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The Radiation from an Electron Moving in a Uniform+ Magnetic Field
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The radiation from an electron moving in a uniform magnetic Geld is investigated quantum mechanically.
Reasons are given for expecting deviations from the classical calculations at electron energies of about 100
Mev in the presence of a magnetic 6eld of 10 gauss. The quantum-mechanical calculation is carried through
and is compared with the classical calculation. Although the deviations are considerable, it is explained why
the experiments of Elder, Langmuir, and Pollock of the G. E. synchrotron would not detect them.

I. INTRODUCTION

HE problem of the radiation of a relativistic elec-
tron moving in a uniform magnetic field has been

treated classically. '' The frequency spectrum of the
radiation emitted contains only harmonics of the fre-
quency of rotation of the electron. For a nonrelativistic
electron, most of the radiation will be in the first
harmonic, but for a relativistic particle it was pointed
out by Schwinger that most of the radiation occurs
in the higher harmonics.

For the sake of definiteness, we shall keep in mind
during our calculations the specific case of a 200 nsc'

or 102-Mev electron moving in a magnetic field of 104

gauss. For these numbers the angular frequency of
rotation of the electron is pp=8. 8X10P/sec. According
to Schwinger, most of the radiation will occur near the
harmonic X,= (E/mc')P and thus near the angular fre-
quency E,=(E/me')'ip, where E is the energy of the
electron and m its mass. In our case X,=S)&10' is the
critical harmonic and K,=7.04)&10"/sec correspond-
ing to a wavelength of 2680A.

The question now arises whether the classical calcu-
lation is correct for a high energy electron. The most
evident criterion, and the one pointed out by Schwinger,
is that the energy emitted of frequency E should be
small compared to the energy of the electron, that is
kE«E. This may be interpreted that if AE«E, then
the particle-like or quantum properties of light may be
disregarded and classical electrodynamics will succeed.
If we put for K the critical frequency E„our cri-
terior for the classical calculation to be correct over
the major portion of the radiation spectrum becomes
E«mc'(mc'/bpip), pip= eH/mc. For a magnetic 6eld H
of 104 gauss, this gives E«2.34)&10' Mev so that we
seem quite safe at E=200 mc'-.

However, a more stringent criterion arises from the
following considerations. Classically, the initial state
of the electron is taken to be a sharply defined orbit,
and its motion is maintained by some external agent.
Ignoring the reaction of the radiation on the electron
is not important as the electron radiates very little of
its energy; but quantum mechanically the initial space

*Now at the U'niversity of Notre Dame, Notre Dame, Indiana.
' J. Schwinger, Phys. Rev. 75, 1912 (1949).
~ G. A. Schott, Electromagnetic Radiation (Cambridge Uni-

versity Press, Cambridge, Eneland, 1912), pp. 109, 110.

position of the electron cannot be so sharply defined.
In the quantum-mechanical state in which the energy
of the electron is well defined, this state being given by
the eigenfunctions of the hamiltonian of this problem,
we find that the orbit of the electron will be smeared out
over a small distance b=(5/mcpp)~. This distance b

depends only on the magnetic field H. For H=10'
gauss, b=2.58)&10 ' cm. If the wavelength of the
emitted photon is large compared with b, then the
smearing out of the orbit is not noticeable, and we
should get the classical result; but if the wavelength of
the radiation becomes small compared with b, then the
uncertainty in the orbit will cause deviations from the
classical result.

Our criterion for the correctness of the classical re-
sult is then that the wavelength of the radiation be
large compared to the smearing out of the orbit, b; that
is that Eb/c«1. If we put for E, the critical frequency
E„ then our criterion becomes E«mc'(mc'/fiipp) t,
which we see is more severe than the previous criterion.
For H=104 gauss, our criterion says E«220 Mev and
indicates that deviations from the classical results
should be obtained at E=200 mc'.

II. THE QUANTUM-MECHANICAL CALCULATION

%e propose then, since we expect deviations from
the classical results, to calculate the radiation from an
electron moving in a uniform magnetic field H quantum
mechanically. Our experimental situation is such that
initially we have our electrons in a state in which the
energy is well known, and the orbit is fairly well de-
fined with a fairly well-defined radius. A little exarnina-
tion of the problem will show that we have only to
follow the well-known pattern of the usual atomic
radiation problem. Ke shall start out in an initial
state which is an eigenfunction of our hamiltonian for a
particle in a uniform magnetic field, which thus has a
definite energy and which is associated (in a manner
we will indicate later) with a definite orbit-radius.
We shall then calculate the transition probability/time
for the electron to emit a photon and to go to a final
state of lower energy whose associated orbit-radius
will be correspondingly smaller.

The initial and final states of the electron are eigen-
functions of the Dirac hamiltonian,

X= e.II+Pe,
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where II=p+eA, A is the vector potential for a uniform
magnetic field H in the z direction; A,= ——,'By,
3„=-,'Hx, A, =O. Also we have put k=c= I.

These four-component Dirac eigenfunctions may be
written down simply in terms of the eigenfunctions of
the corresponding nonrelativistic Schroedinger equa-
tion. The nonrelativistic eigenfunctions of an electron
in a uniform magnetic Geld H may be classi6ed accord-
ing to the following three properties the orbital energy
of the electron given by the quantum number n, the
s-component of the momentum p„and the position of
the center of the orbit given by the quantum number l.
Ke may write these eigenfunctions as'4

and
(pe )=u. (p, y)e' */L& (2)

u &(p, q) = (t!/2sn!)~(1/b)e '"t"t'Li"(t) e'"' (3)

g M. H. Johnson and B.A. Lippman, Phys. Rev. 77, 702 {1950).'L. Page, Phys. Rev. M, 444 {1930).' Magnus and Oberhettinger, Special Functions of Mathematic al
I'byes (Chelsea Publishing Company, New cwork, 1949), p. 84.

where t= p'/2b' b'=Pic/eB=A/m&oo, and v=n t g—ives
the s-component of the angular momentum. L~"(t) is
the associated Laguerre polynomial' and I. & a box-
normalization length.

As a nonrelativistic eigenfunction (2) represents an or-
bit with the energy Eave= En+ ps'/2m, En = tt(00(n+ 2),
where &oo eP/mc i—s—the nonrelativistic frequency of
rotation whose radius R„ is given by the classical rela-
tionship i2&ooR '=E„or R„=b(2n+1)&. The t quantum
number gives the location of the center of the orbit.
I,et xo, yo be the coordinates of the orbit center, and
let E=(x O+sy )Os&, then the center lies in the circle
8 i =b(2t+1) ~.

We can now write the Dirac eigenfunctions of Eq. (1)
in terms of the foregoing nonrelativistic eigenfunction. '
Let I, be a spinor which is the simultaneous eigenfunc-
tion of ol, and of P, o,x,=sx„s=+1,and PX.=X,.
Then the relativistic eigenfunctions for a state A,
which is given by the quantum numbers ntp3 and a
spin index s, may be written

QA [2E/(Eg+m)] (EA+ a'll+Pm)
Xx,gntv3(p, y, s) (4)

and corresponds to the energy

Ez E~vs. = I pP+m'——+m~0(2n+s+1) I
&

Either sign of the root in Eq. (5) is possible.
In the initial state of our problem we have p3 ——0; and

if we neglect the spin term s and the mass of the elec-
tron M, the quantum number n of the state is given by
n=(E/m)'(m/a&0). For a 200 mc' electron in a field
of 10' gauss, we have n=8.85&10".

The radius of the orbit is given by R„=b(2n+1) & as
determined by the radial dependence of the wave func-
tion, since the radius operator is no longer diagonal as
in the relativistic case. One can also see that the classi-
cal relation for a highly relativistic particle HeR =E

where

acvg'=eJ yt*a AK),y.dr,

Airi ——(2s/EL') &e-**'e~

or, putting in Eq. (4)

BCvg' ——[e/2E, (E,+m)] l dr iPn't'p3'X, *

X(El+a a+pm)e AKy(E, +e a+pm)X. Q Op. (8)

The spinor product can be greatly simplified, for

X, *(E,+a 11+Pm)a A~(E,+a 11+Pm)X.
=X, *(E.+m)(e AKga II+ e 11e AKi)

= (E,+m)x, *(2AKi II+a curlAKi)X„(9)

using the results that X, *eX,=O, PX,=X„and the
rule (e A)(e.8)=A 8+ia (AX8) where A and 8
commute with e.

Our matrix element reads now

5$
Kvg =—drlgn'l'v3'

jv g

e e
X —AKi ' N+ a"curlAKg f„pox~. (10)

m 2m

This last result, apart from the factor m/E„ is ex-
actly what we would have written down if we had
described the electron by means of the nonrelativistic
Pauli spin theory, Indeed, both the Schroedinger and
Dirac equations give identical results except that the
frequency of rotation of the electron is ~0 eH/mc——

is satisfied. The position of the orbit center is deter-
mined by l as before.

Our interaction with the radiation Geld is given by

3."=eo. Arad,

where A„~ is the vector potential of the radiation Geld
which permits the creation and destruction of photons.
For our problem we need to calculate the matrix ele-
ment of H' from an initial state in which the electron
has energy E„a certain radius R„, p3

——0 and 1=0 (so
that the orbit-center is well located), to a final state
with electron energy E~, a smaller radius R„, the Z
momentum p3', the orbit center given by l' and a
photon emitted with momentum K and polarization
vector elo, . The direction of the photon makes an angle
8 with the Z-axis, and we will put the azimuth angle
equal to zero for convenience. As pointed out in the
introduction, the energy of the photon emitted is much
smaller than the energy of the electron by a factor of
about 10' in the major portion of the spectrum, so
we will put E,=Ey in the following and regard the ratio
E/E, as very small. Our matrix element between the
states pf and p, is then
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nonrelativistically, while it is a&=coo(m/E, ) relativisti-
cally. This is true only when the energy carried oG by
the photon is small and is indicated by the classical
calculation in which the motion of the electron is de-
scribed neither relativistically nor nonrelativistically,
but is simply maintained by an external agent.

To simplify further our matrix element, we make
use of some properties of the II operator. First,
II@' oo=p*, 4' 00=0, and ILL=II,&ill„have the prop-
erties of annihilation operators,

therefore, we have

p(Ep) = (L/2s') E dQ/[1+ (cos 8)E/Er] (17)

dQ is the solid angle in which the photon is emitted.
Now as

Er= {pg ~+m2+mto02s }t+E (15)

and p~' E——cos8, then it follows that

(2E~/2E) e= (E/Er) cos'8+ 1:

II~N ~=tmCd052t (S+1)! Q +1, ] (1ia) p(Ep) = (I/2s)'E'dQ,

II N„g ———imcoob2& n& e~& ~. (11b)

So we write eKq II=~{ero, 1I++eKq+ II }, where

~K),+=~K), +~&K),~, and we can now write our matrix
element as

me( s.
X„'=——

~ } m~, f (e+I)&
E. m LEI.')

X «),-I(e', I'~m+1, O)

where

I(N', P~nj)= N„( ~ exp( iE~p —cos!p)u, (pdpdy, (13)

E~=E sin6 and we have dropped t%.e spin term in

Eq. (10), since it is smaller than the orbital term by
the factor E/E, .

Since the energy of the 6nal state does not depend on
l', to get the probability for the emission of a photon
with a certain energy E, we will have to sum over all
values of L'; that is, there are many final states with the
same energy diGering only in the location of the orbit
centers. However, we will show in the Appendix that
if the quantum numbers n and n' are very large, then
as long as the momentum of the emitted pQoton is small
compared with that of the electron, only the l'=0
transition is signi6cant. If the photon carried away ap-
preciable momentum, the recoil of the electron to-
gether with the action of the external magnetic 6eld
would cause the orbit center to shift and the transitions
to higher /' would become important. Since we are
interested in the low momentum photons, we will put
I' =0 in Eq. (13) and write I( on~ n, 0) =I„.„.

To calculate the transition probability per unit time
for our process, we will need the density of 6nal states
p(Er). This is given simply by the density of the
photon state, so that

since K/Eq« 1
Let us now specify the polarization vector as being

the unit vectors in the 8- and C-directions. CKy=Eg,
aK2=~. Then we have e8+=cosoi0 and ~+=+i.

Let we(8, E) and we(8, E) be the transition prob-
abilities/sec for emitting the photon K with polariza-
tions in the 8- and C-directions, respectively. Then we
find

and
&e(8, E)=Ewe(8, E) (19a)

I.(8, E)=Ew.(8, E). (19b)

It should be noted that only photons whose fre-
quencies are harmonics of the frequency of rotation, &,
are emitted. By conservation of energy we have for the
energy of the photon emitted

E=E —Eg

= (m'+2ncoom) & (m'+2—m'a&0m+ p3")l

—(m —n') Ace —p3'p3'/E

—(n —n')h(a,

(20)

where a&=coom/E is the frequency of rotation of the
electron and we have assumed that E&&E, and thus
p3'/E «1. So in the transition to the N' state, the
harmonic emitted is X=n —n'.

Our only task left now is to compute the integrals
I„.„+& and I„, &, which occur in Eq. (18). We will

quote the result here and give the derivation in the
Appendix;

dQ e' o)b 'E
we(8, E)= ——(e—+1)& —co cos'8

4m Ac c ku

X {I...+i—I., i}', (Iga)

dQ e' sub 'E
wg(8, E)= —(n—+1—)& —co

4m hc c Ace

X {I...+i+I. .. ~}', (Igb)

and the energy radiated/sec with 8- or 4-polarization
is given by

where
p(Ep)dE p p(E)dE, ——

p(E) = (I/2 )'Es'dQ,

I„.„=(n'!/n!) & exp( —~2m')( —u'/2)" i'I.„"(u'/2) (21)

where a=Eh sin8=4ob sin9, X=n—n', is the har-
DMnic radiated, and L„ is again an associated Laguerre
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polynomial. The quantity 0. involves the ratio of the
smearing out of the orbit, b, to the wavelength of the
photon emitted, so that according to the argument
presented in the introduction, the limit o.«1 should
give the classical results.

Now Eq. (21) involves a Laguerre polynomial of
very high order and it can be expressed in terms of
bessel functions. We have the following result for
Laguerre polynomicals of very high order (proof in the
Appendix).

(n+),) t t't~ —kx - t't ~1I.„"(t)=
(

—
I exp —

X~
—

) +t
n!n~ (n) 4n)

XA(2(nt)') (22)

if both n and )&. are very large and (t/n)1 is sufficiently
small. If we let b=2(nt)1/)&, and y= (1—b') l, then we
should have (t/n')'((1/y'

Substituting Eq. (22) into Eq. (21), we get

I„„=(—1)"&' exp[ —Xa/(2n')1]Jx(o. (2n')'), (23)

where we used L( n+X)!/ n!j —l n"&', if n is large and
X«e.

We may eliminate n' from Eq. (23) in terms of more
physical parameters. The radius of the orbit is given by
E=b(2n)&. So

n(2n) '= )& o&b (sinO)E/b
( )= )&.P sinO,

where p is the velocity of the electron. Also we have
)&,/(2n)l=n/P sinO. We put these results in Eq. (23)
and get

I„„=(—1)x&' exp( —n /P sinO) Jz(),P sinO). (25)

We put Eq. (25) in Eqs. (18) and (19) and get our
final result for the energy radiated with the different
polarization s:

dQe'
t

2a' )
I'o(8, K) =——PP) 'p& exp~ —

~

cos'8
2n. k ( P sinO)

jx(),P sinO) PX, (26a)
p sinO

dQ e' f 2n'
Pp, (8, E)=——P'X'p& exp ~—

2&r k ( P sinO)

Xt Jx'(XP sin8))' (26b)

where o. =Iamb sinO= )&,o&b sinO/e and X is the harmonic
radiated.

If we compare Eq. (26) with the classical result, ' we
see that our quantum-mechanical result di8ers only in
the factor expt —2a'/p sinO]. It is clear that for n«1,
we get the classical result as we expect.

In the result (26), u may not become too, large, as in
formula (22) we had an upper limit on (t/n)l This.

imposes the limit on 0,, that

o.«(m/E) (m/ppp) 1, (27)

( t) I&.""'='"+".
=, x!(,-x)!(,+~)!

Elder, Langmuir, and Pollock, Phys. Rev. 74, 52 (1948}.

(33}

or, in terms of the harmonic emitted, we should have

X(&m/o&p. (28)

Since the important frequencies occur for )&, (E/m)',
Eq. (28) yields the criterion for the correctness of our
result that

E«m(m/o&p) l. (29)

For a field of 10' gauss, this means E«j..64)&10' Mev.
This limitation is only a mathematical one owing to the
use of the formula (22). In the Appendix the more
exact result is given.

III. RESULTS

In Fig. 1 we have plotted the energy radiated per
second per unit solid angle and per unit wavelength at
8= &r/2, that is, in a direction which lies in the plane
of the orbit against the wavelength of the radia-
tion. It should be noted that the quantity plotted is
I'p, (7r/2, E)/wavelength, this being the quantity plotted
in the experimental paper of Elder, Langmuir, and
Pollock '

We have plotted both the classical curve and the
results of our quantum-mechanical calculation for an
electron of 200 mc' energy moving in a field of 10' gauss.
The deviations are.evidently considerable.

From Fig. 1 we may see why no deviations were de-
tected in the experiment. The wavelength range covered
in the experiment was only the visible region from
4000A to 8000A and also only the relative intensity
was measured. Figure 1 shows that in this region the
classical and quantum-mechanical curves are similar in
shape, though there is a considerable separation, and
either curve could be made to match the experimental
points.

APPENDIX

We will treat here the mathematical problem of calculating the
matrix element

I(n't'! n0) fu„& =exp( iKxp copy—)u„ppdpdy (30)

)'! k 1 co g
d +&-tt$(n+n' —l')I &,

n' —l'(t)n'!n! 2~

Xexpti I (n —n' —l') p —m(2t}& cosy I j, (31)
where we substitute into Eq. (30) the eigenfunctions as given by
Eq. (3) and n=Eb sine.

The integration over y can be done and gives a bessel function,
so that

P!
I(n.'l'~l0)=, i +' dtp 'tax+'&+"' '

n'!n! 0

XLt, e —t'(t) J)&+t'(a(2t) ~), (32)
where we put ) =n —n'.

Now we replace the Laguerre polynomial by its power series
expansion
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and we get
li tnit k „ ( 1)K

e-

)(f dte if)-(~+j )+'a—v+n J~ r (~(2L)$) (34)

For the integral over t we have the result'

dte 't&f,"+'i+"' '+K' (a(2t)&)

= (n' —l'+E)!{-'u)&(~+'& exp( —-', a )L -t +z~+'*(af /2). (35)

Thus, we have

I(n'l' il0) = ' {—~n') &("+') exp{—-',e')
n!

6

Ch

5

~V

0

L&

For the important case l'=0 we get

I„.„= —(——;a')~ exp( ——,cP)L„1
n. r

{37)

which is the result quoted in Eq. (21).
For L')0 we wish to show for n, n' very large that I(n'L'in0)

will be smaller than I„,„by a factor of order 1/n. In the sum over
E occurring in Eq. {36),as long as l'«n' and n'= 8,85X 10"in our
case, then one might expect tha, t

L„)+K"+' =L„.~+"+0(1/n). (38)

We will see in a later paragra, ph where we evaluate L„~in terms of
bessel function that this is actually the case. In Eq. (36) the sum
over E gives

loon
s

gono Qono II'ooo in, «o

4'. veins +L

FIG. 1. Plot of the energy radiated per second per solid angle
per unit wavelength in a direction which lies in the plane of the
orbit against the wavelength of the radiation for an electron of
200 mc' energy moving in a magnetic field of 104 gauss.

K, Et(l' —K)! " ' „0E!{l'—E)!

X L ~+'+0 —, =0+0 —, . (39}

And for very high l', l' n', the matrix element is small, since it will
decrease as l' becomes larger. Thus, only the l'=0 transition is
important.

We have now to establish the approximate relation, Eq. (22),
used to evaluate the very high order Laguerre polynomial occur-
ring in I, To this end we will expand L„(t) in bessel function:

(n+) )! e™ 1 tL„~(t)=-, , Z C —,—) — J), {2(tn)&), {40)
n~ {nt)'».=, "m!

exponential series, and we can write

(n+) )! 1 tL {t)= '
exp —) — +t J),(2(tn) &), (41)n~ (nt)"»

provided we can neglect those terms from which m&m; and this is
so if we have the restriction

~{t/n) ~«m. (42)

Equation (41) is the result we desire except that we have yet
to find the restriction under which it holds; that is, we must de-
termine m for which we can say Jy+ =Jg, X))m.

For large order bessel functions we may write Jg(2(tn) &) =Jg(M),
where in our case 5 is smaller than, but very close to, one, and'

where, in general,

—n, m! {n+X+r)!
J),(2{tn)&) =—Eg13(-', X~'),

m3&

where ~= {1—P}&&&1 in our case. Also

(43)

But in our case )«n, and if we further assume that only m«)
is important, since ) 10' in our problem, then C =1. For then
we have {n+)+r)!/(n+) )!~n"(1+()/n))", and the sum can be
done by the binomial theorem.

In order to sum Eq. (40), we will make use of the fact that the
order of the bessel functions involved is very large and thus
J +y—Jy when m«X. The more exact range of m for which we
can factor out the bessel functions from the sum over m in Eq. (4)
will be established later. For the moment let us assume this i's
permissible for m &m. The sum in Eq. (40) now becomes the known

where

J), =—E ('(3+m) '), (44)

(43)

..= ~1 —a{~i(X+m))2I~-P1—y(1—2m/~) g~.

It is.easy to see now that if we restrict m so that m«Xe, then
we find ~ —~=a(mi))&&e. So weputm=)e', and for m&&m, e will
dier only slightly from e and Jz+~=Jz.

Combining this value for m with Eq. (42) we get the restriction
for Eq. (41) to be correct:

(t/n)'«~=1/v'-
~ See reference 5, p. 88.
8 See reference 5, p. 95.

' G. W. Watson, Bessel PNnctions (Macmillan Company, New
York, 1945), p. 248.


