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alcohol, but only electron and hard gamma-rays when
a counter 61led with helium and alcohol was used.
A one-percent counting eKciency was assumed for these
x-rays determined with the argon-alcohol-6lled counter.
This figure could probably be in error by a factor of ten.
An analogous situation existed for Os'~. In this case,

the 0.75-Mev gamma-ray was assumed to be detectable
with a one percent counting efficiency.

The author wishes to express his appreciation to the
Atomic Energy Commission for making these irradia-
tions possible, and to the Oak Ridge National Labora-
tory for the handling and shipping of the samples.
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The correction to nuclear quadrupole moments on account of the quadrupole moment induced in the
electron shells has been obtained by solving the Schroedinger equation for the perturbed core wave functions
for I.i, Al, and Cl. The correction factor by which the average (1/r') over the valence electron function in
the equation for the quadrupole coupling should be multiplied to take account of the induced efkct is 1.11,
P.g3, and 0.6g, respectively. The previously described Thomas-Fermi calculation of this effect has been
carried out for 13 additional elements.

I. INTRODUCTION

HE correction to nuclear quadrupole moments on
account of the quadrupole moment induced in

the electron shells has been previously estimated by
means of the Thomas-Fermi model. ' In the 6rst part of
this paper we present a calculation of this eBect by
solving the Schroedinger equation for the cases of Li,
Al, and Cl. It was found that the inclusion of exchange,
which is not contained in the Thomas-Fermi model,

may change the quadrupole correction considerably. In
general, the exchange terms have sign opposite to the
direct terms. For Al and Cl they are larger than the
direct terms, so that the sign of the eGect is reversed,
the complete quadrupole correction being such as to
increase the interaction energy for a given value of the
nuclear quadrupole moment. Moreover, it was found

that the statistical model represents only a part of the
perturbation of the electron core by the nuclear moment

Q, namely, those excitation modes in which there is

only angular displacement of the charge, the charge
contained in any spherical shell remaining constant.
This part always gives rise to a shielding of Q. The
other part of the perturbation consists of radial displace-
ments of the charge which may shield or reinforce the
effect of the nucleus, depending on the shell structure
and the valence electron wave function.

In the second part of the paper, we discuss the eGect

of including the induced moment in the perturbation
which rearranges the electron cloud. %e also list the
results of calculations of the Thomas-Fermi value of
the correction for 13 additional elements, which make
it possible to interpolate the Thomas-Fermi correction
for all elements.

~ Research carried out under contract with the AEC.
' R. Sternheimer, Phys. Rev. 80, 102 (1950).

(Hp —Ep) ppy = —H gg p. (4)

In the following the zero-order functions Np will be
written

ppp=lp'(r) 0(e, y),

where Np' is the radial and 0 is the angular part of the

II. WAVE FUNCTION CALCULATIONS

The perturbed wave function of the core electrons
was obtained by solving numerically the Schroedinger
equation for the atomic potential as perturbed by the
nuclear Q. The procedure will be shown 6rst by con-
sidering the perturbation of the is state for Al. Let Hp
and H» be the unperturbed and the perturbed part of
the hamiltonian, respectively; Np and I» will denote the
unperturbed and the perturbed part of the wave func-
tion times r. %'e have

H p
—(O'V'/2m)——+ Vp,

where Vp is the central potential of the atom which was
taken as the Thomas-Fermi potential. The perturbation
H» is given by

H& = —Q(3 cos'8 —1)/2r', (2)

where r is the length of the radius vector from the
nucleus and 8 is the angle included by this vector and
the axis of the nuclear quadrupole moment Q; lengths
are in units of the Bohr radius a~, and H» is in ry
units. If Ep denotes the unperturbed 1s energy, the
Schroedinger equation becomes

(Hp+Hg)(ppp+Ng) =Ep(up+I'), (3)

since the 6rst-order perturbation of the energy is zero
for s states. Upon subtracting Hpep=Eplp and to the
first order in Q, we obtain
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wave function; the normalization is

~
0(8, y) ~

p sin8d8 = 1.
0

(5a)

(Sb)

IO
Z
O

D

up =cir+cpr + ' ' ', (9)

where the c; are constants. Thus, the right-hand side
of Eq. (7) behaves as ci/r'. The term with the lowest
power of r on the left is 6ui'/r'. Hence, the expansion
of ui' starts with a constant term ci/6. The complete
expansion is of the form:

+» = &o+@»r+2r +~3r +~4r +
+b pr' logr+ b4ro logr+ ~ ) (10)

where the a; and b; are constants. If we use only two
terms in the expansions (8) and (9), we find

Ao= —82, c»= 8.88, c2———97.7.

Kith Eo———98 ry, we obtain the following equations
determining the a, and b, :

6ao = 8.88,

6u» —26uo ———97.7,

4ap —26ui+ 180up =0,

—sbg —26u2+ 180@»=0,
—7b4 —6a4—26u3+180a2= 0,

—6b4 —26b3= 0.
This gives

co= 1.48, a»= —9.86, a2= —131)
{12)

b3 ——325) b4= —1408) a4 ———4.33e3—2287,

c3 is arbitrary. To obtain the solution for large r, Eq.
(7) was integrated inward from infinity, making use of
the asymptotic behavior, ui' A exp( —~Ep~ &r), where

For s states, 0= 1/v2. The unperturbed functions for
Al were obtained by integration in the Thomas-Fermi
potential.

In view of Eq. (2), ui has angular dependence
(3 cos'8 —1). If we write

ui ——Qui'(3 cos'8 —1)/2v2, (6)

where ui' is a function of r only, Eq. (4) becomes

(d'u, '/dr')—+ (6u, '/r')+ Voui' foui'= uo'—/r', (7)

where t/'o and Eo are in ry units. For small r we may
expand the potential Vo.

Vo = —(2Z/r)+A o+A ir+ (8)

where Z is the atomic number and Ao, A», ~ are
constants. Similarly, No' can be written
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F»G. 1. 1s function n0' and excited d function nI' for Al.

A is a constant. The inward integration was carried out
for several A. The values of A and ua were then deter-
mined from the two equations expressing the continuity
of ui' and dui'/dr at the radius ri (of order 0.03uu)
where the two solutions were joined. We note that the
perturbation of the wave function, ui'/r goes as a /ro

and thus diverges at r=0 (although it is square inte-
grable over the volume element). Moreover, Q/r' is no
longer small compared with Vo for very small r. Our
procedure is nevertheless valid, as is seen from the
following argument. We may assume that the quadru-
pole moment is distributed over the nucleus. If the
moment is due to a surface density over a sphere of
radius rp, the potential is given by —(Qr'/2rp')(3 cos'8
—1) for r(rp and thus decreases with decreasing r.
For Al, with ro ——4.5X10 " cm (nuclear radius) and'
Q=0.156X10 "cm' we obtain

(Q/2Zrp') =0.03

for the maximum of the perturbation relative to the
coulomb potential. Similarly small values are obtained
for Li and Cl. Inside r= rp, Eq. (19) can be 6tted to a
solution for the potential ( r') given previously; this
solution I»' goes as r' near r=0 and is consequently
regular. As would be expected, the matching of the
solutions at the nuclear radius has a negligible eBect on
the constants u; and b; of Eq. (10), so that the calcu-
lations can be carried out with Eq. (10) as stated above.

Figure 1 shows No' together with the perturbation u»'.
The perturbation of the density of the 1s electrons,
denoted. by Ap»„ is given by

Api, ——(4upui)/r'=Qup'ui'(3 cos'8 —1)/r'. (13)

Hence, the induced moment AQi, due to the 1s electrons

AQ» ——
Q~l up'ui'r'dr~I (3 cos'8 —1)' sin8d8

0 0

= (8/5)Q~t up'ui'r'dr. (14)
0

' J. K. Mack, Revs. Modern Phys. 22, 64 (1950).
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Accordingly, u~ is given by

I.5
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I
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ui-Q
i

cos'8 ——cos8 oui, r
v2 (2 10 )

v3 p2
yQ—

I

—cos8 )ui, ,', (20)
v2 (5

where the radial functions u~, y' and u~, „' are obtained
from

-I 5
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FIG. 2. 2s function u0' and excited d function N1' for Al.

d uy, I 12uy, y up
+ +Upu] f —Epug f ———

)
dr2 r2 r3'

d u], & 2uy j)+ + Upug, „—Epug p
dr r

(21)

u, =u, '(v3/v2) cos8. (15)

The 6rst-order perturbation of the energy E& is given by

Ei———-', Q f j [upo(3 cos'8 —1)/r'] sin8d8
0 0

The perturbation of the 2s and 3s functions is
obtained in the same way as for j.s. By following the
inward integration it turns out that u~' has nodes at
approximately the same r as up' and has the same sign
as up' (see Fig. 2). Consequently, up'ui' is generally
positive, and the electrons concentrate in the region
where (3 cos'8 —1))0.This leads to a shielding of the
nuclear moment and corresponds to the effect found in
the Thomas-Fermi model.

To obtain the moment induced. in the 2p shell, we
6rst consider the p state with magnetic quantum num-
ber en=0. The unperturbed wave function up may be
written [see Eq. (5)]

The calculation of u~, ) is similar to the calculation
of u~' for s states. Near r=0, we have the expansion:

ui, f air+ aor'+ aor'+ a4r4+ b4r' logr+ .
, (23)

where the a; and b; are determined by equations similar
to Eq. (11).For large r, ui, / goes as A exp( —~Eo~ Ir),
where A is a constant. Its value is determined by
matching the external solution with the series (23), m
which a4 is arbitrary. Figure 3 shows u~, ~' together with
u, '. Since up'ui, / is positive and [-', cos'8 —(9/10) cos'8]
)0 close to the polar axis, the excitation to f states
leads to a shielding eGect, similar to the excitation of s
states discussed above.

The induced moment AQy, p due to the oio=0 electrons
is given by

a0

AQf p=6Q) uo ui, y'r'dr) [0 cos'8 —(9/10) cos'8]
p p

The perturbation uj. obeys the equation:

(Hp E,)ui ——(Hi ———Ei)u„
X (3 cos'8 —1) sin8d8 = (216Q/175) t up'ui I'r'dr. (24)

(17)

v3 Qu,
' (3 3 i 1—Hiup= —

~

—cos'8sin8 ——sin8
)
——sing . (25)

2 r' (2 10 ) 5
v3„Qup'

I
3 9 ) 2

Hiup
i
——cos'8 ——cos8 i+—cos8 . (18)

v2 r' &2 10 ) 5
The first part of the square bracket gives rise to the f

The factor in brackets is written as the sum of an twave excita'tion. A calculation similar to that which

function and a p function. Fquation (17) now gives leads to Eq. (24) gives the contribution to the induced
moment. We thus obtain the total moment AQ~ due to
2p f:v3 f39'J uo

(Hp —Ep)ui ——Q—~

—cos'8 ——cos8 (—
v242 10 ) r' AQf (504Q/175) ) uo'ui f r dl .

p

(26)

where Ep is the unperturbed 2p energy. Prom Eqs. (2) For the m= &1 states, we can write —Hiup as follows:
and (16), we obtain

v3 )2 q I'1 1
+Q—

]
- cos8 lup'] —— i. (19)

vx&5 )
In order to obtain the 2~p excitation, we note that

the 2p shell is ulled; hence, we must require that u~, „'
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be orthogonal to No'. For large r, we write

v, = —c/», (27)

up' ——A' exp( —
~Ep~ &»), (2g)

where C and 3' are constants. %hen small terms are
neglected, Eq. (22) becomes

d'u~, „' C
I——Ny y
—holy, y

(fr r

2' exp( —
~
Ep~ l»). (29)

r' 2y

In calculating the energy splitting we must take into
account the penetration of the valence electron inside
the core. Thus, if Qqp(»)d» denotes the induced moment
contained between r and r+dr, the energy of interaction
E~q with the induced moment for a 3p state with m=0
is given by

E o=(2/5)Q " (1/") ~ q (")d"
J0

+»' qp(»')»' Pd»' d» (3.5)

V Jf= 1.
Jo

B=A'(1/r'), „/(C—2
~
Eo

~

'*). (30)

The leading term of ui, ~' is of the form Here s' is the radial part of the 3P function, with
B» exp( —

~
Ep

~
&»), where the constant B is determined

by
(36)

Thus, the solution of the inhomogeneous equation
which goes as» exp( —

I Ep
~

&») for large» is determined.
The general solution is obtained from this by adding a
multiple of n()', since No' satishes the homogeneous
equation. Thus if N~, „'"' denotes the solution obtained
by inward integration of B» exp( —

~
Ep

~

~»), the excited
wave function is given by

Ng, p
= ug, p

("&—Otno ) (31)

where 0. is obtained from the orthogonality condition:

~=
J

ui, „~"~~p d». (32)

In Eq. (30), C was taken as»Vp(») at the radius where
the numerical integration is started. Figure 3 shows
N~ ~'. In view of the orthogonality N~, „' must have a
node. At 8=0, the electron density is increased for
small »(up'Ni, '') 0), but for large» there is a decrease
of the density. Since large radii are weighted more
heavily (»') for the quadrupole moment, the total
induced moment for 2p~p excitation is negative, so
that the potential due to the induced quadrupole at
large r has the same sign as the potential due to the
nuclear Q ("antishielding eBect"). In view of Eq. (19),
the contribution of m=O states, denoted by hQ„, p, is

In view of Eqs. (16), (26), and (34), we have

8 3 504
qp=»' —g (Np Ni ) + (up Ni») p',

175

48
+—(up'ui, „')p„, (35a)

25

where the subscripts give the quantum numbers for the
unperturbed state.

The interaction energy with the nuclear Q is

Eo= —(2/5)Q I (u"/»')d»= —(2/5)Q(1/»')p„. (37)

On account of the penetration, the internal regions of
the induced distribution contribute more heavily than
the external regions. For Al, the 2p—+p excitation gives
a negative moment —2.19Q, and the other excited
states give a positive moment 1.06Q, so that the net
induced moment is —1.13Q (antishielding). Neverthe-
less, because of the penetration of 3p, we find that

4

AQ", p= (12Q/5) up'Ni„'»'d» , cos'8
Jo

X (3 cos'8 —1) sin8d8

= (32/25)QJ Np'u„„'»'d».
0

(33)

z
O
I

Z"0
a-)

OJ

Similarly, we obtain the contribution of m= &1 states
by means of Eq. (25). The total moment due to 2~P,
denoted by AQ„ is

AQp= (48/25)QJI up'Ni, „'»'d».
0

(34)
0.50 i00

RADIUS (ns)

FIG. 3. 2p function uo' and excited p and f functions for Al.
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Epq/Eo ———0.0064, corresponding to a small shielding.
The shielding excitations near the nucleus, although
their quadrupole moment is smaller, slightly outweigh
the 2~p excitation at larger radius because the region
near the nucleus is more important.

In the preceding calculations we have omitted the
exchange terms in the energy. In order to obtain these
terms, we 6rst consider the ised excitation. %e
assume that the 3p electron is in the pal=0 state. The
antisymmetric wave function for 3p and the 1s electron
with spin parallel to 3p is

the density:

p„=—2(up'/v2) f (v3'/v2) v' cos 8]/r' (41)

with the potential V„g due to the density:

p,p=Quq'L(3 cos'8—1)/2v21} (v3/v2)v' cos85/r' .(42)

The factor 2 in p,„arises from the presence of two such
terms in Eq. (40). We write

p =Qu, Y(v3/4) I L(3 cos'8 —(9/5) cos8]

+ (4/5) cos8}. (43)
up Q» (3cos'8 —1) }— +

I ! (1)
v2r r ( 2v2 )

Only the part of V~~ which is due to the cos8 term in
Eq. (43) interests us, since the other term gives rise to
a potential which behaves as an f function, and hence

Q» (3cos'8 1'I, ! does not interact with p, „.The potential V„~' due to

e' v3——cos8 (1)
v v3——cos8 (2)

!

where (1) and (2) indicate that the coordinates are
those of the 6rst and second electron, respectively.
%'e are interested in those terms of

r

V„p'——Q! —
iI ui'v'r'dr'

28
+r ui' rv' 'dr' !

— cos8. (44)) 5
If we denote the function in parentheses by f,(r) and
if V„&' is in ry units, we may write

E.i—=Jt4*(p'/ru)4dr Arp, (39) V„~'= (4Q/SvS) f. cos8.

The interaction energy E,~' of V„~' with p,„is

(45)

which are linear in Q (dr~ and drp are the volume
elements for the electrons, r~p is their distance of
separation). We have E.g'=

) ) Vpp'p, vr'dr sin8d8
0 0

1[up Qui (3cos'8—1) I' 13v'
+ } }

' (1) ' ——cos'8 (2)2lv2«& 2' &! }2" !

1 up' Qui' t'3 cos'8 —1) ' 3 v"
+- + } ! (2) ——cos'8 (1)

2 v2r r ( 2v2 ] 2r'

}
up Qu&' (3 cos'8 —1q! V3 v'

+ } ! (1) ——cos8 (1)
2vZ &! v2 ~

up' Qu~' (3 cos'8 —1& !
v3 v'

+ -} —
! (2) ——cos8 (2). (40)

&2r r L. 2v2

The negative term is the exchange eGect. In order to
evaluate this term we note that we may consider the
contribution to Eq. (39) as due to the interaction of

= —(SQ/15) t upYf, dr (46).
0

By means of Eq. (37), we 6nd

E*"/E&=+(4/3)
I

u 'v'f, dr (1/r'), „. (47)
0

%e note that the exchange eGect has the opposite sign
to the direct (shielding) interaction, provided that the
integral in Eq. (47) is positive; this was found to be
true for the s~d excitations occurring in the present
work.

The exchange for the 2~f excitation will now be
obtained. This will be done erst for the 2p state with
pal=0. The antisymrnetric function for the 3p electron
(pal=0) and the 2p electron (pe~0) with spin parallel
to 3p, is

up' Qus, r' f3 9 l 2 Qu
cos8+

}
—cos'8 ——cos8 }+-cos8 (1) —cos8 (2)

2v2! r r (2 10 J 5 r j r

3 Iu ' Quar' i3 9 i 2 Qu, „' tv'
' —cos8+ }

—cos'8 ——cos8 }+-cos8 (2) —cos8 (1).
r L2 10 i 5 r r

(48)
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VS ypv3 q1
p»"=—

]
up'—cos8 ))

s'—cos8
)
—.

& vz )ivz i ~
(59)

pv3 q (v3'
~ 1

p» =—2( —up' cos8
( I

—s' cos8
4)2 ) (V2 ) r'

(49)
The potential due to p»' which we denote by V»'
(ry units) is given by

Proceeding in the same way as for the s—+d wave, we with the density.
obtain the exchange term E~y, 0' for m=o as the
interaction of a density:

with the potential V„y due to the density: V»'= —(8Q/5) (pf.Pp+gPo),
v3/3 9 & /~3 where the funct&ons f, and g are as follows:
v2(2 10 ) 42

(60)

p„f is the sum of d and g functions; we are interested
only in the d function. Let us write

cos48—(3/5) cos'8= aPp+ bPp, (51)

where I'& is the Legendre polynomial of order /; a and
b are constants. %e obtain

f,(r) = (1/r') u~ Yr"dr'+r' u 'u'r' 'dr', (61)
0

g(r) = (1/r) ug, „Ydr'+ u~, ,Yr' 'dr'. -
F

The energy of interaction E», 0' is

b= (5/4)
' (cos'8 —xo cos'8) (3 cos'8 —1) sin8d8

40
=6/35. (52)

The d function part of V„f which will be called V„f' is
given by

E„.o'= (—32/125)Q, uo YfAr
J0

—(8/5)Q)i up'v'gdr (63).

Vpf' = (9/5)bQPpf p= (54/1 75)QPpf p

Here V„y, p is in ry units and fp is the function:

fp (1/r') ——uq, rYr"dr'+r' ~ uLr Yr' 'dr'.

(53) The second term in Eq. (63) is the interaction of the
I'0 term of p»' with the I'0 term of p»". As will be
seen subsequently, this term is very important. For the
2p states pu= &1, there is no Pp term; but the Pp inter-

(54) action makes a contribution:

%e thus obtain E„„,r' (24/125)Q ——u pYf,dr.
~J0

(64)

Er y,
o'=

~
p»V pr'r'dr sin8d8

0 0

We thus obtain for the total 2~p energy, denoted

and 6nally

= —(216/875)Q t upYf pdr, (55)
0 E»'= (—8/125)Q~I upYfgr (8/5)Q —upYgdr (65).

0 0

E„g,p'/Eo= (108/175) ~I up Yfodr (1/r')pp. (56)
0

By doing a similar calculation for the exchange of 3p
with the 2p—&f waves with pu= &1, one obtains for the
ratio of the complete 2p-+f exchange term, denoted
by E~g'.

Eof /EQ= (252/175) ~f uo p fpdr (1/r')3 . p(57)
0

In order to obtain the exchange for the 2p-+p excitation,
we consider the 2p state, prp=0. The exchange energy
may be regarded as resulting from the interaction of
the density (see Kq. (48)j:

4Qt' v3 y ] V3 q1
p»' ————

i ui, „'—cos8 i(
s'—cos8

i
—, (58))(v2 )rp

TmLE I. Ratio of the induced moment energy to the nuclear
quadrupole moment energy.

Egq/Eq
E'/Eq
E'(o)/Eq
E
E1(Th-F}

Li

—0.166
+0.061

0—0.105—0.258

A1

—0.0064
+0.033
+0.174
+0.201—0.121

CI

—0.094
+0.037
+0.472
+0.415—0.093

The terms of E»' will be denoted by E»'&@ and E»'&0),
respectively. The ratio E»'/Eo can be obtained by
means of (37).

The preceding calculations were carried out for Al,
Cl, and Li. The results are given in Table I, where we
have listed the ratios of the induced moment terms to
the interaction with the nuclear moment. Eoo/Eo is
due to the direct interaction with the induced moment
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[Eq. (35)j. We have separated the exchange into two
parts, E'/Eq and E'&'&/Eq. The first part includes all
terms, except the I'0 interaction and the p shells which
is given by E'~0&/Eq. For Al, we have

' (E ~')- (Enf')2~ (E~n'"&)2~
+ +, (66)

jvq „=j gq jvq QQ

E'(o&/Eq —(E '(o&), /Eq (66a)

Ut

z
I-
LP 0

E. is the total ratio of the energy splittings, and R~ is
the corresponding Thomas-Fermi result. The numerical
calculations were similar in the three cases. For Cl, the
3p shell lacks one electron for completion. It can be
easily shown that the calculations of the energy ratio
can be carried out by considering a 3p electron inter-
acting with a complete 3p shell. The 3p vacancy acts
essentially as a 3p state with + charge. ' The Hartree-
Fock functions' for Cl were used for the No. The
atomic potential Vo was taken as the Thomas-Fermi
potential. For Li there is no quadrupole coupling with
the ground (2s) state, and the calculations were per-
formed for the valence electron in the 2p state. The
Li is function was taken from the work of Fock and
Petrashen to obtain the 2p function we used the
potential of Seitz.'

The disagreement between the present results and
the Thomas-Fermi values (see Table I) can be attrib-
uted in major part to the fact that the statistical model
gives only the direct interaction of the valence electron
with the perturbed core but excludes the exchange
terms. As is shown by the table, these terms are
considerable. In fact, for Cl and Al the I'0 exchange of
the valence electron with the p shells determines the
sign of the efI'ect.

The change of density predicted by the Thomas-
Fermi model [see Eq. (4), reference 1] consists in an
angular displacement into the regions with positive
(3 cos'0 —1) (for Q&0); the total charge within any
spherical shell (r, r+dr) remains the same. This dis-
placement corresponds to the nod and n~f excita-
tions. The model does not include the ep—»P terms in
which charge is displaced radially. In the direct inter-
action the n~p wave may give a net shielding or
antishielding eGect depending on the valence electron
function. For Al, the 2p—+p excitation gives an anti-
shielding effect because the 3p electron is external to 2p
and experiences a considerable antishielding when it is
outside the node of uq, ~' at r 0.5aH (see Fig. 3).
Hence, the 2p—&p term subtracts from the shielding
provided by the essed and 2~f waves; this explains
the smallness of Eqq/Eq. For Cl, the 2~P excitation
leads to an antishielding as for Al (term in Eqq/Eq
=+0.049). However, the direct interaction with the
B~p excitation leads to shielding. This can be seen
from Fig. 4, which shows the unperturbed Bp function
together with the perturbation u~, „'.The maximum of
No' is at r~1.Sard, while the perturbed density (at 8= 0),
(12/5)QNO'u& „'/r' is positive up to the node of N~, ~' at
r= j..9a~. Hence, the 3p electron hole experiences pre-
dominantly a shielding, particularly since the most
important region is somewhat inside 1.5u~, near the
maximum of N0'2/r3. The Bp—&p term in Eqq/E is
—0.079, so that for Cl, the sum of the Np —&p terms
gives a net shielding eGect.

The Thomas-Fermi Ej can be directly compared with
Eqq/Eq for Li and with the angular excitation part of
Eqq/Eq for Al and Cl; its values are —0.078 and
—0.063, respectively. Thus, E& is too large by a factor

1.5. This discrepancy is due at least in part to the
fact that the Thomas-Fermi density does not fall o6'

rapidly enough at large r. Figure 5 shows the values of
the density of induced moment (in units of Q) for Cl as
obtained from the wave functions (angular modes only)
and from the Thomas-Fermi model; they are denoted
by go and go', respectively. The expression for go is
similar to Eq. (35a), but excludes terms involving
(up'u&, „') „.For the statistical model, we obtain

go'=0. 2998(xx)~(x/r), (67)
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Fro. 4. 3P function u0' and excited p function for Cl.

~E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectru (Macmillan Company, New York, 1935), Ch. VI.

4 D. R. Hartree, Proc. Roy. Soc. {London) 156, 56 (1936).
~V. Pock and M. Petrashen, Physik. Z. Sowjetunion 8, 555

E,1935'.
~ P. Seltz, Phys. Rev. 47, 400 (1935).

where g is the Thomas-Fermi function and x is the
Thomas-Fermi variable, x=2.90r/a~ for Cl. We see
from Fig. 5 that the statistical model gives a reasonably
good approximation to go. Of course, the maxima due
to shell structure are smoothed over.

In the calculations of the wave functions, it was
assumed that the perturbing potential is that of the
nuclear quadrupole moment alone. Actually, the in-

duced moment contributes to polarize the core, In order
to investigate this effect, the Bp—&p wave for Cl was

recalculated, using the potential of the nuclear moment
plus the interaction of 3p with the induced moment.
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We obtain the following equation [see Eq. (22)j:
dug p 2uy, p+ +~ou1, p ~oui, p

dr' r~

, &&—2
(&

—
2)

pp

+4P,—4u'p (2„) P,u'p (2„)dr. (68)
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Here Ep is the unperturbed 3p energy, P(r) is given by

(69)
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FIG. 5. Induced quadrupole density for Cl from wave functions
(g0) and from Thomas-Fermi model (g0').

where Q&7odr is the induced moment between r and.

r+dr; P,(r) is the function

(7o)(8 (")= gpp ) o(2p)+gp, pu o (op)

with

r

0

+ (u ), (2p)u 0, (3p)/r')dr', (7l)
Jr

gp, (r) = (1/r) u'), (pp)u'o, (o.)«'
p

+ (u'), &2,)u'o, (2»/r')«'. (7»)

(
1—P

+4J Peu p, (pp)dr
r' 3p 0

g«0)
1+ = 1.38 — . 72

In order to evaluate P, [Eqs. (70), (71)j we used the
functions, u'~ (~p) and u j (Bp) obtained previously from
the nuclear perturbation alone. The numerical integra-
tion of Eq. (68) proceeds in the same way as for Eq.
(22). The solution is made orthogonal to uo' by adding a
constant times up' [see Eq. (32)j. The resulting u), „'

Here, u'o, (2p) and u'0, (3p~ are the unperturbed functions
for 2p and 3p, respectively [normalized by Eq. (5a)];
u'( &2„) and u'( &pp) are the 2~p and 3p-+p excitation,
respectively. The P-term in Eq. (68) represents the
shielding by the induced moment, and P, gives the Pp
exchange interaction of the 3p electron with 2p and 3p
[Eq. (65)j. The other exchange terms are less impor-
tant, as is shown by Table I (see E'/Eq), and were
omitted for simplicity. Ke note that

follows closely the u~, „'obtained for the nuclear pertur-
bation alone (Fig. 4) but is somewhat larger in magni-
tude, as is expected, since the exchange term has the
same sign as the nuclear perturbation. The increase is
about 20 percent. Its relatively small magnitude shows
that u j, „' is primarily determined by the nuclear pertur-
bation. Kith the new u~, p' we recalculated the Po
exchange term for 3p—+p:

(Epp'") op/Eq =4 gp„up"dr (1/r') 2„. (65a)
oJ 0

Its value is increased by only 10 percent, from 0.37 to
0.41.

Whereas the radial excitations are increased because
of the Po exchange, the angular excitations are reduced,
since the exchange terms are relatively less important so
that the direct interaction (shielding) predominates.
The 2s~d wave for Cl was recalculated [see Eq. (7)j,
with the perturbing term up'(1 —P)r' instead of up /r .
Thus, the shielding of Q by the induced moment was
taken into account, but the exchange of 2s with the
perturbed wave functions was not included. The ex-
ternal minimum of the 2s~d wave (see Fig. 2) is 0.73
of the minimum obtained for the original wave function.
The contribution of 2s to Eoq/Eq is reduced in about
the same proportion, from —0.0087 to —0.0066. The
actual decrease of u~' is somewhat smaller because of
the neglect of exchange. Ke estimate that the decrease
is of the order of 15 percent for all shells (see Thomas-
Fermi calculations subsequently).

Upon correcting the results of Table I for the eGect
of the induced moment on the excited wave functions,
we obtain for the quadrupole correction, E.= —0.10 for
I.i, 0.21 for Al, 0.46 for Cl. The experiments' from
which the present values of Q for Al and Cl have been
obtained consist in the measurement of the splittings u

and b due to the interaction of the electrons with the
magnetic moment pl and the quadrupole moment,

7 Davis, Feld, Zabel, and Zacharias, Phys. Rev. ?6, 1076 (1949).
H. Lew, Phys. Rev. 76, 1086 (1949).
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respectively, If the interaction were with the valence
electron only, a and. b would be given by

a= (popr/hI)[2L(L+1)/J(I+1)](r o)„,&—=a'pr(r ')„,~,

b= —(e'Q/i'o)(2L/2L+3)(r o)„,) —=b'Q(r ')„,(,
where po is the Bohr magneton, I and J are the orbital
and the total angular momentum of the atom, I is the
nuclear spin; the average (r o)„,~ is taken over. the
valence electron function. Q is determined from the
equation:

Q = (ba'/b'a) Ior,

ur being known independently. As we have seen, (r ')«~
in the equation for b must be replaced by (r-o)„,&(1+R).
It is not obvious that in the magnetic splitting a, (r ),—~

need not be corrected for the distortion of the spherical
electron coze by the asymmetric potential due to the
valence electron. Because of this distortion there may
be an interaction of the magnetic moment pi with the
core, as well as with the valence electron. This eGect
is being investigated; if it exists, Q will be given by

Q = (ba'/b'u) Ioz(1+R )/(1+ R),

where R„ is a correction to (r o),~, such that

a= pa(rr'), i(1+R„)
gives the magnetic splitting in terms of (r )„~. Of
course, if E =0, then the corrected moments are just
1/(1+R) times the present values.

The uncertainty of the wave functions introduces an
important source of error. In order to obtain an estimate
of this error, E was recalculated for Cl, assuming that
the true 3p function is more internal than the Hartree-
Fock function' and is, in fact, given by

I o, (o &=op o, (o &+0 1N o (o &, (73)

where NH 0, ~„„}is the Hartree-Fock function. The inner
maximum of I'0, ~»} is j..S times larger than for I Fo, (»},
and (1/r')» is increased from 5.7a~ ' to 11.3arr '. With
the new u'0, (»}, the perturbation N~, „'was recalculated.
The resulting value of the Po exchange term
(E»'"&)o„/Eq [see Eq. (65)j is 0.29, as compared to
0.37 for the original calculation. The decrease is due
to the fact that (E»'@)» increases less rapidly than
(1/r')» as 'o&zo»pis made more internal. Similarly,
Eoo/Eo is reduced from —0.094 to —0.072. An estimate
of the change of the other terms in R gives 8=0.32,

TAar. E II.Higher order terms in the induced quadrupole moment.

as compared to the value 0.4j.5 in Table I. We conclude
that the uncertainty of our values of R is of the order
of 30 percent.

III. THOMAS-FERMI CALCULATIONS

The Thomas-Fermi calculation' of the quadrupole
correction can be readily extended to include the e6ect
of the induced moment on the perturbation of the core.
We note that the potential due to the density by the
nuclear Q is given by'

+x' [(xx')&/x"j(1/r")dx' l

[e'Q(3 cos'8 —1)/4j. (74)

Here x and x are the Thomas-Fermi function and
variable, respectively, x= (Z&/0. 885arr) r, and P =0.2998.
V&(x, 8) is due to the density produced by the potential,—(e'Q/4r')(3 cos'8 —1). We are now interested in the
potential V2 produced by the perturbed density due to
V~. We obtain

f

Vo(x, 8) = —P —' x"(xx')&Vg(x', 8)dx'
jP o

+x'j [(xx')&jV)(x', 8)dx' . (75)

V~ has the same sign as the nuclear potential and
produces a density which tends to shield the nucleus.
By iteration, the total induced potential at x is given by

e'Q Z 00

V(x, 8)= —— (3 cos'8 —1)Q(—P)'I;(x), (76)
4 (0.885)'

where

I,(x)= (1/x') j" (xx') &x"I, g(x')dx'

+ x'j [(xx')~/x" jI, ,(x')dx'.

Ip(x) = 1/x'.

Element

B
Al
Se
Ga
In
Eu
Lu
Ac

5
13
21
31
49
63
71

0.220
0.121
0.452
0.055
0.038
0.405
0.125
0.116

0.075
0.045
0.207
0.020
0.016
0.159
0.051
0.069

0,032
0.029
0.113
0.013
0.014
0.069
0.035
0.067

R'

0.166
0.095
0.320
0.044
0.031
0.292
0.097
0.092

Finally, the ratio E. of the induced to the nuclear
splitting may be written

R= Q(—1)'R,,

where

oo
~

00

R,=ZP'
~

~ vI;( )dxr (0.885)' (v"/r')dr. (79)
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Here o' is r times the radial part of the valence wave
function normalized by Eq. (36). Table II lists R2 and
Ra for the eight cases of reference j.. It is seen that R2
is substantially smaller than R&, indicating that the
expansion is essentially valid. However, the decrease
from R2 to R3 is not as great; in fact, for Ac, we have
R3=R2. The reason lies in the failure of the Thomas-
Fermi 6eld at large r. Whereas I~ and I~ have their
maximum at @=0(I~(0)=~), Is is peaked at x=2.0
and the maximum of I4 is at x=5.2, i.e., in a region
where the Thomas-Fermi theory becomes inapplicable
because of the low electron density. This difhculty
would disappear if x were replaced by the Thomas-
Fermi-Dirac x (including exchange), which becomes
zero at a 6nite radius. ' We, therefore, believe that a
good approximation to the correction is obtained by
taking R~—R2+~R3. This is given as R' in Table II.
We note that R'/R~ is between 0.7 and 0.8. These
results are in fair agreement with the calculation for
Cl (2s—+d excitation). R~ can be obtained for all ele-
ments by interpolation among relatively few values.
RI depends primarily on the orbital of the valence
electron which determines (1/r') [see Eq. (79)] and the
penetration inside the core. Hence, it varies smoothly
and by a relatively small amount as a given external
shell is Glled. For this reason it is possible to obtain R~
for an intermediate element if R~ is known for two
cases at the beginning and at the end of the row of the
periodic table. Table III presents results for additional

The induced moment for the statistical model, Eq. (Sa) of
reference 1, diverges logarithmically for large x for the same
reason. This divergence does not lead to serious error, since e'
decreases exponentially in the region where the nuclear Q is
strongly shielded.

Twsz, E III. Effect of the induced quadrupole moment.

Element Z Orbital (vt)a~3 (t/r3)any R'

F 9 2p
Cl 17 3p
CU 29 3d
Br 35 4p
Y 39 4d
Ag 47 4d
I 53 Sp
La 57 5d
Lu 71 4f
Pt 78 Sd
Tl 81 6p
At 8S 6p
U 92 Sf

0.145
0.093
0.263
0.047
0.242
0.155
0.034
0.210
0.317
0.110
0.023
0.022
0.296

4.29
2.56
8.23
3,82
2.10
5.49
2.54
1.12

19.0
7.26
2.20
2.90
6.09

8.89
8.24
9.38

24.1
2.60

10.6
22.1
1.60

17.9
19.9
28.6
38.8
6.17

0.110
0.073
0.186
0.038
0.180
0.115
0.028
0.164
0.229
0.085
0.019
0.019
0.225

elements whose orbitals are the same as in the earlier
work' and for 4d, 6p, and Sf. The valence wave functions
y' were obtained by means of the Thomas-Fermi
potential. The last column gives estimates of R' which
were made by means of the values of R'/R~ for the
elements of Table II. Tables II and III provide two
values of R' for each valence orbital, so that R' can be
interpolated for the ground state of all elements.
We saw that for Al, Cl, and Li, the Thomas-Fermi R~
is bigger by a factor ~1.5 than the value calculated
from the wave functions for the angular modes. We
may conclude that for light atoms R'/l. 5 gives an
estimate of the shielding correction. It is likely that for
heavy atoms R' should be reduced by a similar factor.
It should be emphasized that R' gives only the angular
part of the quadrupole correction.
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