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Scattering of Slow Neutrons by Hs and CH4
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The mass tensor approximation, introduced by previous authors to calculate the scattering cross section
of slow neutrons by molecules when the incident energy Eo of the neutron is large compared with the average
level spacing of the molecular rotations, is extended here to take into account the molecular vibrations.
Calculations are made in the case of H~ and CH4 at room temperature for neutron energies below the thresh-
old of excitation of higher vibrational states. The agreement with experiment is very satisfactory in the
expected range of validity of this theory. The cross section for higher Eo is also treated in the case of H~,
without taking into account, ho~ever, the thermal agitation of the scattering molecules: the asymptotic
form of the total cross section for large values of Eg is derived, and numerical calculations show that the
asymptotic behavior is quickly reached.

'HE ratio o/of of the neutron scattering cross
section for nuclei in a molecule to that for free

nuclei has been calculated by Sachs and Teller they
treat the molecule as a rigid body and, using a classical
approximation which introduces a mass tensor for the
scattering nucleus, they obtain a simple expression for
the scattering cross section of a molecule in a given
orientation and with a given velocity of the scattering
nucleus. The averaging of this expression over orienta-
tion and velocity is then carried out by an elaborate
numerical procedure. They find that the numerical
result for the energy dependence of o/a~ thus obtained
can be well represented by the linear relationship:

a/ag a(kT//Eo) +——b, (&)

where T is the temperature of the scattering medium,
k the Boltzmann constant, Eo the energy of the incident
neutron, c and b suitable numerical constants. It has
been shown by Placzek' that this linear relationship
may be obtained by performing this averaging analyti-
cally. He obtains the coeiTicients a and b as functions
of the principal values of the mass tensor. His calcu-
lation leads to changes in the numerical values of a and
b given by Sachs and Teller, especially in the a for the
H2 molecule.

This theory —referred to later as MTR theory —is
based on the assumption that Eo and kT are large
compared with the mean level spacing of the initial
rotational states of the molecule, and small compared
with the vibrational quanta. Because of these two
conditions, its region of applicability is rather limited.
In the present paper, the mass tensor treatment, whose
validity depends only on the first of the above restric-
tions, has been extended by taking into account the
vibrations of the molecule (this will be referred to as
MTV theory) and applied to the case of H2 and CH4
molecules.

The derivation of the basic formulas giving the
scattering cross section by bound nuclei in the mass

* Now at the University of Rochester, Rochester, New York.
' R. G. Sachs and E. Teller, Phys. Rev. 66, 18 (1941).' G. Placzek (to be published).

tensor approximation is given in Sec. I. In Sec. II is
outlined the general analytical procedure which will be
used to treat the particular cases in the next sections;
the connection between MTV and MTR theory is
shown. The scattering by H2 molecules is treated in
Sec. III. The elastic cross section is calculated, the
doppler effect caused by thermal motion of the molecule
being taken into account; the numerical results are
given for a H2 gas at room temperature. The general
formulas for the inelastic cross sections are then given,
neglecting the doppler effect. The asymptotic behavior
of the total cross section at increasing Eo is calculated,
and a numerical study shows the rapidity of conver-
gence toward this asymptotic form. In Sec. IV, the
scattering cross section per proton in CH4 molecules is
treated. This study is restricted to the elastic cross
section below the threshold of inelastic collision, and
the same points are made as in the case of H2. (The
general formulas for the inelastic cross sections are
given in Appendix. ) Section V is devoted to the dis-
cussion of the validity of the theory and to the com-
parison with experimental results.

It is well known that, in calculating the transition
probability for scattering of slow neutrons by bound
nuclei, one can use a b-type neutron-nucleus interaction
and apply the Born approximation. The matrix element
occurring in the perturbation calculation reduces then
to (Fjexp(ip R/h)iI), where ~I) and ~P) are the
initial and hnal states of the molecule, R the position
vector of the scattering nucleus, ' P the momentum
transferred to the molecule. The molecule is assumed to
be initially in its ground state of vibration ~0), its
initial states of translation and rotation are denoted
by

~
Tz) and ~Rz); its 6nal states of vibration, transla-

tion, and rotation by ~1V), ~T&), and iE&). Call R, the
position vector of its center of mass; r, the vector

3The limitations of the present theory for low values of the
incident energy are such that the wavelengths of the neutrons
considered here are always small compared with internuclear
distances. Consequently, the interference terms between waves
scattered by different nuclei are merely neglected.
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SCATTERING OF SLOW NEUTRONS BY Hg AND CH4 205

joining this center of mass to the equilibrium position
of the scattering nucleus; w, the vibrational displace-
ment of the latter:

R= R.+r+w.
The matrix element considered above may be written:

(Tvl exp(oP R,/h) I Tr)(Evl exp(oP r/h)W+I&r) (2)

Erro" E——g=0. This gives: c=o„/4orm. It is convenient
to introduce

p=m 'M, v=(1+@ ') ',

mass tensor and reduced mass tensor, respectively,
expressed in neutron mass units. Then, substituting
Eq. (3) in Eq. (4) and taking the transferred momentum
P as new integration variable,

Wo ——(&VI exp(iP w/h) I
0).

5 ~ is a function of P and of the coordinates 6xing the
orientation of the molecule. If the temperature of the
scattering medium is large compared with the rotational
constant: kT)&B, the initial rotational wave function
can be replaced by a rotating wave packet with given
orientation and angular velocity at the beginning of the
collision. It is possible to give to 8'~ its value in this
initial orientation and to take it out of the matrix
element. If, in addition, the incident energy Eo is large
compared with the mean rotational level spacing, the
wave function of the incident neutron can also be
approximated by a wave packet of such a small exten-
sion that the time of collision is small compared with
the period of rotation. Then, (1) reduces to the product
of 8'~ and matrix elements involving the translational
and rotational states whose unique role is to guarantee
the conservation of linear and angular momentum
respectively, i.e., to require that the energy transferred
to the translational-rotational motion of the molecule
has the same value E~g" as in a classical collision.
The latter quantity is de6ned as

g&&cl P .P+ P~—Ip (3)

where V, is the initial velocity of the scattering nucleus
and M the mass tensor introduced by Sachs and Teller.

Thus, apart from a constant factor, the transition
probability for the neutron to be scattered into a given
solid angle (Q„O~+dQ~) with the molecule suffering
the vibrational transition 0—+E, is equal to the product
of

I W~ I' and the density of final states, which can be
written

ver r. (6)

a is the quantity which is experimentally measurable.
All 0&, except the elastic one 00, vanish for sufBciently

slow neutrons. It is clear from Eq. (5) that the threshold
depends on the initial state of the molecule. One also
gets a threshold for o~ and for' (o~)r, so that the sum
Eq. (6) is in fact limited. Letting v' be the largest
component of v, the threshold for (go)r is T~= E~/v'.

o~= (o /2orPp)J Bo(P)bLPv ~P+2mV, P

+2mE~ —2Pp P7doP (5)
with

~~(P)—= I
W~l'= l(&I exp(oP w/h) I o& I'.

Equations (5) and (5') constitute the basic formulas of
the MTV theory. It reduces to the MTR theory if
one writes Bp=1 and 8&=0 (XWO), which merely
expresses the neglect of vibrational motion.

In case of degeneracy in the Anal state of vibration,
it is convenient to deal with the sum of the scattering
cross sections for transition to each one of the degenerate
states. In such cases, 0~ will denote this sum and B~
the sum of the absolute squares of the matrix elements
corresponding to a transition to each degenerate state.
With these conditions, Eq. (5) will still hold.

The cross section 0~ has to be averaged over all
initial states of the scatterer, namely, over random
orientation of the molecule, then over the initial values
of V„whose distribution depends on the temperature
T of the scattering medium according to Boltzmann's
statistics. Those two successive averages mill be denoted
by e~ and (oN)r. Then, the cross section o for the
whole scattering process ig

I
Wx I'&[&i+Ex+Erro" Eo7I'Pd&i, —

where E» and PI are the energy and momentum, respec-
tively, of the scattered neutron and EN the energy
transferred to the vibrations. Integrating over solid
angle and dividing by the neutron initial velocity
(Pp/m), one obtains the scattering cross section with
transition 0—+X:

~~= (~P'o)
I
W~ I'&LK+E~+Erz" Eo7do». (4)—

The constant of proportionality c is determined by the
condition that ~~ must reduce to the cross section a for
scattering by the rigidly 6xed nucleus when

I Wo I'= 1,

The calculation of B~ implies the knowledge of the
vibrational potential V in the molecule. Introducing a
set of normal coordinates q& and neglecting the e6'ect of
anharmonicity, one gets V= +& raPqP, where the a&& are
the normal frequencies, and the vibrational wave
functions are products of one-dimensional harmonic
oscillators, lÃ)=+~In~) Expressin. g then w as a linear
combination of the q&, w=P& q~w&, and setting
h~

——P w~/h, 8~ takes the form of a product —or a sum
of products in the case of degeneracy —of absolute

' The threshold for (0'~)z is de6ned here by neglecting V,. It
is, in fact, smeared by the thermal effect; but, at the temperatures
considered in the following, the values of (tr~)g below its "thresh-
old" q.re ne0;lipbly sag.
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Q= cose~ o4= cos(Po, P),

vii ——V, P/P, 2/s=vs '—(vo '—vg
—')uo.

From Eq. (5)

~+1
oo = (o /24rPp))F B~doP[-', b(Pv —'P+2mV, P

4 —1

+2mE~ 2PoPo4)do4j. —(9)

Performing the n-integration and introducing polar
coordinates, one gets

squares of matrix elements of the type (u4 l exp(ik&q4) l 0).
It can be expressed analytically with help of the
formula'

l(rot exp(ikq) l0) l'= (u!) '(kk'/2po)" exp( —kk'/2po); (&)

in particular

l (0 l exp(ikq) l 0) l
o =exp( —kk /24o). (8)

The calculation of the multiple integrals involved in
(o &)r and even o.N is in general exceedingly complicated.
However, in the cases of H2 and CH4, the expressions are
greatly simpli6ed, since the axis joining the scattering
nucleus to the center of mass of the molecule is an axis
of cylindrical symmetry for the scattering problem.

Call I', 8, q the polar coordinates of P with the axis
of symmetry as polar axis; M1, p1, v1 the principal
COmpOnentS Of M, p, , v alOng thiS aziS; M2, p,2, v2 the
other principal components (3f~&Mo, t4~&t4o, v4&vo);
and introduce the quantities I, o,, e~ t, s such that

The range (P', P") takes the following values:

(a) if —Pp(mv()(Pp,
(P', P")= (0, s(P —mv([)), (13a)

(b) if mv~~( Pp, —
(P', P")= (s(—P,—mvii), s(Po —mvii)), (13b)

(c) if mv((&Pp, (P', P")=(0, 0). (13c)
As long as the initial velocity of the neutron is greater

than the scatterer one V„case (a) necessarily holds
and, from Eqs. (12) and (13a),

1 2v

=( /4y)jt d ~" (d /2 )t-
0 0

X[1—exp( —sot(Po —mv~~)'/4mlo )j (14)

If one performs the thermal average by assuming that
case (a) holds for all values of v~ ~, one obtains a result
(op)r greater than the correct one by an amount which
becomes vanishingly small with increasing E0. This
approximation will be discussed more precisely in Sec.
U. Doing it, expanding the integrand in Eq. (14) in
powers of et ~, and substituting in the successive powers
of v~~ their thermal averages (which no longer depend
on pp), one gets

1

(4rp)r= (o„/4y) t t '[1 exp( —s'ty) j—du

1

+
~

~ [(mvl ~')r/2kooj[-', —soty js' exp( —s'ty)du
0

o N = (o„/2rrPoo) PB~dud4tpdP, (10) ,'s4toyo jS't exp( —soty)-du+ ~ ~ . (15)

Pp —P'+s(mvu &Po)P—+smE~. (10')

' N. Arley, Kgl. Danske Videnskab. Selskab 16, 1 (1938).

(Note that the volume of integration is limited by an
algebraic surface of order 4.) The thermal average
leads to relatively simple analytic expressions for the
elastic cross section only. This will be shown now and
the Anal expression will exhibit the link with the MTR
theory. B0, as will be seen later, takes the form,

Bp= exp[ —t(2k4o) '(P'/2m) j, (11)

where t=A~u'+do (A4, Ao are nondimensional con-
stants depending on the elastic forces in the molecule)
and co is chosen, for instance, as the lowest vibrational
frequency in the molecule. It is convenient to introduce
also y=Ep/2k4p. Then

~+1 pop (
p"

4ro=(o~/8vPo') ~l du ' dip
~

P
4 Jp jp.

Xexp[ —t(254p) '(Po/2m) jdP. (12)

If one assumes a maxwell distribution of velocities—
which is consistent with our condition kT»B—the
thermal averages (mv~~')r, (m'v~~4)r, ., are obtained'
by expressing et~ in terms of the components of the
vector y=M&V„and then averaging in y-space with
the Boltzmann weight exp( —p'/kT). This leads to

(mvi()r= (2 s)s 'kT, —
(m'v~ ~4)r =3(2—s)'s '(kT)'. (16)

Introducing 0~= kT/2k4p, and substituting Eq. (16) in
Eq. (15),

tel

(op)r=(o /4y) t '[1—exp( —s'ty))duJ,
1

j+ e s(2—s)(s' —soty) exp( —s'ty)du

1

+ e' ~ ts'(2 —s)'(——,o+os'ty
0

xs4Py') exp( —soty) du+ ~ ~ —. (17)
t

2
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The results of MTR theory are easily deduced from
Eq. (18). The neglect of vibration consists mathemati-
cally in taking the limit of this expression for &co

iMinite, or expressed otherwise, in letting 0 and y be
together infinitely small but keeping the ratio 0/y
= kT/Eo constant, i.e.,

~1

(oo)r/(err )= s'du+o(kT/Eo) s(2—s)du, (19)
0

which is exactly the expression (1) with coefficients in
agreement with the analytic expressions given by
Placzek. On the other hand, it is clear that the asym-
ptotic form of (rro)r for low energies may also be written
in the form,

( .) /(l -)- '(k2'/Eo)+&' (20)

by dropping in Eq. (18) all the terms involving positive
powers of y. u' and b' are expansions in power of 0
whose constant terms are the coefEcients of MTR
theory written explicitly in Eq. (19). The formulas

(19) and (20), in the case of Ho and. CHo at room
temperature are compared in Table I.

In the case of the scattering by H2 molecules, the
axis of the H2 molecule constitutes the axis of cylindrical
symmetry of the scattering problem. The mass tensors
p, , v have the following components: p, ~=2, p,2=2,
vq = -'„vo= o, and 1/s= 1—~~u'. The rotational constant'
8=0.007356 volt. The energy of vibrational quantum
kao=0.54627 volt. A vibrational state is designated

' G. Her@berg, 3folecglar Spectra and Jt/lolecular SIrucrures
(Prentice-Hall, Inc. , ¹wYork, 1939},Vol. I.

For small energies, the most convenient way to calculate
(oo)r is to express the exponentials in the integrands of
Kq. (17) in power series; one obtains (oo)r as a double
expansion in ascending powers of y and 0& whose coeK-
cients are analytically integrable.

1 1

(ao)r/(o /4) = i~ s'du —y/2 I s'/du+ ~ ~ ~

0 40

1 3 1

+(8/y) — s(2 —s)du —-y s't(2 s)d—u
2JO

~1
+-y' ' s'P(2 —s)du—

4. Jo

02 - 3 ~1 25
+——— s't(2 s)'du—+ y—s4P(2 s)'du-

y 8JO 8 3„

35——y' s'P(2 —s)'du+ + (18)

TABLE I. Comparison between the expressions of o/rg given
by MTR theory and MTV theory (at low incident energy) for
scattering per proton in H~ and CH4 at room temperature (kT
=0.0258 volts). A maxwellian distribution of molecular rotations
Is assumed.

H2
CH4

MT R expression

0.491(kT/Ep}+1.216
0.3468(k T/E0}+2.3778

Asymptotic MTV expression

0.488(k T/Ep}+ 1.200
0 3314(kT/Eo}+2 2058

Bo——expL —u& /4mkoo]. (22)

Here t=u'. It is convenient to compare the calculated
cross sections with the scattering cross section of by
free protons, rather than with cr„, 0-f —gg„.

A complete treatment of the elastic cross section is
now given; the latter is equal to the total cross section
as long as Eo(0.819 volt (y(0.75). The numerical
calculations have been made at room temperature:
kT=0.0258 volt, where the distribution of rotations
is not yet maxwellian; the mean rotational energy
(Ea)r= 0.0235 volt. At such a temperature, about -,'of
the molecules have quantum number 1=2. One may
question the validity of considering those rotating
wave packets in the initial state, as was done in Sec. I.
On the other hand, one sees from formulas (15) or (17)
that the theory gives (pro)r as a sum of terms: the first
term is independent of the temperature (it may be
obtained by writing V, =O in all the preceding steps);
the following terms may be understood as corrections
for the doppler effect due to thermal agitation; those
last terms will turn out to be very small for the values
of the incident energy y where the theory is valid —the
third term in Eq. (15) is even completely negligible.
Consequently, (o'o)z' has been calculated from formula
(15), retaining only the two first terms, and expressing
the second term itself as a sum of two contributions:
one given by assuming a maxwell distribution of
rotation, the second being the correction due to devi-
ation from this distribution, as deduced from

(moan()r=s '(2 s)kT o—(1 u')—(kT —(Es)r) —(23).
Writing merely o o for (o o)r, this gives

(ro/ar =Q+R(kT/Eo) R'[(kT (Err)r)/E—o]+ ~ ~ —(24)

' It may be shown to be less than 0.003(kT/E&}op. It has been
taken into account, however, in the comparison between MTV
and MTR theory.

by the number e of its vibrational quanta. The thresh-
olds for the successive inelastic collisions, T„=~ekco.
If q is the normal coordinate (corresponding to the
hamiltonian for the vibrational motion H»b=o(P'
+oooq)), it is connected. with the displacement w of
the B nucleus from its equilibrium position by
ov=(2m) &q. Then, from the definition (5') and with
help of Eq. (8):

B„=(ro!) '(uoP'/4mhoo)" expL —u'P'/4mk~7, (21)
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TABLE II. Numerical values of the coefEcients of the 6rst TABLE III. Energy dependence of the scattering cross section
powers of y, in the Taylor expansion of Q, E, E.' /see Eqs. (24a), per protons in H& in the region of pure elastic scattering when
(24b), and (24c)g. T=300 K. Comparison with experiment.

yO

yl
y'
y'
y4

y5
y6
y'
yg

y9
yIO

0
1.2159728—0.3379821
0.1174249—0.03685118
0.0101218—0.00244284
0.00052271—0.00010053
0.0000175—0.00000278
0.00000041

0.490626—0.6714686
0.535065—0.299159
0.128296—0.044531
0.012996—0.003254

R'

0.186633—0.164495
0.094721—0.041201
0.014424—0.004226

Ep
0.0256
0.0347
0.0530
0.0830
0.146
0.187
0.238
0.325
0.387
0.470
0.582
0.737
0.819

y
0.0234
0.0317
0.0485
0.0760
0.1337
0.1710
0.2180
0.2975
0.3543
0.4303
0.5328
0.6747
0.7SOO

Q
1.20812
1.20536
1.19964
1.19096
1.17280
1.16142
1.14749
1.12487
1~ 10947
1.08966
1.06438
1.03188
1.01569

R(k T/Ep)
0.47888
0.34935
0,22360
0.13759
0.07238
0.05380
0.03972
0.02621
0.02044
0.01523
0.01073
0.00695
0.00611

R'[eT
—(ER)r/Eo]

0,01656
0.01213
0.00783
0.00488
0.00264
0.00200
0.00151
0.00104
0.00083
0.00064
0.00048
0.00034
0.00020

Theo-
retical
value
cr/ny

1.67
1.54
1.42
1.32
1.24
1.21
1.18
1.150
1.129
1.104
1.074
1.038
1.022

Experi-
mental
value

(~/ey) exp
1.725 ~.01
1.600 +0.01
1.435 +0.005
1.319+0.005
1.232 &0.005
1.194+0.005
1.175+0.005
1.141&0.005
1.109~.005
1.093+0.005
1.071 +0.005
1.034 &0.005

with

ts, l

Q= y
' [1—exp( —u's'y) j(du/u'), (24a)

pl
R= s(2 —s) (-', —u's'y) exp( —u's'y)du,

4p
(24b)

1

R'= I (s'/2)(1 —u')(-' —u's'y) exp( —u's'y)du. (24c)

Then it has been merely considered that the correction
term for deviation from Maxwell distribution
R'[(k2' (E&)z)/E,j—gives the limit of accuracy of the
theory. It is given as such in Table III, and the numer-
ical values of v'0/aq are indicated accordingly. Q, R, R'
have bein calculated by expanding the integrand in

power of y and by analytic integrations of the coe%-
cients; the numerical values of the coefficients of the
lowest powers are given in Table II. Table III gives,

at some specific value of Eo, the values of no/vf at
room temperature and the contributions of each term
in the sum (24). In Fig. 1 is shown the curve ~o/nf at
room temperature in a 1/Ev diagram with its asymptote
for low energies.

One now turns to the inelastic cross sections. The
expressions are much more complicated than in the
elastic case and it is no longer possible to take so
simply the eGect of thermal agitation into account.
The inelastic cross sections are treated here, neglecting
the thermal agitation. It follows from Kqs. (10) and
(10') where one makes v~~ =0, E„=nhco and substitutes
for B„expression (21). Again, the qr and I' integration
may be carried out analytically and one is left with a
single integral in N.

If one sets

f;(v) = (x'e '/i!)dx—= 1—e "[1+(v/1!-)+ ~ + (v'/i!) j
~o

($=0, 1, 2, ~ ~ ),

v~ ——,'u's[(sy) &a-(sy —n) &]'

l.5

lig

I 2

Theor. (P6 inctuctintt

vibratiae—Aeyeptote of above

J Kxperirnentat points

t.0 l

..I .05 ..03 ..025 .Qev ..QI5 En ~ ..ot

6 20 50 40 50 6'0 T0 80 90 t00
Ilp 0

Pro. 1. Energy dependence of the slow neutron scattering cross
section per proton by H& molecules at room temperature (T
=300'K): theoretical curve given by MTV theory and experi-
mental points. Arrow V indicates the energy threshold for inelastic
collision.

0 if y&n
ua ——) 2[1—(y/n) j& if n&y& 3n,

1 if 4&y

the final result is

„/ I= (1/y) [f„(v+) f„(v )j—(du/u') (25).
4 up

The right-hand side can be expressed in terms of
elementary functions and the error integral in the
special case: y=n (see Appendix). For all other values
of the energy, one has to perform the integration
numerically. Then the total cross section is given by

(26)

It is interesting to study the asymptotic behavior of
the total cross section 0., and to see if it agrees, in this
special case, with the general expression of the scattering
cross section by a bound nucleus, which is obtained by
assuming that the nucleus scatters as free and by
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taking the doppler effect into account, ' i.e.,

a/a g =1+[(E)/3u, Ea], (27)

where (EC) is the average kinetic energy of the nucleus
and u, =mass of scattering nucleus/mass of the neutron.
In the case of H2, neglecting thermal agitation, the
latter formula reduces to

a/a r = 1+(1/48y).

To solve this asymptotic problem, it is convenient to
put Kqs. (25) and (26) in a slightly different form.
One introduces a „(u) such that

a (u) (1/u'y)[f„(a+) —f„(a )j if sy&N

0'y 0 if sy&n

(a (u)du is the scattering cross section with energy
transfer of e quanta and momentum transfer directed
in the cone between u and u+du), and also a(u):

In the present problem, p,
' ranges from 3 to and one

deals only with the latter case. Accordingly

a (u)/a g 1+(u'/167).

Integrating over u

a/a r~l+ (1/48y),

which agrees with Kq. (28).
A numerical study of the total cross section above

the threshold for inelastic collision has been made, up
to the energy: y=3. The result is shown in Fig. 2,
where a/ar and also oa/aI, a~/aq, , are plotted
against (1/y). In order to see the rapidity of convergence

a(u) ~~aj !'a.(u) q

a~ .=oh a~ j (29)

The symbol [syj means: the greatest integer contained
in sy. Then Kqs. (25) and (26) may be written

ts, l ~1
a /a f— '

(a „(u)/a y)du, a/ay= (a (u)/ay)du (30).
eJ p p

Writing the right side of Eq. (29) explicitly, one gets

a'(u) l~u1 ( 1 ) t"+ (a"e ")

aq ~-a (u'yJ &~ 4 I! i
with

l.2

Op~

(Ty~ ~~f
g

2 t5 1.2

/

g)

I - .75

Setting
u'=4/u's= (4/u') —1,
a'=—(E'/bc'') = sy,

xq ——u' —'[a' t+ (a' —u) tj',
the last expression may be written

[ 'I

a(u)/ay= [(u'+1)'/4p']a' —' Q !
(x"e—*/I!)dx.

~=pV ~

In this form, a(u) is easily seen to be equal to the
scattering cross section 0' of a neutron of energy E' by
a nucleus of mass M'= m p,

' oscillating harmonically
and isotropically in its ground state around an ininitely
heavy center with frequency co'. The asymptotic be-
havior of 0' has been derived explicitly. If p, '=1, Eq.
(27) gives' only the average of the asymptotic cross
section over an energy region of width hco' around which
the cross section fluctuates with period Ace'. If p, '&1,
however, Eq. (27) is valid without averaging. s

a '/a y~ 1+(1/4/l'a')

~ A. Messiah, J. phys. et radium 12, 670 (1951).

FzG. 2. Energy dependence of the slow neutron scattering cross
section per proton by H2 molecules above the threshold for
inelastic collisions without thermal effect: elastic o0/oy, inelastic
ol/oy, og/oy, ~ ., and tOtal o/oy CrOSS SeCtiOnS. The plOt:
c=48y(o/oy —1) es j./y, emphasizes the quick fluctuating trend
of o/oy toward its asymptotic form o/oy 1+(1/48y).

of a towards its asymptotic form (28), the plot of c
against (1/y), where c is defined by

&/ar =1+(c/48')

has been drawn on the same diagram. One sees that
a/a ~ exhibits a fluctuating trend towards its asymptotic
expression; such fluctuations vanish very quickly as y
increases and the asymptotic formula is practically
reached when y=3 (c=0.97).

In a CH4 molecule, the carbon nucleus is not involved
in the molecular rotation; therefore no mass tensor
treatment is needed to derive the scattering cross section
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FIG. 3. Coordinate system for the methane molecule.
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0.3577 0.3620 0.3662 0.3991 0.4158

One expresses now the displacement w of the scattering proton
as a linear combination of the normal coordinates, in view of the
calculation of Bn1n~~4. In the derivation of w, some symbols
which were introduced before will be used with a different

meaning; the new meaning will be given in time and will be used
for this specific derivation only, so that any confusion may be
eas1ly avo1ded.

Call H0 the proton nucleus whose displacement will be con-
sidered, H1, Ha, and H», the three others, 0 the center of mass of

0D. M. Dennison, Revs. Modern Phys. 12, 175 {1940);see
also I. E. Rosenthal, Phys. Rev. 45, 538 (1936},and Phys. Rev.
46, 730 (1934).

by the C nucleus. This section is concerned only with
the scattering cross section per proton in CH4. The
total scattering cross section per proton will be called
o. and the notations of Sec. III will be used all along.

The axis joining the center of mass of the molecule to the
scattering proton is then the axis of cylindrical symmetry of the
scattering problem.

The mass tensors p,, r have the following components: p,1=16,
p,a= 16/7, 11=16/17, a a= 16/23, and 1/s= (23—6')/32. The
rotational constant 0 8=0.0006 volt. The distribution of rotations'
is a maxwell one at room temperature.

There are 4 normal vibrations 0 a nondegenerate one involving
the H's only (along the C—H bond}: hu1 =0.3756a volt; a twofold
degenerate one involving the H's only (J to the C-H bond):
ho&a=0. 1723» volt; and two threefold degenerate: hcua=0. 1683a
volt, kco4=0.39139 volt. Those last two belong to the same
3-dimensional irreducible representation of the group of sym-
metries of the CH4 molecule. As cuba is the lowest frequency,
according to our conventions,

y= E0/2hcoa, 8 kT/2haua.

A vibrational level will be indicated by its 4 quantum numbers
listed in the order given above (the ground level will be more
simply referred to by the index 0). The thresholds for inelastic
collisions are

Tn1n~sn 4= (1/a'1) (e1~1+eaAe a+ea~a+e4~4)»

The thresholds (in volts) for the first inelastic cross sections are
indicated below:

the molecules; I, J, K a right-handed triorthogonal basis of fixed
unit vectors, such that K be along the rest position of OH0 and I
in the rest position of the plane H1OH0—the sense of those
vectors is indicated on Fig. 3. Introduce also (according to
Dennison's notation) q1 and q&, qa and q4, q» and qe, the variations
in magnitude of the three pairs of opposite edges; $, y, f, the
coordinates of the displacement of the carbon nucleus in the
reference frame (j1, ja, j») of unit vectors respectively orthogonal
to each couple of opposite edge.

T and V, the kinetic and potential energy of vibration of the
CH4 molecule, are given by

2T=3te($+j'+P)+fpnZ; 4p $m—Z ops;g;, +gmZ, p g;j.;, (31a)

2V= a(p+g'+ p)+b&~ qca+2&+n. op. qiqj+2~~op. q&qp

+2eQ'{q1—qa)+p(qa —q4)+f(q» —qe) j, (3ib)

where Z .,p. means the sum of all cross products of non-opposite
q;, q; (12 terms), and Z,p. means the sum of all cross products of
opposite q;, q; (3 terms). a=8.5881)&10» dyne/cm, b= 1.6468
X10» d/cm, c=0.3584)(10» d/cm, d =—0.4278&10' d/cm,
e= —2.0104' 10' d/cm. Due to the degeneracies, there exists a
certain freedom in the choice of the normal coordinates. The
most suitable choice will appear obvious in the course of the
derivation.

As a first step, one introduces the following "geometrical
symmetry"'0 coordinates:

s= q1+q2+qa+q4+q»+qe d1= q1—qa
p= (qa+q4) —(q»+qe} ~a= qa —q4

r=2(q1+qa} —(qa+q4) —(q»+qe) A=q» —qe

(32)

One obtains w as a linear combination of those 9 coordinates by
inspection of 9 particular displacements (without translation
or rotation):

w= fs(6&/24}+(d +da+cat )(6&/12}—(g+y+g) VS/4jK
+fr(VS/12}+(2d1—da —C4) (VS/24) +{2(—q- g}{6&/8)jI

+pp+(~ —~ }4+{m—f)3~/8 jJ. (33)

A simpler expression is obtained if one introduces the new co-
ordinates, "

X =(/3)(5+~+k), D =(&/3}(~ +~ +4)
Xa= (6'/6)(20 —n-0), D»= (6'/6) (2&1 ~a ~»), (34)
Xa= (~/2) {n—d) Da= {~/2) (&a—d»)

Then

6& 1 @$1&w= —s+-(2)&D1—3X1) K+ r+- —Da+3Xa I.24 4 12 4 2

1 1@2+ -p+ —D,+3X, J. (35)

(3m) &X; U; cosp+ V; sinp
()m)&D;= —U; sinp+ V; cosp, (37)

such that the cross terms vanish in the expression of V as a
function of the normal coordinates.

'0 J. E. Rosenthal and G. M. Murphy, Revs. Modern Phys. 8,
317 (i938}.

"The X; and D; are related to the g, q, f, n, p, y introduced
by Rosenthal (reference 20) in the following way:
X1=f, Xa=y, Xa= —$, D1VZ= —y, DaV2= -p, Dav2~ a.

From Eqs. (31), (32), and (34)

2T=3mZ; X;a+gmZ; Dp+24m8 +Qm{r'a+3+), {36a)

2V=aZ; X;a+2'; X;D;+$(b—d)g; D;a
+~(++b+&)s'+/(b+d —2c)(r'+3p'). (36b)

This suggests the following choice of normal coordinates:
o=m&s/24 related to frequency cu1, e (~4m)&p and y={~)&r
to aua, U1, Ua, and Ua to era', Va, Va, and Va to ~4. The U; and
V; (i=i, 2, 3) are derived from {3m)&X; and (gm)&D; by the
linear orthogonal transformation
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Substituting Eq. (37} in Eq. {36)leads to the condition

cotP=(VS/2)e 'Pb rt—f-id5=-0. 27709.

There is an irrelevant arbitrariness in the choice of p itself; in
order to have the U; and the V; correspond to cus and cu4, respec-
tively, one takes

cosp= 0.79595, sinp= —0.60540. (38)

Substitution of Eq. (37) in Kq. (35) gives the desired expression
for w:
m&w = ((~+a&U1+bi v1)I+($x+as Us+bs v2) I

+($co+u2Us+bsVs) J, (39)
with

with

i

Q=y ' I t 'L1 —exp( —s'ty)]du,
0

R= s(2—s)(-,—sety) exp( s'—ty)du,
0

1

S= t ts'(2 —s)'(—-'+-,'s'ty
J0

(45a)

(45b)

3.5 r .~ir rI
30

"as
Oj CH,

!
'

a.o

Introducing spherical coordinates for P with OHO as polar axis,
it can be put in the form of Eq. {11):

Be= exp[-t(2ltroe) '(2u/2rrr) 5, t =A pre'+As, (43) Theor. ((7/(Tg) lncllldlAQ
Nbratlons——Asymptote of above

——.Them. (0/g&) for rigid
mole c.

I Experimental paints

A1= (a s/2~1) —(~s/2~}+2(e1s—ass}+(bP—b2') (2~s/~4} (44a)
= -0.2895,

A s= (~s/2(u&)+2ues+bg'(2cus/co4)
= 1.1128.

l.5
(44b}

1 = —~&VS cosp —)VZ sinp, as= ~%3 cosp —$42 sinp,
b =porc p —~VS' p, b =yVZco p+&VSsinp.

——,s't'y') exp( —ssty) du. (45c)

The calculation of B721n~~4 follows from Eq. (39). One gives The numerical calculations have been carried through
here the derivation of Bo only. The B's relative to inelastic
scattering, except for more complication in writing, ate derived in
the same way and their expression is given in the Appendix:

2te= l(0lem('P w/k) I»l'. (41)

Calling P, P„,P, the components of P in the referential {I,J, I), 4.0
one gets from Eq. (39)

P w/5= (1/km&) I($0+u1U1+b1V1)P,
+(gx+asUs+b2Vs)P~+{$au+usUs+b2Vs)P„I. (42) I

Substituting Kq. (42} in Kq. (41), one obtains Bo as a product
of 9 absolute squared matrix elements of one-dimensional oscil-
lators of the type given in Eq. (8).
Bo=expt - (P'/2~) ((1/4~1)+(+1,'/~s}+(b&'/~4))—({P,'+P„')/2m) ((1/4' s)+(ass/%us)+(bshe/Rn4)) ).

With those numerical values, the treatment of the
elastic cross section follows at once from Eq. (17),
namely,

~o/~i= Q+(~/y) o+(S/y) o"'+" (45)

TABLE IV. Energy dependence of the scattering cross section
per proton in CH4 at room T in the region of pure elastic scattering
when T=300'K. Comparison with experiment.

l.o
I .05 03 .02 o .Ol

0 20 4'0 6'0 80 l00 l20 l40 l60 l80 2M

0

FIG. 4. Energy dependence of the slow neutron scattering cross
section per proton by CH4 molecules a,t room temperature
(T=300 ]Q: theoretical curve given by MTV theory and experi-
mental points. The line given by MTR theory is also reported.
Arrow V indicates the energy threshold for inelastic collisions.

0.0056
0.0068
0.0083
0.0104
0.0126
0.0144
0.0168
0.0196
0.0233
0.0256
0.0439
0.0979
0.146
0.1788

0.0166 2.337
0.0202 2.333
0.0246 2,307
0.0309 2.291
0.0374 2.273
0.0428 2.258
0.0499 2,240
0.0582 2.218
0.0692 2.192
0.0760 2.172
0.f304 2.040
0.2908 1.708
0.4337 1.474
0.53125 1.341

1.416
1.137
0.901
0.677
0.538
0.446
0.364
0.291
0.222
0.190
0.059—0.016—0.023—0.021

—0.058—0.046—0.035—0.026—0.019—0.015—0.012—0.009—0.006—0.005—0.002

3.695 3.551~0.045
3.424 3.431~0.055
3.174 3.174~0.065
2.943 2.894'0.04
2.792 2.758~0.02
2.689 2.740~0.025
2.592 2.648~0,02
2.500 2.532~0,02
2.408 2.411~0.01
2.357 2.387~0.01
2.097 2.115~0.01
1.692 1.677~0.01
1.45f 1.460&0.01
1.320

Theo- Experi-
retical mental
value value

Q (R/y) e (Sjy) 82 a/oy (er/oy) exp
at room 2' (k2'=0.0258 volt) for Eo below the threshold
of the first inelastic collision. The lower range Of enezgy
has been treated by expanding Q, If, S in power of y
and integrating analytically the coefIicients of this
expansion, exactly in the same way as in the H2 case;
for greater values of Ee, Q, Jf, S merely have been
integrated numerically. Contrary to the H2 case, the
term in 0' in the expansion could not be neglected; in
fact, for the same value of T, 0 is not so sma, ll here
and the convergence of the series (45) in powers of 0"

is slower. For the same reason the asymptotic form for
low E0 di6'ers much more from the MTR result than
in the H2 case, as may be seen in Table I.



ALBERT M. L. MESSIAH

o~
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CH,
Exper curve t(7/g&)

8 Theor. (g/O&) including
vga otions

I.O
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Fro. 5. Energy dependence of the slow neutron scattering cross
section er proton by CH4 molecules at room temperature
('=300 K): experimental curves and theoretical points given
by MTV theory. Arrow V indicates the energy threshold for
inelastic collisions.

This section is devoted to a discussion of the previous
results and to a comparison with experimental data.

The limitation of the theory to scattering media of
sufFiciently large temperature has been already studied
in the preceding sections. As far as the incident energy
of the neutron is concerned, the calculation of the
elastic cross section is based, in both cases, on two
approximations: (a) the mass tensor approximation;
(b) the thermal approximation, i.e., the neglect of
higher values of v~

~
which allowed one to make expansion

(18). As Es decreases, both approximations become
poorer and the whole theory progressively loses its
validity. To put the thing in a more quantitative

o/a~ is plot against 1/Es on Fig. 4; the asymptote
of the curve and the MTR line are also drawn on Fig. 4.
Table IV gives, at some specific values of Ep and at
room temperature, the values of a/a~ and the contri-
bution to them of the first terms in the expansion in
power of 0. One sees that the thermal effect is much
less important than in the H2 case; this must be
expected because, on the average, the velocity V, of
the scattering proton is much smaller in CH4 than in
H2 at the same temperature.

When Ep exceeds Tppip=0. 1788 volt, inelastic colli-
sions contribute to the total scattering process. Even
if one neglects the rather small thermal e8ect, the
numerical calculation of o/o~ soon becomes very
cumbersome. The general analytical formula for the
inelastic cross sections neglecting thermal effect is given
in the Appendix.

fashion, one may de6ne critical values E, Eb of Ep,
under which, crudely speaking, each of the above
approximations breaks down, namely: (a) A "mass
tensor" critical value E,. When Ep=E„ the neutron is
able to transfer to half of the molecules the energy
necessary for a transition to the next higher rotational
level; i.e., the reduced energy of the neutron is equal to
the average level spacing of the rotational states of the
molecule. (b) A "thermal critical" value Es Whe. n
Ep= Eb, the number of states such that ~assi i Q Ep,
must be small compared with the number of other
states. We shall take for Eb the angular average
(integration over e) of (rsme~~')r.

The following numerical values (in volts) are found,
for the E„Eb, relative to the scattering cross section
per proton in H2 and CH4, at room temperature:

H2
CH4

E
0.06
0.01

Eb
0.01
0.004

"E.Melkonian, Phys. Rev. 76, f750 (1949)."o&') is in fact slightly greater than op&'). This may be seen as
the consequence of two effects: (1) The binding effect proper.
It amounts to give to the neutron a reduced mass somewhere in
between the one for the system (neutron+C) and the one for
(neutron+ CH4). (2) The thermal (or doppler) effect, which
gives a net increase of (kT/32EO)o") in the cross section. It
follows that

f g o(')/o.g"(1.04+ (kT/32Eo).
"E.Melkonian, Phys. Rev. 76, 1744 (1949}.

Below the threshold of inelastic collisions our numer-
ical results can be compared with the recent measure-
ments performed with the Columbia velocity selector
on H2 and CH4 samples at room temperature. " For
this purpose, one defines (~/o~)ezp 0 zep /0 fe p0x'ezp
is the experimental scattering cross section per proton.
In the H2 case, it is deduced at once from the experi-
mental data by subtracting the capture cross section.
In the CH4 case, one has in addition to subtract the
scattering cross section 0-~' by the C nucleus. The value
o"= op" =4.7O barns has been taken (op&' cross section
by free carbon nuclei). Strictly speaking, " o&'l depends
on Es and the exact formula for the ratio a"/o~&'& is
given in the Appendix. But, in the range of energy
that is considered here, the binding effect is very small
and may be neglected in the derivation of 0, p 0 f p

is an experimental value of the scattering cross section
by free protons. The value derived by Melkonian from
his scattering experiments on H2 at higher energy has
been adopted, namely, 20.36 barns. "

The values (o/o ~), , so obtained have been reported
in Figs. 1 (Hs), 4 (CH4), and 5 (CH4), and also in
Tables III (Hs) and IV (CH4). The experimental errors
indicated in the tables and graphs correspond to sta-
tistical errors in a,„p;all experimental points are subject
to a common supplementary error due to a possibly
inaccurate value of o.~,„p. The arrow, V, in each of
Figs. 1, 4, and 5 indicates the threshold of the first
inelastic collision.
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Looking at H~ 6rst, one notices a quite satisfactory
agreement where it is expected. In Fig. 1 the diagram
o/o y vs I/Ev has been extended far below its expected
range of validity. It may be crudely divided in three
regions: when EG&E,=0.06 volt, theory and experi-
ment agree; when Eo goes from E, to Eg=0.01. volt,
i.e., in a region where most of the H2 molecules can
suer only elastic or hyperelastic collisions as far as
rotations are concerned, discrepancies occur, but they
are not very large and the experimental points follow a
somewhat fluctuating line approximately 5 percent
above the theoretical curve; when Eo goes below E~,
the calculated thermal eGect is notably too big and the
experimental points drop below the theoretical curve.

The same features are noted with CH4. The agree-
ment is very satisfactory at higher energy, Eo+E,
=0.01 volt. This is particularly well emphasized on
Fig. 5, where the experimental curve is drawn and 5
theoretical points are reported. Figure 4 shows again a
diagram sr/sri vs I/Ev extended far beyond the expected
range of validity. Following the experimental points on
the side of low Eo, one sees them fluctuate more and
more around the theoretical curve as Eo, goes beyond
E„and drop below it as Eo approaches E~=0.004 volt.

I am greatly indebted to Dr. G. Placzek, who sug-
gested the subject of this work, informed me of his
own results prior to publication, and helped me with
many invaluable discussions and comments. I should
like to thank Dr. J. R. Oppenheimer for the hospitality
overed at the Institute for Advanced Study, Princeton.
Thanks are due also to Dr. E. Melkonian for communi-
cation of his experimental results.

I am very appreciative of the assistance provided by
the ONR in numerical calculations. Finally, I want to
express my gratitude to the Direction des Mines et de
la Siderurgie (Paris), whose support made my stay
abroad possible.

APPENMX

A. H2 Case: Exact Integration of e %hen y =n

At such value of y: ey=4{u/(1%)u}pn, and 0'„/of=(1/n}
)&J's'[f„(v+) f„(v )5(du/u—') Integration b.y parts gives

~1

na„/aI= f„(n/9) f„{n)+ —Dv+"e '+/n!){dv+/du)

—{e "e-~-/n!}{de /du}I {du/u}.

Taking e+, v as new variables leads to

nrr„/or =f„(n/9) f (n)+f—Dn&+vt)/2v&5(v"e '/n!5dv

vs/9

t (n& —e&}/2e&gr o"e-"/n!jde

= sf„(n/9) $f (n)+$ntf (—v" te '/n!)dv

The integral in the lower right-hand side is easily expressible as a
linear combination of elementary functions and error integrals.

B. General Formulas for Diatomic Molecules

The formulas given here are relative to the cross section for
scattering by a nucleus in any diatomic molecule. Let S be the

scattering nucleus, T the other one; call their masses, respectively,

m, =P,.m, m&= P, fm.

The components of the mass tensors are

l ~+i &~ Id&=I/Igs I'&=(PI+@4}/(1+P&+Pg},V2=yg/(1+pe},

and

The displacement is m=(mp, }&q, with p,„=y.(p, +Itg~}/p4. The
relation between sr and er is er=[u, /(I+a, )5se .

The axis of the molecule is again an axis of symmetry for the
scattering problem. The treatment of Sec. II applies, taking
t=2u~/p, . The expression corresponding to Eq. (24} is then
easily deduced.

As far as the inelastic cross sections are concerned, Eq. (25}
has to be replaced by

I
sr./er = (u./(I+u*))'(u. /2y) „P„(v,) f„{—v )5(du/u')

with the same definition of f and

~y= {u's/2~ }f(sy}'+(sy —n}'j',
0 if y&n/2vm

(p„/v2} &(1—2v2y/n} & n/2v2) y& n/2vI
1 n/2v»y.

The same asymptotic study may be carried through with help of
the model of the isotropic oscillator, taking p'=2p /u~s and
e'=sy. This leads to

/&z 1+(1/24', „y}

in agreement with expression (27}.

C. Inelastic Scattering Cross Section per Proton in
CH4, Neglecting Thermal Effect

BnIn~nan4 is calculated from Eqs. {39},(40} and (7}.Setting

X=nI+n2+n3+n4,
~I = (eo3/2coI}u', v 2 = (cog/2(u2} {1—u'},
rs=2$(ass ass)us+os'], —Ts={ 2/sess)s[e( bssbss)us+bs 5'

one gets

Bss= II (rgb/n;!) D2Issss) '(Iss/2sn) 5u expt t(2Avss) —'(Iss/2ns) 5.

(The subscript E is a short writing for nIn~n3n4. }Also

4

E&=—2k~ay~ ——Z n;h~;.

Then, applying Eqs. (10}and (10'}with e~ ~
=0,

@sr/ r=(1/y) f '[fss(v ) fu(v )5(X!/tu)—II(-;"/n;!) (du/t)
'~D I

with

p ———,'ts&(sy}&a(sy —2y&}&j'

0 if y&y~/vm
uD= '

t vI/{vI —v&}j&$1-(v2y/yw} j& if y&/»&y&y&/»
1 lf y+/VI) y.

D. Scattering Cross Section by the Carbon
Nucleus in CH4

The carbon nucleus is involved only in the 3-fold degenerate
vibrations. Its displacement w, is given by

{48m}&w',=(U cosp+V sinp}K
—(Ug cosp+ V» sin p}I—(U» cosp+ VI sinp} J.
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The sum of squared matrix elements Bn3n4&'& is

B&3+4(c)—(+3n3/n3!) (+4n4/n4!) I {2~3}-1(P2/2') gn3+n4

Xexpgc(2h~s) '(P'/2m) j,
where

73= (1/24) cos'p, 74= (1/24) (~3/co4) sin'p, c= y3+ y4.

The reduced mass of the system (neutron+CH4) is 3 =16/17.
Setting s=2v, one obtains formulas quite analogous to those of
the cross section per proton. It must be emphasized, however,
that these formulas do not involve any mass tensor approximation.
Below the threshold of the first inelastic collision, 0.1788 volt, ,

one gets

r&'&/oy&'& = —,'(13/12)'I L1-exp( —s'cy) j/cy
+(0/y) s(2—s) ($—s'cy) exp( —s'cy)
+(O~'/y) cs'(2 —s)'(—g+$s'cy —j's4c'y') exp( —s'cy)

+ e ~ ~
I

The general formula for inelastic scattering is

0

n3n4&'~/optic&

= —,'(13/12)'(1/y) {X!/c~+'}
X(v3 '/~&')(v4"'/~~')U~(c+) f~(c—)j-

with
E=n3+n4, v~ ———4csf{sy)&+(sy—2yz) &j',
y~= {2kco3} +Q —gr n3+(co4/~3)n41.
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Using good geometry, homogeneous fast neutrons of energy
4.3 Mev, supplied by the D —D reaction in the Bartol Van de
Graaff statitron, have been scattered in bismuth and lead. Using
binocular microscopes and Eastman NTA plates, fifty thousand
fields of view were examined to obtain 5000 acceptable recoil
proton tracks. The energy spectrum of the scattered neutrons
was studied to establish the presence or absence of any inelastic
groups. From a consideration of gross effects, it is concluded that
no inelastic group exists in the bismuth data with an intensity
greater than five percent of the elastically scattered neutrons, or
that no level in Bi"' lying between the ground state and 3.4 Mev

is excited by a neutron group of more than five percent of the
intensity of the elastic group. Appreciable inelastic scattering was
noted in naturally occurring lead, the inelastic scattering cross
section being less than half the elastic cross section. The energy
distribution of the inelastically scattered neutrons is interpreted
to indicate an energy level in lead in the vicinity of 3.3 Mev. This
level is consistent with radioactivity measurements which show

that most of the beta-disintegrations of ThC"~*Pb"' lead to
energy levels in the vicinity of 3.2 Mev, and with Q-values of the
reaction Pb'"{d,p) Pb"' which disclose an energy level at 3.45 Mev
in the nucleus Pb' '.
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FIG. 1. Geometric arrangement for fast neutron scattering. The
average length of the scatterer is 6.1 cm.

' B. T. Feld, Phys. Rev. 75, 1115 (1949}.

INTRODUCTION

HEN neutrons are scattered by nuclei, both
elastic and inelastic scattering can occur. The

elastic process takes either of two forms, potential scat-
tering or resonance scattering. The former is sometimes
referred to as "hard sphere" or "diffraction" scattering,
and the latter may be termed "capture elastic scat-
tering. " The capture elastic scattering and inelastic
scattering are considered to be two phases of the same
nuclear process, because an intermediate compound
nucleus is actually formed, the product nucleus being
left in the ground state after the elastic collision and in
an excited state after the inelastic collision. In the case
of potential or diffraction scattering, the compound
nucleus is not formed. The foregoing terminology has
been previously outlined by Feld. '

Neutrons from the deuteron-deuterium reaction have
been employed in two previous scattering experiments

dealing with the elastic and inelastic scattering of fast'
neutrons by lead. '' These measurements have been
interpreted by Feld' to give energy levels in naturally
occurring lead at 0.8 Mev, ' and in the vicinity of
0.92, 1..87, and 2.67 Mev. '

It was decided to irradiate both bismuth and lead
with fast neutrons to observe the inelastically scattered
neutrons, because in both cases magic numbers are
involved. 4 All of the naturally occurring isotopes of lead
are "magic" for protons, since each of them contains
82 protons; Pb"', in particular, may be regarded as a
double closed shell nucleus, because it contains 82
protons and 126 neutrons, both of which are magic
numbers. The monoisotopic Bi'" contains 83 protons
and 126 neutrons and therefore is magic for neutrons. 4

Magic number nuclei should have widely spaced energy
levels and should not, therefore, follow the statistical
theory of %eisskopf. '

The previously mentioned data" were obtained with
the use of "poor geometry, "whereas the measurements
of the present paper employed "good geometry" for
better resolution.

2 H. F. Dunlap and R. N. Little, Phys. Rev. 60, 693 {1941}.' Barschall, Manley, and Weisskopf, Phys. Rev. 72, 875 (1947}.' M. G. Mayer, Phys. Rev. 74, 235 (1948).
3 V. F. %'eisskopf, Phys. Rev. 52, 295 (1937).


