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Our choice of statistics in the nucleus is not so arbi-
trary as might be thought, since it amounts primarily
to a choice of normalization of P(sA,).

To interpret P(sA„) and Pn(s~g) further, we set
sA,~=O. Then

P(sA„)=f/(4s/3)u0'A (48)

or a correlation factor divided by the nuclear volume.
f=1 would correspond to random spacing of particles
in a box of nuclear volume. Using the Chew-Goldberger
wave function for the deuteron, we have

P(sA, )/Pn(0) =0.82f/A. (49)

For C", Eq. (47) yields 7=0.28f. Choosing the

~ G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950).

P-(0) = I4.(0)1',

where Pn(0) is the deuteron wave function for zero
separation of the neutron and proton. Pn(0) is just the
probability of 6nding them in contact. %'e write

reasonable value 1'~10, we have

f~35 0. (50)

"R.Christian and H. P. Noyes, Phys. Rev. 79, 89 (1950); R.
Jastrow, Phys. Rev. 81, MS (1951)."Chamberlain and Wiegand, Phys. Rev. 79, 81 (1950); Kelly,
I eith, Segrh, and Wiegand, Phys. Rev. 79, 96 (1950); Chamber-
lain, Segrh, and Wiegand, Phys. Rev. 81, 284 (1951).

~ H. York, Phys. Rev. 75, 1467 (1949).

This would seem to indicate a reasonably strong de-

gree of correlation in nuclear structure. Such a conclu-
sion appears quite compatible with the evidence pre-
sented by several authors from high energy p—p
scattering~" for strong nuclear interactions at close
distances. It is also compatible with the evidence con-
cerning nuclear structure which was given by Chew
and Goldberger~ on the basis of York's ~ measurement
of high energy (n —d) processes (see also the discussion
in I on this point).

The analysis of x+ absorption can be carried through
in the same manner. As mentioned in Sec. II, we have
reason to expect the absorption of x+ and m- mesons to
be similar.
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The polarization of bremsstrahlung due to electrons with initial energies much larger than 137Z & wc~

is calculated under relativistic, small angles approximations. The cross section for photons polarized normally
to the plane containing the initial direction of the electron and the direction of the photon is found to be
larger than for photons polarized in that plane. A similar calculation shows that the plane containing one
of a pair produced by a polarized photon together with the direction of that photon tends to lie parallel
to the plane of polarization rather than normal to it, except for one special case. The effect of the deviation
due to multiple scattering of electrons in the target upon the angular dependence of the polarization is
considered.

''N this note we shall investigate the polarization
~ ~ of bremsstrahlung due to electrons of energy
E&&i37Z & mc', where Z is the atomic number of the
target material. %e shall then carry out analogous
calculations for pairs produced by high energy, polarized
p-rays and obtain a preferred azimuth of the plane of
the pairs relative to the plane of polarization. In the
last part of the paper, we shall consider the efkct of
multiple scattering of electrons in the target upon our
results for the polarization of brernsstrahlung. This
note has been written in condrmation and in partial
extension of previous results" obtained by using the
method of virtual quanta. '

' G. C. Kick, Phys. Rev. 81, 467 (1951).
~ M. May and G. C. Wick, Phys. Rev. 81, 628 (1951).
8 C. F. v WeizsKcker, Z. Physik 88, 612 (1934);E. J. Williams,

Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 13, 4 (1935).

I. BREMSSTRAHLUNG

Let us consider an electron of total energy Ep,
momentum pp, de6ected by a nucleus of charge Ze.
Let a quantum of momentum k (we take c=1 from
here on) be radiated at an angle e~ with the initial
direction of the electron. (See Fig. 1.) After radiation,
let E be the total energy and p the momentum of the
deQected electron, and let its direction make an angle 8
with the direction of the emitted quantum. Call P the
angle between the yok plane (plane of emission) and the
ak plane, where e is the polarization vector of the
photon; call y the angle between the ppk and the yk
planes, and ~ the angle between the pe plane and some
6xed plane. If q is the momentum given up to the
nucleus, the conservation conditions read:

q= yp —y—h; Ep E+k.
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P sin, 8. the atomic radius. Accordingly, we choose for the
potential due to the screened nucleus'

V(r) = (Ze/r) exp( r—/u), (2)

FIG. 1.Relationships between the angles involved in Kqs. {1).

Writing all energies and momenta in units of the rest
energy of the electron, the differential cross section for
the process described is'

pdk 1
do = ——dQodQ-

4oro Pp k q'

P sin8 cos(y —P) J3o sin8, cosP'
X' 2~o —2E

1—P cosH 1—Po cosHo

P sinH cos(y —f) Pp slnHp cosP '
qR

1—P cosH 1—
Pp cosHp

p' sin'8+ pop sin'Hp —2ppp sin8p sinH cosy
t+k'

EoE(1 PcosH) (1—P—p cosHp)

where

p= Z'e'/137, Po
——pp/Ep, P= p/E,

dQ, = sinHodHodyp, dQ= sinHd8dy,

q'= p'+ pp'+k' —2pok cos8p+2pk cosH

2ppp(cos8p cosH+sin8p sin8 cosy).

This formula is valid for a pure coulomb 6eld. However,
as stated above, we are considering electrons with
initial energies large compared with 137Z &rrp (which
is about 16 Mev for lead or for platinum). For given
Eo, E, and k, the cross section reaches a sharp maximum
when pp, y, and k are parallel, that is, when

where u= 108hZ &/pop, and is so determined that in the
high energy limit the integral cross section agrees with
that obtained using the numerical values of the form
factor for a Fermi atom. Obviously, the more complete
the screening, i.e., the higher the primary energy, the
more justifiable is our choice. Its effect is to replace 1/q'
in Eq. (1) by 1/(g'+ q')', where g= Z&/108.

Furthermore, at high energies, as is well known, the
radiated photon and the deflected electron will both go
mainly in the forward direction, the cross section
decreasing rapidly outside of cones defined by Hp

——1/E„
8=1/E. We shall assume that the energies are such
that we can neglect both 1—Poo and 1—PP compared
with i, and by the same token we shall write

cos8o—1—
~ sin'Ho, cos8—I—~ sin'8.

Ke then Gnd that

q'= po' »npHo+ p' sin'8 —2ppp sinH, sinH cosy

+q'; &(Ep', E', k'.

%e have thus eliminated from consideration the very
soft quanta, with energies of order (1—Poo) tEo—m, and
the very hard ones, for which the energy of the de6ected
electron E is of order ns. An additional and more
stringent restriction on the upper end of the y-ray
spectrum is imposed by the screening assumption,
since screening is not effective in the production of
photons of energy:

k) Eo[EoZ&/137 2] '—
%e may now neglect the term proportional to q' in
Eq. (1) and integrate over y. ' The result is divided
into two parts, one, d~» dined as the cross section for
radiation polarized parallel to the plane of emission
(/=0), the other, do~, defined as the cross section for
radiation polarized normally to the plane of emission
(/= or/2). If we introduce the dimensionless variables,

so= Eo' sin'8o, x=E' sin'e,

we obtain under our approximations

q= q;; „—mk/2EoE (in units of ppp)

at relativistic energies. Therefore, under our assump-
tion,

p dk
do'~= ———d q'odSodX

21r pp k

1 ( x+xo+fof
i
-1+

xp(1+x)' E gX

q;; (&k/prpaoZ & (ao=radius of H atom)

and screening is effective. Classically speaking, the
most e8ective impact parameter is large compared with

The cross section is given after integration over the polariza-
tion variable by, e.g., Vf. Heitler The Queerer Theory ofRadiator
{Oxford University Press London, 1944), second edition, p. 164.

k' (x *o)'+f'(x+xo) t-+ (3)
EoE (1+xp)(1+x)Xt I

g' H. A. Bethe, Proc. Cambridge Phil. Soc. 30, 538 {1934).' The integration can easily be carried out without neglecting
the term proportional to q~, but the extra terms obtained are
cumbersome and of order 1-PP compared with the terms in
Eqs. {3}and {4}.
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p p dk 1 ( x+xp+fPq
d 0'&& = d ppdxpdx

2pr pp k xp(1+x)' X
k' (x xp—)'+f'(x+xp)

EpE (1+xp)(1+x)X&

4 (1+xpx)(x—xp)'+-
X& (1+x)'(1+xp)'' "

+
*' '} t, (4)

((1+x)' (1+xp)'i

X= (x xp)'+—2f'(x+xp)+f4,

h z2 is a uantity of order 10 ' for EQ&~100. The
i, 2. As seenfunction f(x) =der~ d~—„ is plotted in Fig. . s s

from the graph, we can expect the integrated cross
section for radiation polarized normally to the plane of
emission to be larger than the cross section for radiation
polarized parallel to that plane. The function f(x) as
well, of course, as do ~+do „have sharp maxima at x= xp

for which q=pm;„.
Let us de6ne p=k/Ep, so that E=(1 p)E—p Inte. -

grating (3) and (4) over x between 0 and any number
large compared with 1 (actually EpPx) gives

Q dp dpppdxp t p 1+xp
dog= 2—— 'l 1—6+—log

pr p (1+xp)'I 2 f
$2

—(1—p) —— (5)
4

p dp d pppdxp

pr p (1+xp)'l 2

XQ 1+XQ—4(1—p) log
(1+xp)' f

(1 xp)
} ~., (6)

4 . &1+xp)

f(xp, p) =do~ d(r-„
= (8&/ pr) [dp(1 —p)/p]Ld ip pxpdxp/(1+ xp)']

XDogL(1+ )/f] —2] (7)
&0.

The equivalent formulas obtained by the method of

30

25

20

max;——= Z5
Qf'

lo

FIG. 3. PP(xp} for F(e}=4 (e~f /2. Z~78).

E..e

F G 2.f(x}= "dqpdxgx for xp=1.I

2mk pe

f(p) = L2@(1—p)dp/p]} 4 logp(1/f) —14/9],

«ot(p) = (4&p/p) I L4(1 p)/3+ p ](p+log(1/f))

+ (1—p)/9}. (9)

(8)

The total cross section agrees with that given yiven b
Heitler' for the case of complete screening except that
@re obtain log178Z-& instead of log183Z &. The percent

' See reference 4, p. 170, Eq. (26).

virtual quanta under the assumption of complete
screening are the same as the terms containing

log((1+xp)/f) as a factor in formulas (5), (6), ( ),
except that the argument of the logarithm is 137Z—

&

instead of (1+xp)108Z &. Integrating over ppp and xp

gives
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can be shown to decrease monotonically as e increases
from 0 to 1 for a givep xo. On the other hand, as a
function of xo, it increases from 0 in the forward
direction to a maximum at xo=i, then decreases as
1/xp (see Fig. 3). If we take the logarithm to be nearly
constant, we have

PP(xp, p) =4xp[F(p)(1+xp)' 4x—pj ',

F(p) —
I L1+(1 p)'j/(1 p) }+(log((1+x,)/f)

—2) 'L(2 —p)'+2 p'j/2(1 —p)

=}L1+(1—p)'j/(1 —p) }+(1/2)L(2—p)'

+2p'j/2(1 —p) for Pt. (10)

FIG. 4. Relationships between the angles involved in Eq. (11).

polarization, de6ned in the usual manner as

PP(xp, p) =(do~ do«—)/(do~+do«) =f(xp, p)/do. ..(xp, p),

II. PAIR PRODUCTION

Under the same assumption for the screening as
above, Eq. (2), the differential cross section for pair
production by a polarized photon of momentum k in a
nuclear 6eld is'

p+p&E+ dQ+dQ
t

& p+ sin8+ cosy+ p sin8 cosy' ' p+ sin8+ cosrp+ p sin8 cosy
dr=@ - —4 E +E+ +q'

4s'k' (g'+q')' l 1—P+ cos8+ 1—P cos8 1—P+ cos8+ 1—P cos8

p+'sin'8++p 'sin'8 +2p+p sin8+sin8 cos(pp+ —y )+kp, (11)
E+E (1 P+ cos—8+)(1—P cos8 )

p+p&E+ dx+dx
de+

~x,-x
~

k=E++E, q=k —p+—p,

where the subscripts + and —refer to the positive and f(x+, x ) = do~ —do «
negative electrons, so that

and where the relationships between the angles are
illustrated in Fig. 4. Ke shall define dr=do. „when
y+=0, i.e., when the positive electron is produced in
the sk plane (plane of polarization); similarly, dc =do~
when pp+ ——s/2, i.e. , when the positive electron is
produced in a plane normal to the plane of polarization.
Vfe then integrate do» and do~ over the angle q
which the plane containing the directions of the negative
electron and of the photon makes with the plane of
polarization. It must be noted, however, that the
term proportional to q' in formula (11) may not be
negligible even under our high energy, small angle
approximation. This is because it contains a minus sign
compared with the plus sign contained in the 6rst
term (this situation does not arise in connection with
formula (1)). In particular, for dp =do„where cosy+
=1, the case q~q';„(.'. do„dp„, ) implies that
cosy = —1,' P+sin8+ ——P sin8 . Under these condi-
tions, both the first and the third terms in (11)become
small. De6ning x+=E+' sin'8+, x =E ' sin'8, we
therefore distinguish between two cases.

Case A: ~x~—x ~&& 0.01 (taking k~&100). Then the
term proportional to q' in (11) can be neglected and
integration aver q yields

x++x —~x+—x
~

X
x+(1+x )'

4(1+x+x )+ . (12)
(1+x+)'(1+x )' f

This is precisely the negative of the corresponding
expression for bremsstrahlung (which may be obtained
from Eqs. (3) and (4) by taking X=(x—xp)' and
neglecting terms proportional to f'). Therefore, the
graph of Fig. 2 with the sign of f(x) reversed will apply
to the polarization of the plane of the pairs, except that
its maximum has not yet been investigated.

Case B:
~
x+—x

~

=cf—0.01 c of order unity.
Writing x for x+ and integrating (11)without neglecting
the term proportional to q' yields

p+p dE+ dpp+dxdc 1
f(x, c)=g

2« k' (1+x)'(c'+4x) & f
2xLc'+ (1+x)'$ kPx

X (13)
(c'+4x) (1+x)' E~

' See reference 4, p. 196.Heitler's q+ is our q+ —y .
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In this expression, the 6rst term is the negative of the
corresponding expression for bremsstrahlung. The
second term is new, but changes neither the sign nor
the order of magnitude of our result.

It must be noted that if we put q =m in da» and

y =3pr/2 in dp~, it turns out that do~)do„unless
E+ sine+ ——E sin8 . This result has been investigated
before' and means that, if the directions of the initial
quantum and of the pair which it produces are in

precisely the same plane, the cross section is larger if
that plane is normal. to the polarization vector than if
it contains that vector. The integrated result, on the
other hand, shows that the emission of either particle
in the plane of polarization is favored over its emission
in the normal plane.

Using the word polarization to denote preferred
azimuth of a plane in general, it is interesting to note
that the opposite signs displayed by the polarizations
of the photon in bremsstrahlung and of either final

particle in pair production cannot be accounted for by
the obvious differences in sign between Eqs. (1) and
(11).They must be ascribed to differences in the form
of q, the momentum given up to the nucleus, between
the two processes. In the case of bremsstrahlung, as
noted before, under the high energy, small angle
approximation

q'= q';„+xp+x 2(xp—x)1 cosy (14)

for both do.» and da~. In the case of pair production,
on the other hand,

fol' do(o q =
q~~ 'q mi~+x++x —+2(x+x ) cospp

(15)
for do~, q'=q~'=q'm, ,+x++x +2(x+x )& sinpp

It is this diBerence between q»' and q~' which accounts
for the fact that da„+d'0~ in pair production. For the
anomalous Berlin-Madansky case mentioned above,
where in general do.»&80~, we also have

qii'=q~'= q'-.+(*+'—*-')' (16)

Therefore, the sign of the polarization is not a direct
consequence of the sign of the energies belonging to the
electron states involved, but rather stems from the
formulation of the law of conservation of momentum
and from the de6nitions of da„and of do~ for the two
processes.

III. EFFECT OF MULTIPLE SCATTERING

Any measurement of the angular distribution of
bremsstrahlung must be corrected for the deviation
suffered by the electron in the course of multiple scat-
tering prior to radiation. For the usual target of two
mils thickness, this deviation is several times larger
than the angle of maximum polarization. This may be
seen from any of the several formulas" connecting the

' T. H. Berlin and L. Madansky, Phys. Rev. ?8, 623 (1950).
' K. J. Williams, Phys. Rev. 58, 302 (1940), Eq. (3). S. Goud-

srnit an41 J.L. Saunderson, Phys. Rev. 58, 39 (1940), Eq. (18).

I I A 6CTI 0 l4 OF E'LE CT80ss

IN ST)AL
Pl A ECTl 0&

OF QQA g

FIG. 5. Relationships between angles involved in Kq. (19).

target thickness t with the average angle of deviation
in space 8,. Since we are only interested in the small

angle scattering, we shall use Williams' original" mean

square angle in space computed for the gaussian distri-
bution which holds closely for small angles:

(8,')« ——2k 1Og(p, /tt;„); k= (4rrStZ'e')/(pr4'pp'), (17)

where %=number of atoms per cc and the p's are
single scattering deviations projected on a 6xed plane.
rt4;„=2&/137Ep is determined by screening. To fit the
actual gaussian distribution, ee choose for p, the
angle such that the electron will suGer on the average
one single scattering deviation through P,„or a larger

angle while going through the target:

I'(y)dy= 1.
~ 4max

Taking E(4t4)d4k=kd4k/P', the Rutherford distribution
for small angles, gives @ = (k/2)&. The finite size of
the nucleus does not introduce an earlier cutoff for the
thicknesses considered. For Pt, expressing t in radiation
lengths, "Eq. (17) becomes

(8,P)« ——(229t/Ep) log(243t1) (P,—:Zp). (17')

At t=10 4 (about the thinnest targets made), " the
mean projected deviation due to multiple scattering is
about equal to p,„. That thickness may thus be
considered the lower limit of the range of validity of
the gaussian distribution in 8„f(8„t)

We proceed to calculate the cross sections as functions
of e, I„and 0, the angle which the emitted quantum
makes with the initial direction of the electron beam

by averaging over 8,:"

do(p, t& 0)= dQ,f(8,) t)dp(p) 8p).

The relations between 80, O„and 0 are shown in Fig. 5.
Clearly,

dQ. = sin8pd8pdx 8.'= 8p'+ 0~' —28p0~ cosy. (19)

"E.J. Williams, Proc. Roy. Soc. (London) A)6?, 545 (1939).
Williams gives the projected mean square angle of deviation, or
$g 0"B.Rossi and K. Greisen, Revs. Modern Phys. 13, 262 (1941)."Iam indebted to Professor W. K. H. Panofsky for this and
other experimental information."I am indebted to Professor G. C. Wick for the bulk of this
development.
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TaaLE I. Calculated values of the polarization.

Percent polarization jEq. (2S}]
Formula Value for e

0.079
1.4&(.)—1

0.26
1.4y{e)—1

0.78
1.1y{e)—1

0.34
1.3q (e) —1

0.62
1.3&(.) —1

10'

42%

14%

28%

f(8„ t)=(n/w) exp( a8—') 1/a=8' (20)

For the cross sections, we shall use only the log terms
in (5) and (6), and we shall further consider the argu-
ment of the logarithm to be constant. This is equivalent
to using the results obtained by the method of virtual
quanta. Writing xo=Eo28o2, we have in terms of the
angle x measured from the plane containing the initial
electron beam and the emitted quantum

4 dp Ep'8od8pdx 13I
Ide~=- — log 1+(1—p)'

pr p (1+Ep'8p')' Z& l

@2g2
—8(1—p) sin'x (21)

(1+E '8 ')'

f dp Ep 8pd8pdx 137
de((= —— log 1+(1—p)'

p (1+Ep'8p')' Z& l

+2/2
—8(1—p) cos'x . (22)

(1+E28 2)2

Introducing (19), (20), (21), (22) into (18) and inte-

'IE. Fermi, Nuclear I'byes (University of Chicago Press,
Chicago, 19SO), p. 47.

"See reference 12, p. 267, Eq. (1.63). This formula is the
distribution function for the projection of the angle of deviation
on a fixed plane, say 8, and must be multiplied by a similar
distribution function for 8» to give (20).

In what follows, we neglect energy loss caused by
ionization. At Ep—-300, Z=78, (dE/dh)„p/(dE/dx);,—150Z/800 —15 roughly. "We take for the distribution
function'6

grating over X gives

2y de 137 ue &"'

de& ————log PEp'e e"dpp
t Z~ (]+ppp)2

(1 p) pp I'
IL1+(1—p)'jIp— (23)

l (1+NP)' 2Pvpp I

'

2@ de 137 Ne &"'

dp»= ——log PEp'e e"'du
p Z~ (1+I')'

! 8(1—p)N ( Ig )
X L1+(1—p)'jIp —

I
Ip —I, (24)

(1+I')' ( 2Pvpp&

PP= (do~ dp n)/(do—~+do «)

Q Ig(2Pepp)
du e

—e"' Ip(2Pvpp)—
~ p (1+pp')' pvpp

, (25)
f' p(p) pp

de
4 (1+pp')' (1+pp')'

pp(p) = [1+(1—p)'j/(1 —p)

e
—e"'Ip(2Pepp)

'~ G. N. Watson, A Treatise on the Theory of BesseI, Functions
(Macmillan Company, Neer York, 1944), second edition, p. 79.

where u=Ep8p, p=Epo and P= a/Ep'= 1/(Ep'8. '). The
functions Ip=Ip(2PPu) and I~=I~(2PPu) are the Bessel
functions of imaginary argument. "

It is the value of the parameter p which will deter-
mine the feasibility of measurement. If P«1, the
angular dependence of the polarization will be obliter-
ated by the uncertainty in the calculated mean devia-
tion due to multiple scattering. For 1=~X10~, to the
approximation of Eq. (17'), P= 5. However, the thinner
the targets, the more difBcult it will be to separate the
beam to be observed from the background radiation
due to collimators, etc. . . . For this reason, it may
also be useful to compute the polarization for smaller
values of P. Thus, we have integrated expression (25)
numerically for P=xp 1, and 5, corresPonding to Pt
targets 0.38, 0.22, and 0.058 mils thick, respectively.
The results are shown in Table I. It may be noted
that, since e Ip(z) and e I&(s) are very slowly varying
functions of their arguments, the cross sections decrease
rapidly with increasing Ionce past a maximum of order
unity.
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