradient in the element (plus a
term of order 1/c' which disappears in an unaccelerated
element) balances the force of the external stress.

It should be noted that reversible or nondissipative
processes need not be quasi-static, despite the common
statement to the contrary in the literature. It is well
known that much of classical dynamics contemplates
nonquasi-static processes which are thermodynamically
reversible, dissipative effective not being considered.

t See Eq. (77) below. ]
We conclude this section on thermodynamics by

considering the scalar invariant nature of the densi-
ties of mass, energy, entropy, etc. , which have appeared
in the preceding discussion. Now

P
(x„/c')(du. /dr)dV'= ~~(k,u4/ic)d V (80).

In the motion of a particle every point of which has the
same acceleration, if we let the mass be given by the
invariant quantity

m= "(x„,/c')dV' (81)

then the equation of motion for the particle becomes

tions. Multiplying Eqs. (26) and (46) by B„,we have

b„B,yp, (——1/c') [x»(du. /dr)

+Q,Bpup+QpBpu, +B,+Q,/dr], (73)

b„Bpgp,
' ——B„p(—B,A+SB,T). (74)

Equation (73) is the relativistic formulation of New-
ton's second law of motion for an element of continuum,
including thermal eGects. In the rest frame it consists
of only three equations of motion associated with the
three space coordinates,

(1/c')x»dug'/dto= B 'P„p'+(P g'/c')(Bu„'/Bt')
—(1/c')(Qg'B 'u '+Q 'B 'up'+dQg'/dt') (75.)

The fourth equation, both sides of which vanish in the
rest frame, is the kinetic energy equation, which may
be written

—(u4/c') (x„du4/dr) = uqB, Q~, (uq'/c—') (Q„B,u,)
+(u4/c')(Q4B, u, +Q,B,u4+B4+Q, /dr). (76)

In a reversible process, Eqs. (67), (73), (74), and (65)
give

(1/c2)(x~ du /dr) = —b„pB,A, (77)

so that the element moves like a particle in a 6eld of
potential A with a total mass density x»/c'. If the
process is not reversible, however, then there must be
added to the right side of Eq. (77) the terms

~«Bn(4nr 4» )—B«p~Br7

(1/")(Q.B. .+Q.-B;.+B.,dQ, /d. ) (78)

the first of these representing the force produced by
viscous stress Lsee Eq. (66)]; the second, the force
exerted on matter in a temperature gradient as a result
of the association of entropy with matter. The second
term must be considered in nonisothermal hydro-
dynamic processes.

If we write

(x»jc')(du. ldr) =&., (79)

where k represents the total force density given by the
right side of Eq. (77) together with the terms of Eq.
(78), we have, in view of Eq. (72),

~ M. Planck, Ann. Physik 26, 1 (i.908). mdu, /dr =E., (82)
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where E, is the Minkowski force on the particle

E,= t(k,u4/ic)dV

~aP+rr@r = ~~rTorp (84)

The mass m though invariant in a Lorentz transforma-

tion is not necessarily a constant of the motion, even if

the density p of the particle is constant, since m in-

cludes the thermodynamic internal energy Lsee Eq.
(34)7. Included in the Minkowski force is a term which

predicts a force on a particle when it exists in a tempera-
ture gradient, a force associated with the entropy the
particle possesses. If 8„8,T is constant throughout the
volume of the particle, then this force is —$8„8,T,
where 8 is the total entropy of the particle.

Equation (25) may be written in a form which facili-
tates comparison with the methods of field theory,
namely,

T,= (1/4m)(F, Fp,+b„Fp,2/4), (86)

where Ii„=8 A, —B,A. and A, is the four-vector po-
tential, then Q, coincides with the Poynting flux, the
energy density pU=(E"+EP')/8 swhere Z' and H'
are the electric and magnetic intensities in the rest
frame, and the stress tensor

41I Q~~ = —(F~p+u~u~F~p/c )(F~p+u~u„F„p/c )

+8.,F,„2/4, (87)

which reduces in the rest frame to the maxwell stress
tensor in its nine space components and to zero in its
fourth row and column.

where

T.,= —(1/c')(p(A+ TS)u u,+u.Q +u,Q,7+y., (85)

Equation (84) describes motion of a "naked" element,
i.e., an element devoid of thermodynamic structure,
through a field described by the energy-momentum
tensor T„. If we take T, to be the electromagnetic
tensor,
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Bound States in Quan@~~ Field Theory

MURRAY GELL-MANN AND FRANcIs Low
Institute for Advanced Study, Princeton, Eem Jersey

(Received June 13, 1951)

The relativistic two-body equation of Bethe and Salpeter is derived from Geld theory. It is shown that
the Feynman two-body kernel may be written as a sum of wave functions over the states of the system.
These wave functions depend exponentially on the energies of the states to which they correspond and
therefore provide a means of calculating energy levels of bound states.

L INTRODUCTION

EVERAL attempts have been made to calculate the
energy levels of bound systems of two particles that

interact through a quantized field. The standard
method' has been to calculate an efFective potential
energy function and to insert that function into some
two-particle Schroedinger or Dirac equation. In a case
where the major efFects of the interaction are obviously
in the nonrelativistic region (e.g. , the hydrogen atom),
such a procedure seems reasonable (although even here
higher order efFects may not be describable by a poten-
tial). ' However, in the treatment of nuclear problems,
one may have to deal with specifically relativistic inter-
actions and singular forces for which methods successful
in the atomic domain may fail entirely.

Recently, DancofP has used an approximate method
based directly on field theory. He has solved the

' G. Breit, Phys. Rev. 34, 553 (1929);Yukawa, Sakata, Koba-
yashi, and Taketani, Proc. Phys. -Math. Soc. Japan 20, 720 (1938).' Y. Nambu, Prog. Yheor. Phys. 5, 614 (1950).

'S. M. Dancoff, Phys. Rev. 78, 382 (1950).

Schroedinger equation for the state vector with the
requirement that it contain no particle-pairs and only
one field quantum. The formal extension of his method
to include higher approximations is dificult on account
of the necessity of separating divergences in a nonco-
variant way. Furthermore, it appears impossible in his
framework to make use of the elegant techniques
developed by Feynman4 and Dyson. '

Bethe and Salpeter have proposed an equation' for
a two-body "wave function"; their equation is covariant
in form and permits the separation of divergences as in
the S-matrix theory. Their reasoning, however, is based
on an analogy to that in Feynman's "Theory of
positrons"4 and the demonstration of equivalence to

4 R. P. Feynman, Phys. Rev. 76, 749 (1949);Phys. Rev. 76, 769
(1949).

~ F. J. Dyson, Phys. Rev. 75, 486 (1949); Phys. Rev. 75, 1736
(1949).

s H. A. Bethe and E. E. Salpeter, Phys. Rev. 82, 309 (1951).
We are indebted to Drs. Bethe and Salpeter for communicating
their results to us prior to publication. We understand that this
equation has been treated by Schwinger in his lectures at Harvard.


