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This paper describes the calculations and results obtained in
fitting a phenomenological interaction to the properties of the
deuteron and related low energy phenomena. This interaction is a
hnear combination of a central and tensor potential, where both
potentials are of the Yukawa shape, but with different ranges.
The calculations were based on the variation-iteration method
which has the advantage of providing systematically improved
trial wave functions, together with limits of error for the well
depth eigenvalue at every stage of the process. The nonpositive
definite character of the tensor potential complicates the nature
of the convergence to the correct eigenvalue. Special methods are
described to overcome this difBculty. The successive iterations
were performed numerically on the Harvard Mark I calculator.
The accuracy obtained for the well depth parameter was limited
in practice by the finite intervals employed in the numerical
integration, and is estimated to be one in 10. The quadrupole
moment, as a nonstationary quantity, does not exhibit the same
degree of convergence; the accuracy obtained was here estimated
as one in 10'. The results are presented in tabular form as values

of the well depth parameter and of the quadrupole moment for
four central potential ranges, five tensor ranges, and three values
of the tensor strength. These tables also include values of the
fractional amount of D state and of the effective triplet range.
The experimental magnitudes of the latter quantities serve to
delimit the permissible values of the tensor range. The photo-
electric cross section of the deuteron is shown to involve only the
triplet effective range in addition to the familiar zero-range for-
mula. The cross section for photomagnetic capture contains the
singlet and triplet phenomenological parameters, and in addition,
a mixed efTective range which also includes the effect of an ex-
change magnetic moment. The value of the mixed range, as in-
ferred from the experimental capture cross section, agrees with
the average of the singlet and triplet effective ranges, within the
rather large experimental uncertainties. For the energy domain
in which it is appreciable, the photomagnetic cross section is
almost uniquely fixed by the capture cross section. The comparison
of these cross sections with experiment is satisfactory.

I. INTRODUCTION
" "N the phenomenological theory of nuclear forces, the
& ~ shape of the nuclear potential first enters in a sensi-
tive fashion in the theory of H' and in high energy
nucleon-nucleon scattering. However, in order to treat
these phenomena, it is necessary to take into account
the low energy two-body data which serve to relate
and limit the ranges and depths of the nuclear poten-
tials but which are not strongly dependent upon well

shape. In the present paper, we are particularly in-
terested in the neutron-proton interaction in the triplet
state. Calculations have been performed for various
potentials to be described subsequently in which the well
depths required to yield the experimental binding
energy and quadrupole moment of the deuteron have
been evaluated for a variety of ranges. The limitation
on these ranges provided by other low energy phe-
nomena such as neutron-proton scattering and the
photodisintegration of the deuteron is also considered.

The general form of the interaction potential in the
triplet state as a function of r, the relative position
vector for the neutron-proton system, is

V(r) = [V.f(rlr. )+V~g(r/—r~)S12]. (1)

* Assisted in part by the joint program of the ONR and AEC.
f The results of preliminary calculations were described at the

Washington Meeting of the American Physical Society in 1948,
Phys. Rev. 74, 1223 (1948). The main body of this paper was
completed in the spring of 1949.

Here —V,f(r/r, ) is the potential for the central force
characterized by a depth V., a range r, and shape f(x)
The expression —V&g(r/r&) is the analogous quantity
for the tensor force containing the dependence of the
interaction upon the internucleon distance, while

S~2——[3(e~ r)(eg r)/r'] —a~ a2 (2)

contains the dependence upon the direction of the
vector r relative to the spin vectors eI and e2 of the
two particles.

Since our principal interest is in the deuteron, we
have not specified the exchange properties of V(r). It
should be emphasized that the form of the interaction
contained in Eq. (1) omits possible velocity-dependent
forces.

In the present paper, the Yukawa potential is em-
ployed for both f and g:

f(x) =g(x) = e */x, —(3)

' Julian Schwinger, Phys. Rev. 7S, 135 (1950}.' R. L. Pease and H. Feshbach, Phys. Rev. 81, 142 (1951}.' W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).

where r, and r& are varied over a considerable range.
The Yukawa well. is chosen for it appears to be com-
patible with a symmetrical nuclear hamiltonian. ' In
addition preliminary calculations' have indicated that
a satisfactory theory of H' may be obtained.

Similar potentials have been adopted by a number of
authors. Rarita and Schwinger' placed f=g, and used a
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square well with a range of 2.8&10 '3 cm. Guindon'
employed the square well shape for both f and g but

permitted slightly different values for r, and r g. Bieden-
harn, ' Pad6eld, ' and Christian and Hart' have also used
square well potentials, but have considered wider
variations in r, and rg in order to fit recent neutron-
proton scattering data. Several authors have employed
Yukawa wells, including Chew and Goldberger, ' Hu
and Massey, ' Rarita, "and Christian and Hart. Gen-
erally, r, was placed equal to r g except for one case in
which Christian and Hart considered a number of
values of rg for r, =1.185/10 " cm. The exponential
well with r, =r g has been treated by Rarita, and by Hu
and Massey. The latter have also employed the gaussian
potential. Jauch and Hu, "and Wu and Foley, "employ
the V(r) predicted by a meson mixture theory.

II. DETERMINATION OF THE FORCE CONSTANTS

The triplet neutron-proton potential (1) contains
four constants t/'. , Vf, r„and r g. Two of these are deter-
mined by

&=binding energy of the deuteron" 2.23&0.007 Mev,
Q= quadrupole moment of the deuteron" "

(2.766&0.02))&10 "cm'

This leaves two free parameters, which we have chosen
to be r, and rg. The central force ranges employed in
the present calculations were varied about that given
by proton-proton scattering, while t'g is kept larger
than r, in most instances, as is indicated by the theory
of O'. Calculations were made for a su%ciently wide
range of values of r, and r, , and the ratio (V,/V, ), so as
to include any possible changes in the experimental
data. Computations were performed for four values of
r„ five of r, for each r„and three values of (V&/V, )
for each (r„r&) pair, making sixty in all.

We employ the variational-iterational method. ' This
method is particularly valuable in the present problem
because it provides (1) a method for estimating the
errors in the eigenvalue by giving upper and lower
bounds to them, (2) a method for systematically im-

proving the wave functions by iteration, and (3) a
method for extrapolation. Since the quadrupole moment

4 W. G. Guindon, Phys. Rev. 74, 145 {1948}.' L. C. Biedenharn, Ph.D. thesis, MIT (1949).
I D. Pad6eld, Nature 163, 22 (1949).' R. S. Christian and E. %.Hart, Phys. Rev. 77, 441 (1950}.' G. Chem and M. L. Goldberger, Phys. Rev. 73, 1408 (1948).
9 T. M. Hu and H. S. %. Massey, Proc. Roy. Soc. (London)

A196, 135 (1949).
'0%. Rarita, Phys. Rev. 74, 1799 (1949}."J.M. Jauch and N. Hu„Phys. Rev. 65, 289 (1944}."T. I. %u and H. M. Foley, Phys. Rev. 75, 16, 1681 (1949)."R.K. Bell and I.. G. Elliot, Phys. Rev. 79, 282 (1950).
'4A. Nordsieck, Phys. Rev. 58, 310 (1940}; Kellogg, Rabi,

Ramsey, and Zacharias, Phys. Rev. 57, 677 {1940);G. F. Newell,
Phys. Rev. 78, 711 (1950)."A recent measurement of the deuteron quadrupole moment
yields

Q = (2.738+0.016)X10~' cm'.

Kolsky, Phipps, Ramsey, and Silsbee, Phys. Rev. 81, 1061 (1951)."H. Feshbach and J. Schwinger, in preparation.

is a determining quantity, which depends rather criti-
cally upon the wave functions, it was essential to em-

ploy a systematic method with the properties already
outlined.

The wave function for the deuteron may be written
as a linear combination of an S and D state

0 = (1/r)Lu(r)+(1/S')~»w(r) 3x-,

where x is the spin function with magnetic quantum
number m. The differential equations determining I
and m are to be given in terms of the independent
variable

x= r/r,
Then, if

g= (Me/h')tr„X= M V,r,2/&&i', r = r,/r, ,
(Sa)

y= V&/V. , )&/q'= V,/e, »/r=(Me/&ri')&r, ,

we obtain

(d'u/dx')+ L
—vP+Xf(x) ju= 2 ty) g—(rx)w, (6a)

(d'w/dx') —(6w/x')+ I
—»'+ l&[f(x)—2yg(rx) )I w

2 tying(rx—)u. (6b)
The quadrupole moment is

Q= (2t/]0)r 2 I xi[uw —(1/Sl)w2jdx
~0

To facilitate the solution by iteration, it is convenient
to replace Eqs. (6) by equivalent integral equations:

u=)& G,"&(x, x')Lf(x')u(x')
J,

+2-*yg(rx')w(x') jdx', (Sa)

G „&'&(x, x') I 2 ling(rx') u(x')
0

+Lf(x') —2yg(vx') ]w(x') I dx', (Sb)
where

d2G„&i&(x, x')/dx —p(l)(l+ 1)/x']G„'"(x, x')
—»'G„&'&(x, x') = —li(x —x'),

G &'&(0, x')=0, G '"(~, x')=0.

Hence, we obtain

G„&0&(x, x') = (1/»)sinh»x(e "*-,

G &»(x, x')=
(

—
( ( 1+ )sinh»x~

(»J E (»x()')

( 3 3
cosh»x

~
1+ + ~e

"*- . (9)
»x) (»x))'&

Here the smaller of x and x' is substituted for x& and
the larger for x&.

At this point it becomes possible to describe the
iteration part of the calculation. Starting from an initial
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TABLE I. Result of several iterations, and comparison
with extrapolated Q.

Iteration

),0(&)

y (1)

Extrapolated
Xo(~)

9.5728
9.5726
9.5727
9.572@
9.5726'

Q (10~& cm~)

2.708
2.680
2.689
2.695

and matrix operators

(I)
&w)

(10)

(—(d'/dxp)+ &Vp

A=]
0

0
(11)—(dP/dx')+ (6/x')+»')

rf(x)

L 2&kg (rx)

2&yg(rx)

f(x) 2yg (rx)— (12)

Then Eqs. (6) and (8) may be written

Ay=&Sy,
y=XA-'Sy

TABLE II. Result of several iterations in a case
of near degeneracy.

(13)

(14)

Iteration

y (o)

),0(k)

)&,0(1)

Extrapolated values
),,(0)

)&, (f)
X0(')

4.52261
4.52118
4.52257
4.52188
4.52186
4.52186
4.52186

Q (10» em~)

2.587
2.665
2.626

2.625
2.626

pair of trial functions eo and mo whose choice will be
discussed subsequently, we may obtain a first iterate N1

and m1by introducing No and mo in the right-hand side
of Eq. (8). The factor X is a common proportionality
factor, so that' it may be absorbed into the definition
of u1 and m1. To obtain the second iterate, introduce e1
and wi in the right-hand side of Eq. (8), and so on for
the higher iterates.

The wave functions developed in this manner are
then employed as trial functions in a variational prin-
ciple for X. Equations (8) are a pair of integral equations
with eigenvalue X; i.e., the depth of the potential Vo

required to yield the experimental binding energy, as
included in the parameter g, is now the solution of an
eigenvalue problem. This characteristic feature of the
iterational scheme corresponds to the present state of
knowledge in the theory of the deuteron, for the binding
energy of the deuteron is known from experiment and
one is looking for a corresponding value for the poten-
tial depth. The necessary variational principles may be
obtained from the original Schrodinger equation. How-
ever, it is somewhat simpler to work directly from Eqs.
(6) and (8). Let us define a matrix

From Eqs. (13) and (14) two variational principles
may be obtained. %e shall be interested in situations
in which the eigenvalues need not be of a single sign.
Let ) o be the eigenvalue of least absolute value. %e
adjust operator B so that it is positive. Then, we have

Xp=extremumL(p, Ap)/(p, Sp)j
and

Xp ——extremumL(P, SP)/(P, SA 'SP)], (13b)

where the symbol (P, ptt) signifies the scalar product of
P and Q integrated over x from 0 to infinity. Upon in-

/ N. 't
troducing the successive iterates P„=

~ ~
into Eq.

qw )
(15), we obtain a set of values Xp'"&, which are approxi-
mations to Xo.'

Xp&"&=(n n 1)/—(n n)

Xp&
"++= (n, n)/(n, n+1),

where

(n np)=(0- S0-)
or, in terms of N„and I„,

(n, np)= 3 [fl„u„+2&yg(N„w„+w„g„)

+(f kg)w„w—]dx. (17)

It may be shown" that the sequences )«("), Xo("+&) con-
verge to A,o. The manner in which this occurs is com-
plicated in this case by the nonpositive definite char-
acter of B. A sufhcient condition that B be definite is
that the determinant

f(x) 2tyg(rx)
2&yg(rx) f(x) 2yg(rx)—

be of a given sign. This is certainly the case for y=0,
but the sign changes when (yg/f) exceeds (pi) or (—yg/f)
exceeds (-,'), where it has been assumed that both f and

g are positive. The nonpositive dehnite character of B
has the consequence that the eigenvalues X may be
both positive and negative extending to + oo and —oo.
One sequence of eigenvalues corresponds to those
states for which the 5 state is the principal component;
i.e., it gives the values of the potential V, for which a
state, mostly 5 in character, has the binding energy e.
The smallest positive ), Xo, is that potential for which e

is the binding energy of the ground state. The other
sequence of eigenvalues corresponds to those states for
which the D state is the principal component.

Two consequences of the above are of importance
in the calculation. The inequalities satisfied by IXp&"& I
and Ihp "~&I are considerably less specific when S is
not positive definite compared with the positive definite
situation. Thus, in the latter case, these successive
approximations to Xo form a monotonic sequence ap-
proaching ) 0 from above:

P (n))y (ss+$}P) (++1)P. . . Py

For nonpositive definite S the IXp&"&I satisfy a weaker
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set of conditions: TABLE III. Values of the parameter q corresponding to various
values of p, , p, is given in terms of the electron mass.

{)&
&~&

/

) {),&~+»
{

{n}) (n+Q P) (n+1)) (n+j) P. . .Pg 2

(18) 0,313
286

0.275
326

0.256
350

0.224
400

Let X~ be the eigenvalue whose absolute value is next
in size to Xo. If, after some number of iterations, con-
vergence to 30 has proceeded to the stage that

X,2&X,&-~)X,&-+», ~&X,
then we have

Xa&"& ~&)&0&"+'» & Xo, e~& E. (19)

We thus see that the set {Xo&"&I, n integral, will, for
suSciently large n, approach Ao monotonically from
above. The values of Xo'"+, e integral, can be either
above or be1ow Xo. Eventually, however, the sign of
(X&&&"+»—X,) will become independent of m, being posi-
tive or negative in accordance with the sign of (1&0/l&&).

Thus, when Xo/X&&0, the set Xo&"+» is asymptotic to
Xo from below.

Other upper and lower bounds to Xo may be obtained.
We give several of these:

y (n) y (n+$)-

)&0& X0&
"+» 1—,(20a)

~~,
~

—)&,&-+»

y, (n) y, (n+~)—

Xo') Xo&
"+&9 o& "+'& 1—,Xo&

"+'&)0. (20b)
{X&

~

—
Xo&

"+"

If A, i is known to be negative, then we have

x,~-)—x,&-+»-

),0 p ),0(n+k)

~
i&2 {

—
Xo&

"+»
(20c)

a considerable improvement over Eq. (20b). Here, &&2

is the third in the sequence of absolute eigenvalues.
Because of the possibility that ) 0&""+ may be less than
Xo, another upper bound which is useful may be
obtained:

These inequalities are valid if the denominators are
positive. To apply these inequalities, some method for
obtaining a lower bound for

~
X&~ is necessary. We have

employed the relation,

A similar method ' is available for determination of X2

in (20c).
Another remark should be made with regard to the

product sequence in (18) or sequence (19). The rate of
convergence is best when the ratio {()&0/X&)

~
is very

small compared with 1. For some values of the param-
eter y, this ratio is very close to one, corresponding to
an approximate degeneracy in the eigenvalues of the
iterated operator in Eq. (15), (A '8)', which has eigen-
values Xo ', X~ ', . This is particularly serious in the
computation of such nonstationary quantities as the
amount of D state and the quadrupole moment. Near-
degeneracy may produce sizable fluctuations in these
quantities with successive iterations. In practice, these
fluctuations are in the relative amplitude of the S and
D state rather than in the shape of the radial functions.
Accordingly, the relative amplitude of the 8 and D
state may, after a sufFicient number of iterations, be
introduced as a variational parameter. A simpler pro-
cedure is given by the following extrapolation technique.

Let F(", F(", F('&, . be the values of a quantity
F obtained by successive iterations. The quantity F
may be )&, or Q, or the value of u or w at a given point.
If the iterations at stage F(') have proceeded far enough,
it may be assumed that

P&0&=P+f Po& —P+gf P&2&=P+Qf

where f is the error at stage P&", while &g, the parameter
giving the rate of convergence, is Xo/X&. We have essen-
tially assumed that all the error comes from the ad-
mixture of the eigenfunction of Xj to that of Xo. From
these three equations we may determine F:

P —P&0& —[P&0& Po&]2/[P&0& 2P(&&+.P&2&] (22)
4

If two sets of numbers F and 6 depend on 8 in the
same way (e.g. , X and Q), then it is possible to obtain
8 from one sequence and use it in the other so that

P—P&0& (P&0& Po&) [G&0&—G&&&j/
[G&0& 2G0&+G&2&j (23)

The extrapolation method was checked by comparison
with successive iterations in some of the worst cases
which occurred and proved to be very accurate.

where
X '&[spur(A '8)' —(X &"') 'j

spur(A '8)'=»' dx' ' &fx"{G„&"(x', x")f(x")

(21) Computational Details

The 6rst step in the calculation involves the deter-
mination of a suitable initial trial function &&io. We

X G &o&(x", x')f(x')+1&y'G, &0&(x', x")g(rx")

XG„&2&(x",x')g('rx')+G, (x', x")[f(x")
—2yg(rx") Q„&'&(x", x') [f(x')—2yg(rx') j}.

0.640
140

0.493
182

0.355'
252

0.320
280

0.275
326

TABLE IV. Values of (g/v} and the corresponding
equivalent meson masses.
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TABLE V. Values of P =MVz, /k~, p= V&/V„Q=quadrupole moment, pz=amount of D state, p&=effective
triplet range for various values of y = (M~/k~)&r. , g/r = (N e/k')r~.

0
(10 ~7 cm2)

pI
pD (10» cm)

0
(10~7 cm~)

Pl
P~ (10» cm)

0.640

0.492

0.1140
0.1300
0.1350

0.2400
0.2700
0.3000

i7 =0.313

2.1520 2.52
2.1016 2.78
2.08S5 2.86

2.0129 2.53
1.9496 2.74
1.8886 2.89

0.016
0.019
0.020

0.021
0.024
0.026

1.92
1.96
1.'96

1.88
1.93
1.93

0.640

0.492

0.0920
0.0978
0.1140

0.1900
0.2100
0.2400

y =0.256

2.0031 2.67
1.9789 2.80
1.9100 3.08

1.8616 2.64
1.8064 2.79
1.7260 3.00

0.020
0.021
0.025

0.0245
0.027
0.030

1.79
1~ 79
1.84

1.74
1,77
1.79

0.3556

0.320

0.8550
0.9300
1.0000

1.5600
1.7000
1.8400

1.5429
1.4784
1.4220

1.2227
1.1575
1.0983

2.62 0.032
2.72 0.035
2.79 0.036

2.67 0.042
2.74 0.042
2.78 0.042

1.79
1.79
1.79

1.71
1.71
1.71

0.3555

0.320

0.7300 1.3297 2.76 0.039
0.8100 1.2524 2.85 0.040
0.8550 1.2125 2.89 0.040

1.2000 1.1009 2.69 0.043
1.3392 1.0231 2.76 0.045
1.5600 0.9192 2.85 0.046

1.68
1.68
1.71

1.63
1.63
1.63

0.275
6.340
9.200

13.000

0.5214 2.65 0.054
0.3757 2.72 0.054
0.2737 2.77 0,054

1.52
1.52
1.52

0.275
6.2400

10.5000
13.0000

0.3692 2.70 0.055
0.2288 2.77 0.054
0.1871 2.79 0.052

1.49
1.49
1.49

0.640

g =0.275

0.1000 2.0498 2.64 0.018 1.85
0.1040 2.0347 2.71 0.019' 1.85
0.1080 2.0195 2.78 0.0205 1.85

0.640

9 =0.224

0.0740 1.9429 2.62 0.020 1.68
0.0770 1.9279 2.?1 0.021 1.68
0.0850 1.8871 2.97 0.0236 1.74

0,492

0.3555

0.2239
0.2400
0.3000

0.7107
0.7660
0.7820

1.8676
1.8277
1.6860

1.4631
1.4070
1.3915

2.72 0.025
2.83 0.027
3.18 0.034

2.63 0.034
2.71 0.036
2.72 0.037

1.79
1.82
1.85

1.71
1.71
1.71

0.492

0.355:

0.1550
0.1700
0.1900

0.5800
0.6240
0.7107

1.7961
1.7461
1.6808

1.2899
1.2370
1 ~ 1434

2.61 0.025
2.77 0.028
2.94 0.030

2.72 0.039
2.81 0.040
2.91 0.044

1.66
1.68
1.73

1.60
1.63
1.63

0.320

0.275

1.3392
1.4280
1.5600

4.7300
5.8000
9.2000

1.1285
1.0818
1.0190

0.5331
0.4470
0.2952

2.69 0.042
2.73 0.041
2.79 0,046

2.63 0.051
2.67 0.053
2.75 0.056

1.66
1.66
1.66

1.52
1.52
1.49

0.320

0.275

0.9500
1.1000
1.2000

4.7300
5.8000

10.5000

1.0687
0.9681
0.9105

0.3713
0.3087
0.1773

2.60 0.044 1.57
2.7S 0.046 1.57
2.81 0.045 1.60

2.69 0.055 1.46
2.72 0.054' 1.49
2.78 0.059 1.49

employed the integral equation variational principle
(15b), in conjunction with simple one-parameter func-
tions for e and for x, which satisfied the boundary
conditions. The values of Xp, and therefore Vp, obtained
were in error by a few percent. The error in Q was
considerably larger, and it must be concluded that
discussions based on the variational method employing
such simple functions without further improvement are
not reliable. The function Pp was then introduced into
the right-hand side of Eq. (8) to obtain Pi, etc. ; the
resulting approximations for Xp and Q were obtained
from Eqs. (16) and (7), respectively.

These calculations were performed on the Mark I
calculator of the Harvard Computation Laboratory,
using Simpson's trapezoidal rule over most of the
range. The mesh was chosen so as to provide an over-all

accuracy for the final values of Xp of at least one part
in 10'. There was some difhculty in the region near
x=0, since integration (Sb) involves a rapidly varying
function of x behaving as 1/x' as x-p0. A special integra-
tion formula for this region was devised in which the

known properties of I were utilized. In the region of the
origin, u~x(Ap+Aix+A px+ '. ). The coeScients Ai
may be expressed in terms of the tabulated values of u.
The integration for each power of x may then be per-
formed and the final integral expressed in terms of
tabulated values of I multiplied by known numerical
coefIicients. The convergence obtained from successive
Xp( ) was very good. It was generally necessary to per-
form only two iterations, which is su%cient to permit
the utilization of extrapolation formulas (22) and (23).
The convergence to Q was not nearly as good, but with
the extrapolation method it was possible to obtain Q's
which were correct to the third significant figure. A
case which was carried beyond the second iteration is
given in Table I, together with a comparison between
the extrapolated Q and the next iterate.

A second case in which there is a near degeneracy is
illustrated in the Table II. The values of Xp(") obtained
from the first two iterations Xp(p), Xp(&), Xp"), are seen to
oscillate, and the second significant figure in Q is un-
certain. At this point the extrapolation formula (23)
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was applied to P and then two further iterations per-
formed. It is seen that the )0(:"}-sequence for this new
initial trial function is constant to six signi6cant 6gures,
and the first three 6gures of Q are now determined. It
is interesting to examine just how accurate the ex-
trapolation technique applied directly to the 6rst
group of Xo&"' would be in this particularly dificult
case. It is seen that the extrapolated X agrees with the
second, and correct group, to 1 part in 400,000, while
the extrapolated Q is in agreement to 1 part in 2600.

In any numerical method there is an unavoidable
error following from the 6niteness of the mesh. As a
consequence an auxiliary problem has been solved; the
exact problem is obtained only when the size of the
mesh approaches zero. We may consider the difference
between the two problems as a perturbation in 8; and
in this way we obtain Q,o, the error in Xo, from the varia-
tional principle (15):

(24)

Assuming Simpson's rule is employed from xo to in-
6nity, the numerator may be approximately evaluated
as

where the prime signi6es that only the matrix product
is to be taken and b, is the mesh size. An evaluation of
Eq. (24) for several cases gives (»o)/AD~10 '. The
error in Q from this source may be expected to be of
the same order of magnitude.

III. RESULTS

A total of sixty cases were computed, a X and Q being
obtained for each. The values of the parameter g, pro-
portional to r„ the range of the central force, were
centered about the range suggested by the scattering
data. " The various ranges employed may be related
to an equivalent meson mass by the relation r, = (h/pc).
The four values of p, in terms of the electron mass and
the corresponding values of g are given in Table III.
For each value of r„6ve values of the tensor range r&

were employed. The values of (p/r) (which is propor-
tional to r,) and the corresponding equivalent meson
masses are given in Table IV. It will be noticed that
for the most part r~ was chosen so that r&&~ r, . For each
pair (r„r,) three values of y were used. These were
chosen so as to center the consequent values of Q about
the experimental value of 2.766&10 "cm' and so that
accurate interpolation in the event of changes in Q and
~ would be possible.

The values of X and Q for each value of r„r„and y
are given in Table V. The values of y and X needed to

"J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949);
J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77 (1950);
H. A. Bethe, Phys. Rev. 76, 38 (1949); G. Breit and %. G.
Bouricious, Phys. Rev. 75, 1029 {1949).

IV. APPLICATIONS

In this section, we shall investigate the limits set on
the possible values of r, and r & as determined by other
available data on the neutron-proton system. We shall
consider the magnetic moment of the deuteron, low
energy neutron-proton scattering, the photodisintegra-
tion of the deuteron, and neutron capture in hydrogen.

TABLE VI. Interpolated values of &, ), pD, p1 for Q= 2.766' 10~'
cm~ for various values of y and (y/v).

T7

pj's

0.313 0.640
0.492
0.3556
0.320
0.275

Q.275 0.640
0,492
0.355'
0.320
0.275

0.256 0.640
0.492
0.355e
0.320
0.275

0.224 0.640
0.492
(f.3555
0.320
0.275

0.1291
0.2747
0.9744
1.7860

12.6421

0.1072
0.2305
0.8359
1.5074

10.0816

0.0962
0.2067
0.7344
1.3525

10.0684

0.0788
0.1696
0.5985
1.1244
9.0980

2.1044
1.9400
1.4424
1.1209
0.2819

2.0226
1.8512
1.3406
1.0431
0.2681

1.9857
1.8153
1.3251
1.0164
0.2371

1.9188
1.7475
1.2666
0.9537
0.2087

pt
PD (10» cm}

0.019 1.96
0.024 1.93
0.036 1.79
0.042 1.71
0.054 1.52

0.020 1.85
Q.026 1.79
0.038 1.71
0.043 1.66
0.056 1.49

0.021 1.79
0.027 1.77
Q.039 1.68
0.045 1.63
0.054 1.49

0.021 1.68
0.028 1.68
0.039 1.63
0.046 1.57
0.057 1.49

give Q =2.766X 10 "cm' tabulated in Table VI were ob-
tained by interpolation from Table V.

Some qualitative features of these results are as
follows:

i. For a given r, and rf, X decreases with increasing X or more
precisely

(1+y/r)X constant.

2. For a given r, and r ~, Q and p~ increase with increasing tensor
interaction

yX/Q constant, p~/Q constant.

3. For a given r, and Q, y) increases rapidly with decreasing r &.
'

y) /r'~constant and (1+y/v) A~constant.

4. For a given rg and y, X increases with increasing r, :

X/g~constant.

5. For a given rf, and Q, y increases with increasing r, :

y/q constant.

The relations in groups 1 and 2 hold rather well,
while those in 3, 4, and 5 are much more approximate.
For example, relation 1 holds generally to better than
1 percent, relation 2 to somewhat less than 1 percent,
while relation 3 holds for the most part to better than
10 percent. These relations are empirical results and
should not be extended beyond the range of the pa-
rameters considered in these calculations.
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pn ——~t w'Ck jt (u'+w')Ch
0 D

However, Eq. (26) is incomplete because of other con-
tributions to the magnetic moment of the deuteron
arising from relativistic' effects. The latter is dificult
to estimate from the nonrelativistic potential, since the
specific relativistic transformation properties of the
interactions are involved. An investigation of the
various simple models indicates that the correction to
Eq. (26) is uncertain by &(T/2M'c') &0.008, where
T is the average internal kinetic energy of the deuteron.
The consequent uncertainty in pn is &0.016. In Table
V the value of pn for each value of y and is tabulated.
It is seen that pn depends principally upon r, not being
sensitive to variations in y for a given 7.. Most of the
values of pD for 0 275&rl/r. &0 640(q/r=. (3f~/h')&r&)
fall within the admissible range for po=0.04&0.016.
It is clear, however, that the regions rl/r)0 640 and.
g/v&0. 275 are excluded.

b. Neutron-Proton Scattering

The phase shift bI for the 'Sj scattering of neutrons
by protons may be determined from the expansion:

~ cot~1 ~+X($2+~2)p&+0[($2+~2)2plaj
(28)a'= Me/h'= (g/r, )',

where pi is the effective triplet range. The parameter
pi may be expressed in terms of the deuteron wave
function by the expression,

pg
——2 ~~ [e—'~"—(u'+w') jdr.

0

(29)

Here, (I'+w') has been normalized so that it approaches
e—' " as r+~. The values of the e6'ective triplet range
p& computed from Eq. (29) are given in Table V. The
recent experimental data for the coherent" neutron-
proton scattering amplitude, the neutron-proton" cross
section for epithermal neutrons, together with the
binding energy of the deuteron, can be used to deter-
mine the triplet scattering length u~ (the limit of

' H. Primakoff, Phys. Rev. 72, 118 (1947); G. Briet and I.
Bloch, Phys. Rev. 72, 135 (1947).

'~ Hughes„3urgy, and Ringo, Phys. Rev. 79, 227 (1950).
~o E. Milkonian, Phys. Rev. 76, 1744 {1949).

a. Magnetic Moment of the Deuteron

The admixture of the D state contributes to the
magnetic moment of the deuteron as follows:

p n=y.+g, (,)—[p +II„(,)—lpga. (26)

Here, p~, p, , p„are the magnetic moments in nuclear
magnetons of the deuteron, neutron, and proton, re-
spectively, and po is the fractional amount of D state
as defined by

2

P= e jte *"'r(N/r—)dr ~(u'+w')dr. (30)

Here, e is the polarization vector for the incident
photon, and hk is the relative momentum in the center-
of-mass system for the final P state in which the inter-
actions between neutron and proton have been neg-
lected. The transitions from the 'D part of the deu-
teron ground state wave function may also be omitted.
Equation (30) is based on the interaction —,eR r in place
of —(e/Mc)y A, since the former includes the effects of
exchange currents,

Ke compare P. with its value in the zero-range
approximation:

2

Pa e "e '"'r(e "/r)d7——-—
Adopting the normalization

(N2+Q) s—2ar

lH 00

the ratio of the denominators in P and P'0 may be
~~ Inclusion of the effect of the next term in expansion (28) as

determined by J. M. Slatt and L. C. Siedenharn (private com-
munication) reduces the value of p& by 1.6 percent to 1.70)&10 "
cm which is within the quoted experimental error.

(8q/k) as k approaches zero) and the triplet range pq.'

ag —(5.39&0.03)X10 "cm

pi= (1.73&0.04) X10 "cm."
Many of the values given for p~ in Tables V and VI are
incompatible with the measurements, so that the pos-
sible values of the range of the tensor force for a given
central force range are sharply restricted. In particular,
the admissible tensor force ranges are signi6cantly
greater than the central force range. It should be noted
that this conclusion is independent of the exact value
of the quadrupole moment for, as may be seen from
Table V, the value of p~ is not sensitive to the va.lue of Q.

c. Photodisintegration of the Deuteron

We develop a phenomenological description of both
the photoelectric and photomagnetic e6'ect. In the
former case, the empirical absence of interaction in the
anal state makes it possible to express the cross section
in terms of parameters describing the triplet n —p
system which are already known experimentally. On
the other hand, for photomagnetic sects which in-
volves transitions between triplet and singlet states,
one needs, in addition to the singlet scattering param-
eters, a new phenomenological constant which also
contains the possible sects of exchange currents.

Photoelectric Disintegrati on

The cross section for this process is proportional to g
the quantity
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expressed in terms of pi.

(u'+w')dr e
—'~'dr = (1—ap~).

aJ

The integral in the numerator of P is

(32)

where 0,&'& is the cross section for zero-range nuclear
force:

8~pe'~ (1q (eE)~ (~E)~
=1.15X10-26cm'

3 Ekc) Ea') (E+e)' (E+s)'

N= e '"'r(u/r)dr

=i~p ' e '"'(u—/r)dr
J

00

=4niv . (1/k) ~r sinkrudr, (33)
0

where V'I, is the gradient operator in k space. The
asymptotic behavior of u is given by w=(1 fP)—~e

where

(f'0/(1 f )—0') = lim(~/u)

Since $0'~10 ', we shall ignore the factor (1—102)' in
the discussion below. We may write

~I u sinkr dr= I s sinkr dr ~~ (s—u)sinkr dr.
0 Jo 0

Since v —I vanishes outside the range of nuclear forces,
it is permissible for the energies being considered here
to insert a power series expansion for sinkr in the second
integral. N then becomes

in which E+e is the energy of the incident photon.
Thus, the energy dependence of the photoelectric

cross section is given by the zero-range formula. Intro-
ducing a finite range changes only the magnitude of
the cross section, so that a measurement of the absolute
cross section will give a determination of pi, the triplet
scattering range. We shall compare this result with
experiment after photomagnetic eGects have been
considered.

s (e'q E+e sin'go
0m=- — Ijn —Py '—

3 (hc) Mc' k

)~uup(1+g(r)) dr

"(u'+u') dr

-2

(36)

Photomognetic Disintegration

The cross section for photomagnetic disintegration
in which the very weak transitions to the D state have
been omitted is

N= —Lgsilr/(k'+a')'j 1——,'(k'+a')' ' r'(r —u)dr .
0

(34)

The first term in N gives the zero-range approximation.
The second range-dependeg. t term is proportional to
(k +a ) p~', the proportionality constant being a rather
small number. A closer estimate of the correction may
be obtained through the use of the approximate wave
function

u=e '—e ~"
)

(3/p~)(1+ ), which is suitable for the meson,
exponential, or Hulthen potential wells. Then the range
dependence of N is measured by

(k +a )2pg4/81~3X10 (1+k /a') .

where NI, is the singlet S radial wave function multiplied
by r, normalized so as to approach sin(kr+go)/sinbo for
large r, and we again normalize (u'+rc') to approach
e ~'. The function g(r) has been introduced to repre-
sent the eGect of the exchange magnetic moment as it
appears in the triplet-singlet transitions. " The spin
operator character of this moment need not be specified,
since the transition to the singlet state is from a unique
triplet spin state. In addition, it may be expected that
g(r) is appreciable only within the range of nuclear
forces.

The cross section for the inverse of this process, the
radiative capture of slow neutrons is

rc—Ã p, a py
2 Ag02

E2E„) Ekcl EMc')

This is very small compared with one even at rela-
tively high photon energies. We shall therefore omit
the correction, so that the quantity P is given by

P=Po/(1 —apg).

Hence, the photoelectric cross section~ is

uup(1+g(r))dr

J
(u'+uP) dr

(37)

c =o "&/(1-api) (35)
~ This formula vras Grst given by H. A. Bethe and C. Longmire,

Phys. Rev. 77, 647 (1950), and J. M. Blatt (unpublished).

~ The exchange magnetic moment can be related phenomeno-
logically to the exchange tensor interaction. A calculation of this
contribution to the mixed effective range and of the magnetic
moments of H3 and He' is in progress.
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where where

and ao, the singlet scattering amplitude, is the low

energy limit of (8o/k), and E is the neutron kinetic
energy in the laboratory system. The experimental
value of ao is (23.7&0.1)X10 "cm.

The integral in the numerator of Eq. (36) may be
rewritten as follows:

co ~00

3Eo—— ~ u[1+g(r)]uodr = vvodr

0 Jo
OQ

(vvo uuo)dr+ —
~~ ug(r)ui, dr,

0

where v= [sin(kr+8o)/sinbo], v=e " give the asymp-

20-
X IO"

I5—

= (1.02&0.01)X10 "cm'

1—
Exp'

20'm= 3&
(n'+k')

L1+ (k'/2n') n(po p)!(1—onp+—1/«o) 7'
X (41)

1+ 'ko(oo+opo)+(-', )(k'popo)'

With the exception of p, all of the quantities appearing

i4—

[1—-'n(aop —aei)/(oo —ai)]'
X (40)

1—Apy

The cross section for photomagnetic disintegration
may be expressed in terms of o-.

IP—
50—

I 2 — 40—

~ M
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~ HW
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FIG. 1. The cross section for the photomagnetic disintegration
of the deuteron, where Ace is the inc&dent gamma-ray energy and
e is the deuteron binding energy.

IO—
30

20

Mo becomes

M'o ——(1/nao) [ao(1—-,'np) —a, (1—-,'np&)]

= [(&o c'i)/neo][1 on(+op &px)/(oo oi)].
Introducing this result into Eq. (37), we obtain

o,= (2o/Z )&(o/Mc')rr, (39)

totic behavior of u& and u, respectively. Hence, we have

Mo ——[(k cotbo+n)/(n'+k')] ',p, —-
~QQ 00

(op) = (vvo uuo)dr —~uuog(—r)dr.
Jo 0

Since both contributions in Eq. (38) involve only the
behavior of the wave functions within the range of
nuclear forces, p, a mixed effective range, will be in-
sensitive to the kinetic energy of the emergent par-
ticles. Therefore, 3fo, in particular, will be given by

M o = (1/n) [1+(1/nao)] ——,'p

with the same p as in Eq. (38). In terms of the zero
energy triplet scattering length c~,

Q I

Fro. 2. The ratio of the cross section for photoelectric dis-
integration and the cross section for the photomagnetic disin-
tegration of the deuteron, where Ann is the incident gamma-ray
energy and c is the deuteron binding energy. The references to
experiment are:

L=N. O. Lassen, Phys. Rev. 74, 1533 (1948); ?5, 1099
(1949).

G=F. Genevese, Phys. Rev. 76, 1288 (1949).
M=K. P. Meiners, Jr., Phys. Rev. 76, 259 (1949).

WH=W. M. Woodward and J. Hy, lpern, Phys. Rev. 76, 107
(1949).

HW=B. Hamermesh and A. Wattenberg, Phys. Rev. 76, 1408
(1949).

BHSW=Bishop, Halban, Shaw, and Wilson, Phys. Rev. 81, 220
(1951).

Go= G. Goldhaber, Phys. Rev. 81, 930 (1951).
H=P. V. C. Hough, thesis.
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in the expression for the capture cross section are ac-
curately known experimentally. In the cross section for
photodisintegration we encounter po, the singlet scat-
tering range which has not been accurately determined
from scattering data. It is noted that the energy de-
pendence of r is more sensitive to the value of po than
the corresponding singlet I—p scattering cross section.
Unfortunately, this additional energy dependence will

first become significant for k' a', where the magnetic
cross section is a small fraction of the total. Thus, for
the low energy domain where the photomagnetic cross
section is appreciable, the latter is essentially deter-
mined by 0 which is however better fixed by the more
accurate experimental capture cross section.

The experimental value of 0.310&0.02 barn'4 for the
capture cross section at a neutron energy of (1/40) ev
implies a value of (0.976&0.07) X 10 'o cmo for &r Fro.m
this p may now be obtained:

p= (2.18&0.3)X 10 "cm.
It may be noted that, within the large experimental

uncertainty, the value of p agrees with the average of

p~
——(1.73&0.04)X10 " cm and po=(2.5+0.5)X10 "

cm the latter being inferred from neutron-proton scat-
tering data, this average being (2.12&0.25)X 10 " cm.
This is what would be expected if the exchange moment
were not appreciable and if the shape of the singlet
and triplet 5 wave functions were similar within the
region of nuclear interaction. For example, if we em-

ploy the approximate wave functions N=e "—e~",
Io ——1—e &' where y 3/p~ and & 3/po we obtain,
with neglect of the exchange moment contribution,

p =2)"(vvo »o)dr—
= o[po+Pi —Popo/(Po+Pi)]

=-.'(Po+ pi) {1+oh(po —pi)/(po+ pr) j'I

which differs negligibly from the average" (po+p&)/2
for the values of po and pi of interest.

A curve for the theoretical photomagnetic disin-

tegration cross section is given in Fig. 1. The experi-
mental quantity which involves this cross section most

~'W. J. Whitehouse and G. A. R. Graham, Can. J. Research
A25, 261 {1947).See comment in Bishop, Collie, Halban, Hedgran,
Siegbahn, Du Toit, and Wilson, Phys. Rev. 80, 211 (1950).

"This is the simple form assumed in reference 21.

20-
"'o '4 cm'

I I I I I

f cw
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IS—

cr,

sensitively is the ratio a,/o, as inferred from the angu-
lar distribution of the disintegration products. The not
very precise experimental determinations are compared
with theory in Fig. 2 with no evident inconsistency.

If the theoretical values of a- are subtracted from the
experimentally determined total cross section, one ob-
tains photoelectric cross sections which are compared
with theory in Fig. 3. The satisfactory agreement in-
dicates the consistency of the values of p& obtained from
the photoelectric cross section and from scattering and
binding energy data.

We are indebted to Dr. Julian Eisenstein, who was
associated with us in the early phases of this work. "
YVe are grateful to Dr. H. Aiken and the sta6' of the
Harvard Computation Laboratory for their coopera-
tion. Mr. John Barr of that laboratory was in charge
of the machine computations and was also very helpful
with the required numerical analysis. Miss Polly
Leighton of the Joint Computing Group at Massachu-
setts Institute of Technology did many of the pre-
liminary calculations and helped in the analysis of the
final results.

26Feshbach, Eisenstein, and Schwinger, Phys. Rev. 74, 1223
(1948).
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FIG. 3: The cross section for the photoelectric disintegration
of the deuteron, where Ace is the incident gamma-ray energy and
e is the deuteron binding energy. The references to experiment are:

CW= J. H. Carver and D. H. Williamson, Nature 167,
154 {1951}.

SBS=Snell, Barker, and Sternberg, Phys. Rev. 75, 1290
(1949).

BCHHSTW=Bishop, et a/. , reference 24.
BSW=Barnes, Stafford, and Wilkinson, Nature 165, 70

(1950).
WY=H. WafHer and S. Younis, Helv. Phys. Acta 22,

414 (1949).


