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F1G. 1. Differential cross section for proton-proton
scattering at 240 Mev.

These results agree with those of Oxley and Schamberger® of this
laboratory, who obtain an average cross section of 4.97+0.42
mb/sterad from 27.5° to 90° cm. The relative error in both of these
experiments is 0.22 mb/sterad, since the errors in the C! cross
section and the beta-counter calibration are mutual. The combined
value of the two experiments gives 4.810.38 mb/sterad for the
isotropic part of the cross section.

These measurements are about 30 percent higher than those
published by Chamberlain ef al.! The cause of this discrepancy is
not clear at the present time.

Details of this experiment will be published at a later date.
I wish to thank Professor C. L. Oxley for many suggestions during
the course of this work.

* Assisted by the joint program of the ONR and AEC.
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Thermodynamic Functions on the Generalized
Fermi-Thomas Theory
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ECENTLY, equations of state of the elements! based on the
generalized Fermi-Thomas theory have been developed. It
has been shown? that exchange effects may be neglected for high
temperatures, and they will not be considered here. In the past,
the pressure has been obtained by calculating the rate of flow of
momentum through the surface of the atom, which is assumed to
be a sphere of radius a. It is also possible to find the pressure from
the free energy or the logarithm of the partition function.? The
purpose of this note is to show that the pressure calculated from
the free energy using the generalized Fermi-Thomas model for
arbitrary temperatures agrees with that found by mechanical
considerations based on the same model, and, in addition, one
obtains expressions for the entropy and the specific heat.
Our model leads to the kinetic energy density*

Ex(r) = (4n /%) (2m)3128=52 315 n+-BeV (r) ], (1a)
and the electron number density
p(r) = (4m/h%) (2m)32B~3/2L o[+ BeV (r) ], (1b)

where V(r) is the total potential, Vx+V., and 8= (k7). Here
Vy is the nuclear potential Ze/r, and — V. satisfies Poisson’s
equation with the charge density ep(r) = p.. The boundary condi-
tions are the vanishing of the total potential and the electric field
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at the surface of the atom. The volume integral of (1a) is the kinetic

energy Exin and that of (1b) is Z, the nuclear charge. The poten-
tial energy Epot is

Epi=—14 [ pVdr— [ pVrdr=EoitEev, @

where dr is 4w72dr. By mathematical manipulation, one finds the

virial theorem
Eyxin=$pv—3Epot. (©))

The difference between our calculation and previous ones is that
the pressure is obtained by macroscopic rather than microscopic
considerations.

The pressure p and the entropy S are found from the free energy
F=FE—TS, where T is the absolute temperature, by means of
the thermodynamic relations,

p=—(0F/)r, (4a)

S=—(3F/3T).. (4b)

The basis of our work is the Gibbs-Helmholtz equation in the form,
Eior= (a/aﬁ)[ﬁFl (5)

of which we obtain the indefinite integral. This is done by in-
tegrating the various terms of Ei by parts and using the relations
between the derivatives of Ex(r) and p, obtained by differentiating
(1a) with respect to a, 8, and 7, including the cross derivatives.
Employing Green’s theorem, one finds

=—%Fvin—E, .+ ZkTy. (6)

From the relations (4a) and (4b) it follows that
p=3%Ek(a), (7a)
S=T"(5/3)Exin+2Eq e+Eon}— Zkn. (7b)

The first of these is the value obtained from mechanical considera-
tions. Consideration of the Fermi factor shows that there is a
maximum value of the momentum, pn(r), given by
P2(r)/2m=¢eV (r)+nkT, (8)

in the sense that in the limit as 7 tends to zero the Fermi factor is
one for p<pm(r) and is zero for p>pm(r). Integrating Eq. (8),
which is the same as the last equation of Sec. IV of reference 1,
over the phase space at absolute zero yields

(5/3)Exin=—2E,, .—E¢, .+ ZkTn.
This shows that ;gmoS =0, as it should.

©

The specific heat at constant volume, C,, given by the relation,

C,= —'ﬂ(aS/aB),,, (10)
may be expressed in the form,
dre Spilp g 7L g0V V~(0).} (92
STCu—ZPv+6Ee,=+6Ee,N V4 a/3+e’3 8 +T 3T)> (11)

This may be shown to agree with that given in reference 1 as T
tends to zero. The expression derived in reference 1 is based upon
relationships valid at 7=0, whereas our relations are valid at an
arbitrary temperature.
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f" The notation is the same as that of reference 1, except that our p= —pe
of 1t.
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N September 18, 1951, a spectrum of lightning in the wave-
length range 7100-9100 angstroms was secured on an East-
man spectroscopic plate type 1N. The instrument used was one



