
1256 LETTERS TO THE ED I TOR

G(e, ul, u2, 0)=
ul fOr e& 1

u2 for e) 1.
(4)

We have been able to develop methods whereby the solution of
Eq. (1) may be obtained without resorting to the G equation.
We 6nd
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with e1+e2=e and

f (x)=e '(1—e (6)

L is the e-fold inverse Mellin transform operator expressed by
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The superscripts beside each summation refer to the order in
which the summations are carried out. The 6rst summation yields
W functions for all possible combinations of the e variables s;,
i = 1, ~ ~, e taken two at a time. The second summation then gives
S' functions for all possible combinations of the e—1 variables
so+sb sl p

' ' ' sn-2 taken two at a time; similarly the third sum-
mation gives IV functions for all possible combinations of the e—2
variables, s,+sg, s1', ~, s 3' taken two at a time, and so on for
the remainder of the summations.
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' ANOSSY' in a recent paper gave the following equation de-
scribing the development of a nucleon cascade in homoge-
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neous nuclear matter,

e(s, ni, Ng, x) =f expL —(x—e)ga
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where C(e, ni, n2., x) expresses the probability of 6nding nl nu-
cleons with energies & aE0 and n2 nucleons with energies &eE0 at
a depth x in homogeneous nuclear matter as a result of a single
primary nucleon of energy E0. The cross section for nucleon-
nuCleOn COlliSiOnS iS giVen by m(e1, c2)deld~2. The diSCulty Of

solving Eq. (1} directly led Janossy to introduce a generating
function defined by

G(, U; ~) = r&U've (,X; *), (2)

in which U is written for u1 and u2, S for nl', n2 and U for
u1"&, u2"&. Equation (1) was then transformed into

a—G{., U; ~)+G{., U; ~)

=J f G(e/eg) U; x)G(e/e2, U; x)w(eg, e2)dc,de2 (3)

with the initial condition
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&HE splitting of free atomic or ionic energy levels by the
electrostatic 6elds within a crystal is believed to play an

important part in various phenomena (specific heat, magnetic
susceptibility, etc.} in solids. In his original work on crystalline
fields, Bethe' pointed out the usefulness of expanding the potentials
in spherical harmonics. He also showed that for a crystal with
cubic (point) symmetry, no spherical harmonics occur of degree
less than 4. Bethe estimated the magnitude of the di6erent terms
for an ionic crystal by using Madelung's2 method to expand the
potential, and by calculating appropriate derivatives at the
atomic positions.

We have been interested in electrostatic fields of metals in
hexagonal close-packed and cubic-face centered crystals. In
hexagonal crystals, spherical harmonics occur of degree 2 and 3,
as well as higher degrees. In order to determine the magnitudes of
spherical harmonics up ta the 4th degree, we have approximated a
metal as a collection of positive point charges of magnitude q at
the ion sites, superimposed on a uniform negative charge of
density p. For such a model, Madelung's method of calculating the
potential cannot be used.

We choose the origin at the position of an ion. Then for a
suKciently large crystal the potential at small distances can be
represented in spherical coordinates as

V =q/r —(2x/3}pr2+Zt, At~r'Yt {8,y), Ci)

where the Y& are surface spherical harmonics. The sum in Eq. (1)
contains contributions from all the ions except that at the origin.
It is possible to express the coefBcients A I~ as

A&~= I 4m/(21+1) jqZR &'+o Yp(O, 4), (2)

where E., 0, C are coordinates of one of the ions, and the sum is
taken over all ions (except the one at the origin).

Equation {2) provides a suitable method of calculating the
coefIIcients for /&~ 4. The factor E. &'+') makes the contributions of
successive neighbors fall o6 in a suKciently rapid way. For /=2
and 3, we used Ewald's' method of calculating the potential near
the origin, and took appropriate derivatives.

For a hexagonal close-packed crystal with lattice parameters b
perpendicular to the hexagonal axis, and c along the axis, we con-
sider ions at {x,y, z) =(0, 0, 0) and (0, b/v3, c/2) in the unit cell.
Writing the potential near the origin in the form,

V=q/r+ (8x/34$) qr' jb'c+kI(2z2 —x'—y )+k2(y' —3x'y)

+k3t 8z' —24z'(x'+y') +3(x'+y')2 1+.. ., (3)

we 6nd for the "ideal" ratio of lattice parameters, c/b= (8/3)&,

k = (0.001692~0.000004)q/b',

k2 ——(0.43780+0.00002)q/b',

k3 ——(0.1134+0.0014)q/b'.
(4)

Other spherical harmonics of degree 4 and less do not occur in
Eq. (3) because of crystal symmetry.

The solution of the G equation (3), is now immediately given
by Eqs. (2} and (5).

We have been successful in solving the complete fluctuation
problem in nucleon cascade theory, and the results with details
shall be presented in a subsequent publication. The methods de-
veloped are moreover directly applicable to the similar problem
in electron-photon cascade theory. We shall present, shortly,
solutions for the distribution functions and Janossy G-equations
in this instance as well.
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