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where E0& & is the fourth component of the energy-momentum
vector of the free fieM. X{x)is the interaction energy given by

~(*)=lrL4'(*)8 4(*)j4(*)+l& Lf(*),4(*)j, (3)

where g is the coupling constant, 8» an infinite constant designed
to cancel the divergent self energy, p{x) and p(x) the usual nucleon
and meson operators, respectively,

for pseudoscalar mesons

= 1 for scalar mesons.

The infinite constant II0 defines the zero level of energy of the
interacting fields. The equations of motion for the individual
wave functions can easily be written down using methods analo-
gous to those of Pock, ' care being taken that phase factors are
included so that all operators obey the proper commutation rules.
One then readily finds that f&I 0"){P&'&$&'~) satisfies the equation,

(P0 (1) E)f&1 1 0 0) (P &1)$&1)) 0 (4)

if 6a in Eq. {3) is equal to

b~ = +~g'p(3 /2~) log(1 jpco0)+finite terms', {5)
a= nucleon mass.

An infinite term Lproportional to 8{0))is canceled by the H0
term. The latter Lb(0) j term corresponds to the shift in the zero
level of energy as a result of the interaction and implies nothing
of physical interest. The minus sign in Eq. {5) occurs in the
scalar meson theory, whereas the plus sign occurs in pseudoscalar
meson theory.

This whole procedure in configuration space is made relativisti-
cally invariant using the momentum space integration techniques
of Umezawa and Kawabe. 7

To the same approximation the tv o-particle wave function is
taken to be

lgl= f&&~0il)(p&I)$&I)p&&)$&&)k&I))

f&8,0;oi(p&i)s&'), p&')s&'))

(6)

f&8&1'I)(P&1)$&1)P&Q)$&8)p&8)$&8) q&l))&1) k&1})

Carrying out the same operations as before, one obtains for the
f&' '@ an equation which after the f&"'& and f&""& have been

ever, neglected the influence of pair formation, and more recently
by Jean, ' using methods similar to those developed independently
by us. 4

We would like to point out that, within this framework, bound
state problems can be treated in a manner which yields in a
natural fashion a somewhat better perturbation calculus than the
usual one. The method consists in retaining only a limited number
of particle-wave functions in configuration space, and thus can
only be formulated in a configuration space treatment of field
theory. The method is applicable in either coordinate or momen-
tum space. We shall, however, work in momentum space since one
then deals with algebraic rather than differential equations.

Consider first the one-body problem in scalar or pseudoscalar
meson theory. We restrict ourselves to a Pock configuration space
wave function which includes all the effects caused by the pres-
ence of a single meson and a single pair. Thus

f&1 0;0) (p&l)$&l))
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where p&')$&o ~ ~ are the momentum and spin coordinates of the
nucleons, q&'&t&') . ~ those of the antinucleons and k&'&. ~ ~ those of
the mesons. The superscript (l, m; n) on the particle-wave func-
tions refers to the eigenvalue of the number operator for the
nucleons, antinucleons, and mesons, respectively. In the Schroe-
dinger representation the equation of motion of the system is
given by

eliminated has the following structure:

{P& )+P & ) E)f& o'0) {p & )p &&)) (7)
=Mgller interaction terms+self-energy terms for nucleon 1 and 2,
for system in state characterized by energy eigenvalue E+a term
corresponding to shift of zero energy level L~b(0) j+terms pro-
portional to ba corresponding to the self energy+H0 term. The
term corresponding to the shift of zero level of energy (~ B(0)) is
again cancelled by the H0 term. We note that the self energy
terms encountered are of the form,

DE&~8~(particle 1)

1
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+a similar term arising from pair production.

Here
(y(p) =

t p'+2)~= p0 {~=nucleon mass)

c{k)= I k8+psj& (p=meson mass)
and ~=E—(a(p&") —cv{p&2&).

Using the algebraic identity

1 1 1 aE
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(10)

with Q(P&I&, k)=co(P&'&) —co(P&') —k) —e(k), we recognize that the
first term gives rise to the universal self mass (i.e., independent of
the state of motion) of the nucleons and thus is canceled by the ba

terms. The second term in Eq. (10), the difference between the
self energy of a free and a bound nucleon, corresponds to a part of
the Lamb shift. In the present perturbation calculus a contribu-
tion to the Lamb shift thus already appears in a "second-order" cal-
culation. It is therefore seen that the present approximation
method does not correspond to a power series expansion in gs jkc
and thus may be of value in situations where power series expan-
sions in the coupling constant are not applicable.

Calculations of the deuteron energy levels using this formalism
are now in progress. A detailed paper presenting the relativistic
configuration space methods and the relevant renormalization
program will appear shortly in collaboration with Professor
Wightman.

The author wishes to express his sincerest gratitude to Professor
A. Wightman for his valuable advice.
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A TRANSITION from a nuclear isomeric state may occur by
internal conversion or by gamma-ray emission. The observed

decay constant, X, is related to the decay constant for gamma-ray
emission alone, ) ~, by the relation X=X~{1+n),where the con-
version coefficient n equals the ratio of the number of electrons
to the number of gamma-rays emitted per second.

As the internal conversion coefficient is infiuenced by the
"electronic environment" of an isomer, one might expect changes
in the decay constant when this environment is altered. This
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The observed eGect is discussed theoretically by Slater in an
accompanying letter.

We are indebted to Mr. M. McKeown for checking the purity of
the sources with a NaI scintillation spectrometer, to Dr. G.
Friedlander for advice on some chemical aspects of this work, to
the Brookhaven Reactor Group for irradiations, to Miss Jean
Snover for help in the computations, and to the Isotopes Division
of the AEC for the long-lived Tc carrier material. The ionization
chambers were constructed under ONR contract with Harvard
University.
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Fio. 1. ie =io -&'hIot (divisions) plotted against t. The statistical errors
of each point are shown. The li~es indicate the least-squares fit to the points.
Io 15030divisions for sources sulfide-KTc04, 12350 for sulfide-metal 13270
for KTc04-metal. The initial time points, t 0, for each curve are 0.75,
2.45, and 1.83 hours, respectively.

influence can best be tested by using an isomer in diGerent chem-
ical states which has a highly converted low energy isomeric
transition.

VVe have carried out a series of experiments with Tc99~ (6 hours),
an isomer with a 2-kev highly converted isomeric transition fol-
lowed promptly by a 140-kev partially converted gamma-ray"
which can be conveniently measured. We find that the decay
constant of the 2-kev isomeric transition does assume diGerent
values which are dependent on the chemical state of the element.

When long-lived Tc is used as a carrier, ) for Tc99™in KTc04,
as the dry salt, is 1+0.0030&0.00010 times greater than ) for
Tc» electrolytically deposited on copper. ' In another experiment
the same value, within the expressed error, was found for KTc04
in basic aqueous solution.

The experimental data for the dry salt KTc04 and the sulfide'
(Tc2S&) compared with electrolytically deposited Tc99~ are shown
in Fig. 1. 'A for Tc99~ as the sulfide is 1+0.00031~0.00012 times
greater than X for Tc9~ electrolytically deposited on copper. The
radiations from the long-lived Tc carrier, ~25 micrograms for an
individual source, have a negligible effect on these measurements.

The measurements were made by the balance method intro-
duced by Rutherford4 in which two identical ionization chambers
housing the sources under comparison are connected to collect
ions of opposite sign. Thus the diGerence current produced by two
closely matched sources is small and can be measured with a
precision4 ' approaching that defined by the statistics of the
number of separate ionization events which have occurred during
an observation. e s The difference current is i= ioe "'—IOAXte ~' at
any time f, where io is the initial unbalance current, Io is the initial
intensity of the stronger source whose transition constant is ),
and 'A —6) is the transition constant of the other source.
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AINBRIDGE, Goldhaber, and Wilson' have shown experi-
mentally that the probability of a certain internal conversion

in Tc9~ depends on the state of chemical combination. In this
conversion, the nucleus loses about 2 kev of energy, undergoing
an electric octopole transition of hl =3. This energy is only enough
to remove an M or E electron from the Tc atom, and since these
electrons lie toward the outside of the atom, it was thought that
their wave functions might be appreciably aGected by chemical
combination, with consequent appreciable eGect on the conversion
probability. In the reference just cited, it was found in fact that
there is such an eGect, of the order of three-tenths of a percent,
and that furthermore, KTc04 has a somewhat greater conversion
probability than Tc metal. It is the purpose of this note to show
that this is not unreasonable theoretically.

In the first place, a very rough calculation has been made of the
relative contributions of the various electronic shells to the in-
ternal conversion probability. The matrix component which has
to be computed is the integral of the product of the wave function
of the bound electron in the Tc atom or crystal, the wave function
of an electron in the continuum with an energy 2 kev greater than
the bound electron, and a quantity representing the potential of
the nuclear octopole. Since the electromagnetic wavelength of a
gamma-ray of 2 kev is about 6A, and the distances concerned in
the integral are a rather small fraction of an angstrom, we are
justified in representing this potential electrostatically, so that it
is given by a spherical harmonic of l=3, times 1/r'. The integral
then involves a product of three spherical harmonics, one from
each wave function and one from the potential. Such integrals
are zero unless certain relations exist between the / values, result-
ing in selection principles, which in the present case result in
possible transitions from the bound s states to an f state in the
continuum, from a bound p state to a d state in the continuum, and
from a bound d state to a p state in the continuum. The functions
of angles are easily computed, and the matrix component, whose
square is proportional to the transition probability, reduces to an
integral over r, of the product of the radial wave functions of bound
and continuum states, times 1/r', times the volume elements r'dr.

To compute these radial integrals, a very rough numerical
integration for both the bound and continuum wave functions has
been made, using as a potential the Fermi-Thomas potential for
Tc, corrected for exchange. The integrand in each case proves to
start for small r's proportionally to r (the singularity in the


