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The recombination of two atoms in the presence of a third body is of importance in gas kinetics. The
evaluation of its probability coefficient can be reduced to that of the reverse process, the dissociation of a
molecule by collision, by means of the principle of detailed balance. Various mechanisms for dissociation
are briefly discussed, and an attempt is made to estimate the general order of magnitude of the cross section
for the excitation of a molecule into the vibrational continuum of its electronic ground state by carrying
through a calculation for the dissociation of a hydrogen molecule by collision with an electron, proton,
and hydrogen atom. The Born approximation is not satisfactory for the heavy particles at low energies,
and a tentative method of correcting the cross section by means of the exact one-dimensional problem is
given. The resulting value of the cross section for dissociation of a hydrogen molecule by a hydrogen atom
is of the order 10~' cm' at low energies; the three-body recombination coefficient for the reverse process,
namely, the recombination of two hydrogen atoms in the presence of a third, is ~10 " cm'/sec, which
is very much smaller than the experimental value.

I. STATEMENT OF THE PROBLEM

KACTIONS in which two atoms A and 8 combine
in the presence of a third body X to form a

molecule AB, namely,

A+8+X~AB+X*
are of great importance in many problems in the gas
kinetics of chemistry and of the upper atmosphere. The
problem is usually to understand the mechanism of the
energy transfer (1) for given reactants A, B, X; and for
this a knowledge of the probabilities of the various
possible mechanisms of energy transfer is necessary.
For any given mechanism, the probability of (1) taking
place can best be measured by a cross section 0.3 for the
three-body process dehned in the following manner.
Consider the reverse process of (1), namely, the dissoci-
ation of AB by the transfer of the energy of excitation
of X ) 1.e.)

AB+X*-+A+B+X (2)

and let p'p(rp) be its cross section, vp being the relative
velocity of AB and X*.Let I be the relative velocity
of A and 8 after the dissociation. The cross section
op(u) may then be defined by the principle of detailed
balancing, namely, that at equilibrium the number of
processes (1) per unit volume and time is equal to that
of (2) per unit volume and time

o p(u)u[A][B][X]= o p(vp) pp[AB][X*], (3)

where [A] is the concentration of A, etc. For any
assumed mechanism for (1) and (2), statistical mechan-
ical arguments enable one to obtain a relation between
irp(u) and op(pp) in terms of the statistical weights and
atomic and molecular constants of A, 8, AB, and X
alone. Thus, the three-body problem (1) can be reduced
to the solution of its reverse, the two-body process
(2), which is always simpler.

~ National Research Laboratories Postdoctorate Fellow.

If X is an electron, two diferent modes of energy
transfer (1) are possible, namely, (a) the electron may
take up as kinetic energy the energy of the excited
electronic state of AB arising from the close approach
of A and B, or (b) it may take up the energy of the
system A+8 in the vibrational continuum of the
ground electronic state of AB. The cross section 02 for
the reverse process (2) in the case (a), namely, the
excitation of the electronic state of AB, is of the same
general order of magnitude. e as that for the excitation
of the electronic state of an atom by an electron, and
hence o.2 10 "—10 ' cm'. It can be shown that
C= a3N, which is usually called the coe%cient of three-
body recombination, is in this case ~10 ~—10 "
cmPjsec. For ca,se (b), op for the excitation of the
vibrational continuum by electronic impacts will be
shown in the present work to be very small, leading to
opu 10 "cmP/sec.

If X is a heavy particle such as an ion, atom, or
molecule, there are other possible mechanisms in addi-
tion to (a) and (b). Thus, the system A+B may
transfer its electronic or vibrational energy to the elec-
tronic, vibrational, or rotational motion of X. In the
case of the transfer of electronic energy of A+8 to
electronic energy' of X, the cross sections 02 and 0.3
may be quite large if there is resonance. The exact
treatment of any of these processes is difIIcult, but on
general considerations they seem to be very improbable
away from resonance. For the low energies occurring
in the problems of interest, the velocities u, vo are small
compared with the orbital velocities e„b of the elec-
tronic processes, so that the collisions take place adia-
batically because the collision time, which is inversely
proportional to the velocity of approach, is large corn-
pared with the period of the electronic motion which is
inversely proportional to ~„b. For such low velocities

'H. E. Moses and T. Y. Wu, Phys. Rev. 83, 109 (1951},
Appendix 5.
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of approach, the cross section varies as exp( —v, gb/vo)
2

so that the cross sections r2 for typical electronic
reactions are less than 10 "cm'.

Thus, apart from resonance phenomena, if X is a
heavy particle, recombination will occur only by the
transfer of the vibrational energy of the electronic
ground state of 3+8 into vibrational, rotational, or
translational energy of X.' The excitation of vibrational
motion is in general dificult, while translational and
rotational energy are freely convertible into one another,
so that one need only consider mechanism (b),
namely, the transfer of vibrational to translational
energy. The adiabatic eBect of the previous paragraph
is not of importance in these considerations because
the periods of rotational and vibrational motion are
much greater than those of electronic motion.

The object of the present work is to make a reasonable
quantum-mechanical estimate of the probability of (1)
when two atoms A and 8, approaching each other in
the vibrational continuum of the electronic ground state
of AJ3, transfer this vibrational energy to an electron
or heavy particle as kinetic energy. To make the
calculation manageable, it has been carried out for the
case of two hydrogen atoms combining in the presence
of an electron, a proton, and another hydrogen atom.
By using the principle of detailed balancing (3), the
evaluation of the three-body recombination coeS.cient
C=0.3 I has been reduced to that of the cross section
0.2 of the reverse process, and we discuss the dissociation
of hydrogen molecules by excitation into the vibrational
continuum of the electronic ground state by collision
with electrons, protons, and hydrogen atoms. The de-
excitation of molecular vibrations in one-dimensional
collisions has been investigated previously, 4 but it was
supposed that van der %aals' forces provide the relevant
interaction. These forces are now known to be satis-
factory for distances greater than 5A however, the
excitation of vibrational levels requires very close colli-
sions as quite a large energy is transferred, and thus
the use of van der %'aals' forces in Margenau's sense is
not satisfactory in the present problem.

Recently, %u' has considered the excitation of vibra-
tions in hydrogen molecules by collision with electrons,
and in this case has obtained results which agree in their
order of magnitude with the experimental cross sec-
tions. 7 Here this interaction is modified to account for

~ N. F.Mott and H. S.W. Massey, Atomic Collisions (Clarendon
Press, Oxford, 1949), second edition, Chapter XII.

'There is one further possibility, namely, that the atoms A
and 8 come together in a state of rotational energy greater than
the binding energy, and transfer some or all of this rotational
energy to X. This possibility has not been considered in the
present work.

4 C. Zener, Phys. Rev. 37, 556 (1931);J. M. Jackson and N. F.
Mott, Proc. Roy. Soc. (London) A137, 702 (1932).

~ H. Margenau, Revs. Modern Phys. 11, 1 (1939).' T.-Y. Wu, Phys. Rev. 71, 111 {1947}.' W. Harries, Z. Physik 42, 26 (1927); H. Ramien, Z. Physik
70, 353 (1931};Chao, Wang, and Shen, Science Record, Acad.
Sinica 2 (4) 358 (1949).

the interaction of hydrogen atoms with hydrogen
molecules.

The calculation has been carried out to Born's
approximation. As the binding energy of the hydrogen
molecule is about 4.4 ev, the coupling constant ao
= Z' e'/k vois 2 and 69 for electrons and protons, respec-
tively, at the threshold. Thus, while the Born approxi-
mation will be satisfactory for electrons fairly close to
the threshold, this will not be so for the much more
interesting case of heavy particles. For protons of 20-ev
energy, the relation,

lgh Mgvob,

shows that for impact parameters b 0.5A, /~ 30, and
thus at this energy perhaps 50 phases must be con-
sidered. It does not seem possible to find any convenient
analytical expression for the phases, and thus it is not
feasible to attempt an exact calculation. However, the
one-dimensional problem can be evaluated numerically,
and it is suggested that a comparison between the
accurate treatment and the Born approximation for the
same one-dimensional problem may furnish a basis for
making a correction to the Born approximation in the
three-dimensional case. In this way the cross section
for the dissociation of hydrogen molecules by protons
and hydrogen atoms by excitation into the vibrational
continuum is estimated. The three-body coe%cient crau
of the inverse process is calculated from this by means
of (3).

II. THE INTERACTION

%'u' has considered the interaction of an electric
charge distant r from the center of mass of a hydrogen
molecule of nuclear separation p, in its normal 'Z state,
described by %'ang's variational eigenfunctions. ' After
integration over the electron coordinates, one term
which is not important for the small angle elastic
scattering of fast electrons is neglected; and as an
approximation to integration over the polar angles
(the molecule is not considered as rotating), the 6eld is
replaced by the central one

Vg (r, p)=2e'(1+S) 'A„e "'/r,

A„= (1——,'pB/Bp),

S=51+2pp+ (1/12)p'p'j"-e "'

p =2Z/ao, Z= 1.166, a, = it'/me'-'.

In its dependence on r, V~ is essentially the field due
to a neutral atom, but in bringing out the dependence
on the nuclear separation p through the overlap integral
S, it furnishes the coupling between the translational
coordinate r and the vibrational coordinate p without
requiring any further assumptions for the interaction.
Thus, V~ seems satisfactory for describing the vibra-
tional excitation of a hydrogen molecule by an electron
or proton; it will be satisfactory even for the dissociated

'See H. Bethe, HamSucIf, der Physik 24/1 {Verlag. Julius,
Springer, Berlin, 1933), second edition, Chapter III, Sec. 59.
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molecule during the collision provided the constituent
atoms do not move too fast and are in their normal
electronic states.

In the case of a hydrogen atom, the efFect of the
orbital electron must be considered as well as that of
the proton. At least at low velocities, the only efFect of
the electron will be to screen the proton, as the electron
has not on the average suflicient kinetic energy to
produce dissociation, even if its binding could be
neglected.

For the nucleus at a point r and the electron, in the
(1s) state, at s relative to the proton, the interaction
between the hydrogen atom and the molecule is

Vox(» p)=
~

»I A.(s) I'I V~(», p)

(6)-v (I+ l, p)I

= Vw(», p) —Ve(», p),

4 2e' (e-o"—e-'"1~)4
Ve(», p)= — A„

ao' 1+S(p)»ao(p' —4/ao')'

~
—2r /ag

+, (/)
p'+4/ao' l

=L2e/(1+S) jV,'e-";

V80 0619 g 1 44

The potential V~ has the correct qualitative form of
an intermolecular potential, being strongly repulsive
for r&ao and weakly attractive for r& 4.3@0, its mini-
mum value is —0.02e'/ao.

Since we are interested in the probabilities of exciting
the vibrational states, it is convenient to express V~
or V~ as a function of p in a more explicit manner.
Following Ku, ' only small displacements q of the
nuclear separation p from its equilibrium value po are
considered; and thus we put

8
V&(», p) = V&,(», po)+q —Vg(», p) (X= W, M). (8)

Bp

The p-dependence of V comes from the factor S=S(p),
and as pal. 5ao,

L(e/ep) v (», p)] o= (o 42/po) v (, o) (8')

Thus to this approximation only the matrix element of
the nuclear separation is required. '
III. THE TOTAL CROSS SECTION ep'. FORMULATION

OF THE PROBLEM

to hky, and in so doing excites the molecule into the
vibrational state P of energy (k'/2Mo)Po(P) =D
+(O'P'/2Mo) in the continuum; D is the binding energy
of the molecule, and Mo ——184bn/2 the reduced mass
of its two atoms. Thus the condition of energy conser-
vation is

(k /2MA)(k ' kf )—=D+ (O'P'/2Mo) = k'P'(P)/2Mo. (9)

If the incident particle is scattered through an angle 8,
and momentum kq is transferred, conservation of
momentum gives

qdq= —kokfd(cose) at constant ko, ki. (10)

The diBerential cross section for scattering into an
angle between 8 and 8+d8 is

2h(kg/ko) )
(Mp/2o»k')(kr, p] V&(r, p) ) lro, 0) ('sinede. (11)

For electrons and protons the interaction is V~, while
the screened interaction V~ must be taken for hydrogen
atoms.

Now, from Eq. (8), V&, (», p) is separable; and, in fact,
koP'/2Mo&(D for all values of P which contribute
noticeably to the cross section. This brings about a
further simpli6cation in that the condition of energy
conservation becomes

ko' —kg 2MgD/5'

so that the contributions of translational and nuclear
motion to the cross section may be treated as inde-
pendent. The vibrational state p lies in the continuous
spectrum, and its wave function must be normalized
per unit energy range if the standard expression for
the probability of a transition per unit time, Po„
=(2o»/k) ~(0( V~ p) ~', is to be used. In consequence of
this, go„' has not the dimensions (length) o and it is
necessary to integrate over 8~= h'p'/2Mo to obtain a
meaningful result for the total cross section. This
means physically that we get 02 as a function of ko,

giving the total cross section for dissociation by vibra-
tional excitation, integrated over all energies vrith
which the dissociated hydrogen atoms move apart.

Thus, from Eqs. (8), (10), and (11), the cross section
is given by

p Pmax

(TQ(ko) x(ko) (0,42/po) ) I

~ g„~odg, (12)
y=o

where

x(ko) = 2o»(ky/ko) (Mg/2o»k')'

We consider a collision in which the incident particle
of reduced mass Mg changes its momentum from hko

p Equation (8) is very satisfactory because 2/I1+S(p)I is
linear in p for 0.Sap& p&3up. In a width hp=0. 5up on either side
of the equilibrium position pp, the wave function of the ground
state, pp(p), has already fallen to $ of its maximum value, so
that the linear approximation (8) is suKcient in the region
where fp(p) is appreciable.

X ~" 1(fl V, (», po)10) lo»nede
Q

= 2w(Mg/2o»k'ko)'

kp+kf

X ~~
~ (f( V&,(», po) )0))'sinqdq.

& kp —kg

&(13)
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The value of p-, is not critical, because qp„' falls oB
very rapidly with increasing p, so that the integration
may be extended to inanity. The expression (fl VIO)
stands for a matrix element relative to the translational
motion, and x is a factor determined by the contribution
of the translational motion to the cross section. The
chief difhculty is the evaluation of g, as an exact
treatment is out of the question for heavy particles
(see Sec. I). The Born approximation is given in Sec. V
and. a detailed one-dimensional analysis of (fl V~IO)
in Sec. VI; the 6nal results for 02 are given in Fig. 2

and discussed in Sec. VII.

IV. THE MATRIX ELEMENT OF THE NUCLEAR
SEPARATION

It is required to And the matrix element go„ for the
transition from the ground state 0 to a state of mo-
mentum hp. For a harmonic oscillator there is a selec-
tion rule he= &1;but while the ground state may be
represented by a harmonic oscillator wave function,
transitions from it to states p in the vibrational con-
tinuum are no longer forbidden, as these are not har-
monic oscillator states.

The wave function for a state p can be obtained
readily from the KKB approximation by replacing the
exact potential well (as a function of p) by a square
well of the correct depth D and size, the potential
becoming strongly repulsive for p& p&. The wave func-
tion which has the correct (decreasing exponential)
form for p & p& and is normalized per unit energy range is

f,(p) =(1/h)(2Mo/~P)& cos{P(p—
pg)

——,'xI (14)

within the potential well; P=P(p) is given by Eq. (9).
The form of P„outside the well is of little importance
for the matrix element, as the ground-state wave
function Po decreases very rapidly on either side of po.

For the (0-+p) transition,

)t'qo„'dEo=3. 95X 10 oap'.

0

(16)

V. BORN APPROXIMATION FOR THE TRANSLATIONAL
MOTION

Plane waves exp(ik r) are used in the matrix element

(fl VIO) of Eq. (13), giving

(fl V&IO) = ' d're'o'V&(r, po),

(fl Vg IO) = (4~/p')G(q'/p').
&(17)

G(x) = 1/(1+x)+1/(1+x)',

(fl V~IO) = (4~/~') {G(q'/&') Vso—a, (q'/&')1.

~.(x)=2g/"'(g'/I"'+x)'

Changing variables from q to x=q'/p'in the integration,
p is given by

(~~1' (2
x=Ã

EQVo) EpJ

for electrons and protons

A —8 for hydrogen atoms,

op= hko/M"; Z'=2/1+S(po) = 1.115,

6rst Bohr radius. Ep=h'p'/2Mp is the kinetic energy
with which the two atoms of the molecule move apart
after dissociation; for E„=,'kT-(at 300'I), p=0.94ap '
and g '=7.0 10 ao'/e' while for Ep=kT, gonzo

——6.3
X10 "ap'/e'. Because of the normalization of 1'„, we
require J'&p, 'dEp. This is best evaluated numerically,
and gives

qo, ——(7qo/fi)(2Mo/xP)&)t' dg exp( ——,'Pgo) &min

G'(x)dx,

Xcosl-P(p —pi) ——,'x]
&(15)= —L2/(P'x)~&](MoP)& sinLP(pp —

p&)
—ox]

Xexp( —P'/2p)

&o'= (P/m') ~) P=Mo"o/k= 18.4/ao',

where cop/2x is the oscillator frequency.
It is reasonable to choose p~ so that at p= pi the

energy of the hydrogen molecule is equal to —2e'/ap.
Then it is found that the Hylleraas variational method,
gives po —p~=0.55ao, and, using this value, we find
that go„'= 7.6X 10 'aoo/e' at P=O 1.3X10 'aoo/e' at
/=3/ap and 0 at p=6.6/ap, ap=fP/me' being" the

8=)t {2V soG( )xH (o)xVs~Ho'(x) ldx, —
&min

xrnox, miu=L(kooky)/g]

VI. ONE-DIMENSIONAL TREATMENT OF THE
TRANSLATIONAL MOTION

We shall consider the one-dimensional problem to
estimate the error in Born's approximation for protons.
The ms, trix element (fl V~IO) in the sine wave approxi-
mation, which is the one-dimensional analog of Born s
approximation, is given irst. Kith the normalization

P(x) =(sinkx)/k&,

the matrix element for protons interacting with a

gpj vanishes for p=6.6/ap because of the sine factor, which
arises from the fact that the matrix element depends critically on contributions due to states with p) 6.6/up need not be considered,
the position of the nodes of P„relative to the peak in fp. The because the matrix element 'Qpp falls off extremely fast.
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hydrogen molecule is found to be

Z'e' (p'+k+')
( Vs 0)= log

4(kokf)& (p'+k ')

k~ ——kooky.

1 1 &
(19)

+~'I
(p'+k ' p'+k~'J

with the following simplified forms:

P((x—x~)« ~) 2$Q & cos(&—x/4);

k-k(x —xg),

Q-k

P(xg) = (X/C"") )& 1.21

y((x—x,)~—~)-iV IQI-&e-~&'.

«(21')

Especially at low energies, there is a considerable
diBerence between x~ for initial and final states. It is

"R. E. Langer, Phys. Rev. 51, 669 {1937).

Next we shall obtain the matrix element (fl Vs IO)

by two more accurate methods, namely, Langer's
modi6cation" of the %KB method, and also by
approximating for the wave function by bessel functions
of order chosen to fit the correct wave function at the
turning point of the classical motion. The two methods
agree quite well with one another.

(a) WKB Method

Langer's modification" is used to give the wave
function for all x as the usual %KB approximation
fails at xi, the turning point of the classical motion.
The results used here are the following. The wave
equation

I (d'/dx')+k' —(2M'/k') V(x) }&=0 (20a)

has a singular point at xi, where

Q'(xg) =k' —(2M g/k') V(x,)=0, (20b)

V(x) being given by Eq. (5). The zero in Q'(x) at x, is

a simple one, i.e., near xi,

Q'(x) =C'(x —x ) (C'&0) (20c)

and the desired solution, which is oscillatory for large
x and decreases rapidly for small x, is the following, if
.V is a normalizing constant:

0 (x) =&(2xk/3Q)'[Jt($)+ J-t(k)],
.'&.,: ~( ) = ~(21~i/-IQI)&At(l~l),

«(21)

~= "'Q()d,

convenient to split the range of integration into three
I: 0&x&x', where P(x) decreases rapidly with de-
creasing x; II: x~&x&x2 2x&, P(x) oscillates in a
complicated way; III: x&x2, where asymptotic values
of P(x)~sin(kx —const) may be used. In fact, the
regions I and II contribute most to the matrix element
(see Table II). The matrix elements are calculated in
this way at two energies, 41.4 and 165 ev, and the results
are given in Table I. It is seen that these matrix
elements are much smaller than those using sine waves.

V(x,) =Z'e'y, /x, .

Then Eq. (20a) is approximated by

(22a)

[(d'/dx')+k' (2M'/k—')Z''e'ygxg/x']/=0, (22b)

which has a (suitably normalized) solution

P(x) = (x/2)1xV (kx) v'= —'+(2uyi)-". (22c)

Unfortunately,

J„(kx)J„(k' ) x- edvx
0

has no simple analytic form unless v= v', when

', 7r)t J—„(kox)J„(kfx)e-& dx

= [1/2(k, k )ljQ„1(P'+ho'+k '/2kok ). (23)

Q„(x) is a Legendre function of the second kind. "-

However, bessel functions are well tabulated, and it
is possible to evaluate the matrix element numerically
with relatively little labor. This has been done at the
two energies at which the %KB functions were evalu-
ated, and the results agree quite well with the %KB
method (see Tables I, II).

The diiference lvf —vol decreases with decreasing
coupling constant ao, so that for ~0&6, say, we may
put vo=v~ and use the result (23) to compare the
"exact" matrix element obtained in this way with the
sine wave matrix element (19). Now (y'+k02+kf )/
2kokq 1+e, and e= (p——'+k ')/2kokr «p'/2k' as E +~;—

'~ G. N. Watson, 3 Treatise on the Theory of Bessel F~~nctions
(Cambridge University Press, London, 1944), second edition,
p. 390.

(b) Bessel Function Approximation

From Table II it is seen that the most important
contribution to the matrix element comes from the
region near xi, and thus one is led to look for an analytic
form of wave function which is satisfactory near xi and
also has the correct behavior for very large and very
small x. In fact, this can be done by replacing V(x) by
an inverse square interaction chosen to give the correct
value of xi. The result is a bessel function whose order
depends on n (and x&)—

Let
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TABLE I. One-dimensional matrix elements.

Energy (ev)
Coupling constants: cxo

CXf

Closest distance x1'
of approach (au) x1~

%KB
Vof (au) ~ 8essel function:

Sine waves:

41.4
27.5
30.0
0.522
0.572
1.41X10 '
1.25X 10-'

36.2 X 10-3

165
13.7
14.0
0.212
0.218
4.41X10-'
3.93X10~

25.9 X10 3

a superficial difFiculty arises from the fact that the
Q, (1) diverge logarithmically. For integral order n"
we have

Q.(x)/P. (x) =-', logL(x+1)/(x —1)j—L.(x),

1 1' 2' (e—1)'
L„(x)=

x—3x—5x— —(2e—1)x

a continued fraction. .
In fact, P.„(1)=1and the L„(1) are finite, so that p
need only be retained in the logarithm4 and, in fact,
the argument in the log term is the same as in Eq. (19).

The result (24) is quoted for integral n, but can
clearly be extended to all real positive orders with
appropriate modiications. Further, V(x) is generated
from e &'/x by the operation Ze (1 ~i+8/—8„), so that
to the first order the contribution of the term 2pZe &"

to the matrix element is just the same as in the sine
wave case. Thus the matrix element is

fails for large aq by giving too large a result for 1,
presumably because the diiference

i vf —voi becomes
noticeable.

—12gcorr f +Born (26)

will be a better approximation than XB„„,g is given in
Fig. j.. Since over an appreciable range of energies
g'&(1, this correction is hazardous; but the corrected
results of Fig. 2 for the total cross section 02 seem
reasonable, as the strong interaction represented by
e&&j. means that the wave functions will di8er con-
siderably from plane waves, and the modification in
general tends to reduce the probability of inelastic
processes. '-

I.O;

08

0.8-

0.4-

0.2-

VII. RESULTS: THE CROSS SECTIOÃ e2

It seems plausible on physical grounds to suppose
that the ratio of the exact value of (f i

Vw
i 0) to that

calculated using plane waves for the 3-dimensional case
will be of the same order of magnitude as thisratio for
the one-dimensional case, and thus one may hope that
for protons

Z8 ~2+k 2

(fl VwlO) = log
4(koky) & ii'+k '

0
0

i

I0
I l I 1

I5 20 25 30
a 0

1 1
+~'i

)
2L —&(1) (25)

& p'+k ' p'+k+')

Frc. 1. f, the ratio of exact to sine wave translational matrix
element of Vg in one dimension, as a function of the coupling
constant ao=Z'e' jhvo. Points Q come from the %KB evaluation,
+ from the approximate bessel function method of Eq. (25).

Tmr. E II. Comparison of the %KB and bessel function methods.

Fnergy (e~ )

Method:
WKB

41.4

Bessel
function

165
A

Bessel
WKB function

& Of'

10 Xau V
V II

Of

V

0.46
0.80
0.15
1.41

25.8
26.2
0.53
0.60
0.12
1.25

0.78
3.38
0.25
4.41

21.2
21.5
0.53
3.35
0.05
3.93

' E. T. Khittaker and G. N. Watson, 3fodern Analysis {Cam-
bridge University Press, London, 1927), fourth edition, p. 318.

"At Eo=41.4 ev, &=5.1X10 '.

where Lo(1)=0; Li(1)= 1; L2(1)= 1.5; Li(1)=2.3;
Lio(1)=2.9; L~o(1)=3.&.

It is now possible to give an expression for g, the
ratio of exact to sine wave matrix elements of (fi Vi 0)
in the one-dimensional case, as a function of the coupling
constant ao, and this is shown in Fig. 1. Equation (25)

If this reasoning is accepted tentatively, the results
for f may be used to correct ZB„ for hydrogen atoms,
as the effect of the screening field is small at low
velocities. Naturally, the corrected cross sections for
hydrogen atoms can be significant only in their order
of magnitude.

The total cross section o-~ is given in Fig. 2 as a
function of energy for electrons, protons, and hydrogen
atoms. The corrected cross section for hydrogen atoms
is not shown: at low energies it is equal to that for
protons, while at high energies it tends to 0.41 times
that for protons, because of screening; at an energy of
15 ev it is 6)(10 "cm'

VIII. THE THREE-BODY COEFFICIENT C= ego

The relative (3) holds in differential form, and must
be integrated to give the three body recombination
coeflicient C as a function of Zv= h'p'/23EO the mutual
kinetic energy of approach of the two hydrogen atoms,
and Ef= h2kl2/23IIx the kinetic energy of the third-body
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X relative to the center of mass of the two hydrogen
atoms. Following Moses and Wu, ' Kq. (3) becomes

2.0—

GapGxp Mppp' 1 dopkp'dkp
dC=mh (27)

G~aGx M~' kI p'd p

v here the 6's are statistical weights of the individual
systems. Now, from Eq. (12), we may write

so that

op(kp, k,)=B(k„k,)~ A(P)PdP,
0

(12')

GHpGx*Mppp' 1 A(P)
C(F.p&Ey) =nk.

GH'- Gx Mg' kI p

X)I B(kp, kI)kp'dkp (28).

"At low energies (&50 ev) use of the uncorrected Born approx-
imation cross sections increases o & and C for hydrogen atoms and
protons by a factor 10'.

'6 H. J. Schumacher, Chemische Gasreaktionen (Theodor Stein-
kopK Verlag. , Leipzig, 1938), p. 324,

The limits of integration are ki&ko&k2, where kP
= 2MaD/k' is the threshold of the dissociation reaction,
and kp=(kP+kP+(Ma/Mp)p']I is the maximum pos-
sible value of ko subject to conservation of energy in

the collision. One may take some suitable approximate
form for B=B(k,) in the integration, such as Bq(kP kP)—
for heavy Particles at low energies and (Bp/kpP)

XL1—exp( —X(k&—kp))j for electrons; the resulting

values of the three-body coefFicient are the following-
if E„=-,'kT and E~——5 ev, then for electrons, C~10 "
cm'/sec and for a hydrogen atom as third body,
C 10 ~ cm'/sec; if E„=kT, these values are reduced

by a factor 1.6." The values quoted increase roughly
linearly with E~ up to 5 ev; but above this the coefBcient
C for electrons increases less rapidly, while that for
hydrogen atoms increases faster.

Experimental values for the case of hydrogen as third
body are of the order 3X10 PP cm /sec, 'P corresponding
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FIG. 2. The total cross section 02 as a function of the energy
of the incident particle relative to the center of mass of the
molecule. (A) Uncorrected cross section for protons. (8) Un-
corrected cross section for hydrogen atoms. (C) Corrected
cross section for protons. (D) Uncorrected cross section for
electrons. The scale of o~ for (D) is 100 times larger than that
for (A)—(C): for (A)—(C), the unit is 10~ cm~, while for (D) it
is 10~4 cm'. Thus, the cross section for electrons is greater than
the corrected cross section (C) for protons only for energies less
than 30 ev. The coupling constant a0 is also shown on the abscissa
for electrons and protons.

to 0~ 10 '4 cm'. It is hard to understand such a large
value for a2, but it is clear that a much closer study of
both the experimental methods and their analysis,
and also of the theoretical calculations, f is necessary to
obtain a clear understanding of the recombination
processes observed in the actual experiments.

I should like to thank Dr. T.-Y. Wu, who suggested
this problem, for many discussions.

t Pote added in proof: —Further work has shown that if the
molecule is formed by recombination in a highly excited vibra-
tional state, the three-body coef6cient C may be larger than the
value calculated here by a factor of order 10'. This vrork will be
reported later.


